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Abstract: Chongqing is a large municipality in southwestern China, having the characteristics of
a vast jurisdiction, complex topography, and a prominent dual urban–rural structure. It is vitally
important to optimize the spatial layout of land and efficiency of natural resource allocation, achieve
sustainable development, and conduct influence assessment and causation analysis in this region.
Here, using the Google Earth Engine platform, we selected Landsat remote-sensing (RS) images from
the period 2000–2020 and constructed a remote-sensing ecological index (RSEI) model. Considering
the urban spatial pattern division in Chongqing, the Sen + Mann–Kendall analytical approach was
employed to assess the fluctuating quality of the ecological environment in different sectors of
Chongqing. Subsequently, single-factor and interaction detectors in the Geodetector software tool
were used to conduct causation analysis on the RSEI, with the use of eight elements: elevation, slope,
aspect, precipitation, temperature, population, land use, and nighttime lighting. Findings indicate
that, over the course of the investigation period, the eco-quality in Chongqing displayed a pattern
of degradation, succeeded by amelioration. The RSEI decreased from 0.700 in 2000 to 0.590 in 2007,
and then gradually recovered to 0.716 in 2018. Overall, the eco-environment quality of Chongqing
improved. Spatially, changes in the RSEI were consistent with the planning and positioning of the
urban spatial pattern. The main new urban area and periphery of the central urban area showed a
slight deterioration, while other regions showed marked improvement. The combined effect of any
two elements enhanced the explanatory power of a single factor, with elevation, temperature, and
land use being the strongest explanatory elements of eco-quality in Chongqing. The most influential
factor explaining the spatial variation of the RSEI was determined to be the combined impact of
elevation and land use. At the temporal scale, elements related to human activities showed the most
evident trend in explanatory power.

Keywords: Google Earth Engine; Landsat; remote-sensing ecological index model; Geodetector;
Chongqing

1. Introduction

With the rapid advancement in economic and social development, the influence of
human activities on eco-environment change has become increasingly evident [1]. In this
context, coordinating economic and social development with ecological protection and
optimization of the spatial layout of land is vitally important [2]. Optimally dividing the ur-
ban spatial pattern and constructing different development strategies based on the relative
resource endowments of different regions is an important strategy for coordinating urban–
rural development and resolving internal contradictions within natural ecosystems [3].
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The evaluation of eco-environment quality is a crucial process in coordinating harmonious
development between humans and nature. Therefore, it is essential to use appropriate
methods to assess the influence of urban clusters and their surrounding natural spaces,
explore key elements influencing influence change, and verify the compatibility of the
chosen method with urban spatial patterns [4].

Chongqing, a large municipality in southwestern China, possesses a vast administra-
tive jurisdiction, diverse topography, and a distinct dual urban–rural structure [5]. It is the
most populous and largest directly controlled municipality in China, exhibiting marked
differences in natural conditions, resource endowments, and development potential among
its different regions, and between its urban and rural areas [6]. In response to this, in 2014,
Chongqing proposed the “one zone, two groups” urban spatial pattern, considering the
differences in natural conditions, urban distribution patterns, and development situations
in various areas across the municipality. This determined the development priorities of
each region and put forward new requirements for nature conservation [7]. Currently,
numerous researchers have conducted assessments of eco-environment quality in the re-
gion from various perspectives. For instance, Zhang et al. (2023) focused on the upper
reaches of the Yangtze River and explored the relationship between natural conditions
and ecological environmental patterns in that area [8]. Kang et al. (2023) centered on the
Chengdu–Chongqing urban agglomeration and conducted a preliminary evaluation of
the eco-environment quality in that region [9]. Wang et al. (2023), focusing on Chongqing
Municipality, conducted a preliminary exploration of the factors influencing the spatial
patterns of the eco-environment in the area from 2011 to 2021 [10]. However, there is
currently a lack of research on eco-environment quality from the perspective of urban spa-
tial patterns, and the significant differences in natural conditions and development status
among various regions of Chongqing Municipality have not been adequately addressed in
previous studies. Thus, targeted studies in this regard are urgently needed.

Remote sensing (RS), owing to its macroscopic, multi-spectral, and multi-temporal
characteristics, is extensively employed in monitoring ecological conditions [11]. However,
traditional influence assessment methods often rely on a single evaluation index, making it
challenging to reveal systematic changes in the eco-environment and compare the effects of
various influencing elements [12]. Despite the current lack of an influence assessment sys-
tem for urban spatial patterns, the remote-sensing ecological index (RSEI) has been widely
applied in comprehensive regional influence assessments [13–15]. The RSEI, by coupling
four evaluation elements—normalized difference vegetation index (NDVI), wetness (WET),
land surface temperature (LST), and normalized difference built-up index (NDBI)—avoids
the problems associated with single-index evaluations and allows for visualization. Owing
to its various advantages, the RSEI has been widely applied in regions including urban [16],
wetlands [17], and arid region [18], and its reliability has been validated. It thus holds
the potential for application in eco-environment quality assessments tailored to urban
spatial patterns.

Because the eco-environment is in constant dynamic change, conducting long-term
eco-environment monitoring and exploring its influencing elements are crucial for adjust-
ing regional development strategies, mitigating climate change, and achieving sustainable
development. The Google Earth Engine (GEE) platform provides convenient access to a
large amount of publicly available resources and can handle massive geospatial datasets,
making it suitable for large-scale, long-term monitoring. Previous studies have demon-
strated the notable advantages of the GEE platform in eco-environment assessment and
natural disaster change detection [19]. Therefore, scholars have increasingly combined the
GEE platform with the RSEI, conducting research in small regions [20], urban clusters [21],
and river basins [22], achieving promising results. In existing studies, researchers have
generally incorporated the Geodetector software tool proposed by Wang et al. (2017) [23],
using common elements in natural conditions and human activities to explain the detection
results, although such analysis mainly focused on spatial patterns and the temporal resolu-
tion was relatively low. This is because the cases in which the RSEI was applied in existing
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research were mostly specific terrain or administrative areas, where spatial differences
were not prominent, making the exploration of changes in the driving forces of different
elements less meaningful [24–26]. This contributes to the limited number of application
cases with high temporal resolution for the Geodetector tool.

This study is based on the complex urban spatial pattern of Chongqing, and aims
to conduct a long time-series assessment of eco-environment change. It utilizes multiple
elements from different perspectives to carry out Geodetector factor detection on an annual
basis. This approach not only explores the eco-environment quality under different urban
patterns but also, based on the advantage of high temporal resolution, introduces the
Sen + Mann–Kendall and linear regression methods to fit the trends of driving elements.
Therefore, this study aims to address some of the limitations of traditional RSEI applications
by providing an example of a long-term sequential analysis of potential influencing factors
on the eco-environment. It also seeks to explore the response of Chongqing Municipality’s
eco-environment to the “one zone, two groups” policy orientation, verify the effectiveness
of current policies, and lay the groundwork for future ecological protection efforts in
Chongqing Municipality.

2. Material and Methods
2.1. Study Area

Chongqing Municipality (28◦10′–32◦13′ N, 105◦11′–110◦11′ E) is positioned in south-
western China, on the upper reaches of the Yangtze River, within the transitional area
between the Qinghai–Tibet Plateau and the middle–lower reaches plain of the Yangtze
River. This region falls within the subtropical monsoon humid climate zone, characterized
by a minor annual temperature fluctuation and ample rainfall. The average temperature
is relatively mild throughout the year. The topography of Chongqing Municipality is
predominantly hilly–mountainous, with lower elevations in the southwestern and central
areas. In contrast, the eastern part of the municipality includes the Wuling and Daba
Mountains, with the overall terrain height gradually decreasing from north to south along
the Yangtze River valley (Figure 1). The geological structure is relatively complex and
features extensive karst landscapes.
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Figure 1. Geographical conditions and urban spatial pattern of Chongqing Municipality.

The primary types of vegetation include evergreen needleleaf forests, evergreen
broadleaf forests, and deciduous broadleaf forests, with an overall vegetation coverage
rate of 55.04%. The administrative jurisdiction of Chongqing Municipality covers a total
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area of 82,402.95 km2. The urban spatial pattern is divided into the main city metropolitan
area, Three Gorges Reservoir town group in northeast Chongqing, and Wuling Mountains
town group in southeast Chongqing. The main city metropolitan area comprises the central
urban area and new district of the main city. At the end of 2022, the permanent population
was 32.13 million, with an urbanization rate of 70.96%, and a gross domestic product of
CNY 2912.903 billion.

2.2. Data

The RS data utilized were sourced from Landsat images within the GEE platform
database. Specifically, Landsat 5 TM images were used for the period 2000–2012, while
Landsat 8 OLI images were employed for the period 2013–2020. Both datasets belong to
the T1 level. These data underwent radiometric calibration, geometric correction, and
atmospheric correction processes to ensure their reliability and accuracy. Considering the
growth of vegetation and the weather characteristics of frequent cloud cover and fog in
the study area, we focused on data from the months of June to September. To minimize
the influence of atmospheric elements on the images, a thorough data quality screening
process was implemented. Additionally, image mosaicking, resampling, cropping, and
filling of invalid pixels were carried out to enhance the overall quality and suitability of the
data for the subsequent analysis of eco-environment changes in Chongqing.

Population density data were sourced from the LandScan Global dataset (https://
landscan.ornl.gov/ (accessed on 22 July 2023)) released by the Oak Ridge National Labora-
tory, a dataset acknowledged for its comprehensive depiction of global population distribu-
tion [27,28]. Land-use data were derived from the China Annual Land Cover Dataset, pro-
duced by researchers at Wuhan University, led by Yang et al. (2022) [29]. Nighttime light data,
comprehensively reflecting elements such as transportation routes, residential areas, and
urban development, is widely considered a crucial visual data source for capturing economic
activities [30]. Thus, we adopted the Defense Meteorological Satellite Program/Operational
Linescan System nighttime light dataset, accessible at https://dataverse.harvard.edu/ (ac-
cessed on 24 July 2023).

Digital elevation model (DEM) data for slope calculations were obtained from the
National Aeronautics and Space Administration Earth Science Data Network (https://data.
nasa.gov/ (accessed on 23 July 2023)). Temperature and precipitation data were sourced
from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/ (accessed on
24 July 2023)), and included datasets for monthly precipitation and average temperature
spanning the period 1901–2022 [31,32]. During the monthly data processing, we aggregated
the precipitation data for the months of June to September for each study year and calcu-
lated the average temperature for the same period to derive the cumulative precipitation
and average temperature data for each study year from June to September. The integra-
tion of DEM, temperature, and precipitation data allows for a comprehensive analysis
of eco-environment changes in Chongqing, taking into account elements such as slope,
temperature, and precipitation in the assessment model.

2.3. Remote-Sensing Ecological Index Model

Xu (2013) proposed a comprehensive RSEI. This index is based on RS information and
integrates various ecological elements for regional eco-environment RS evaluation [33]. The
RSEI consists of four indicators: greenness (NDVI), wetness (Wet), dryness (NDBSI), and
warmth (LST). The weights of these indicators are determined by their relative contributions
in principal component analysis (PCA). For the calculation methods of each ecological
index, please refer to Table 1.

https://landscan.ornl.gov/
https://landscan.ornl.gov/
https://dataverse.harvard.edu/
https://data.nasa.gov/
https://data.nasa.gov/
https://data.tpdc.ac.cn/
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Table 1. Calculation methods for ecological indicators.

Index Method of Calculation

NDVI NDVI = (NIR − Red)/(NIR + Red)

NDBSI

SI = [(S1+Red)−(Blue+NIR)]
[(S1+Red)+(Blue+NIR)]

IBI =

{
2S1

S1+NIR −
[

NIR
NIR+Red +

Green
Green+S1

]}
{

2S1
S1+NIR +

[
NIR

NIR+Red +
Green

Green+S1

]}
NDBSI = (SI + IBI)/2

WET TM : WET = 0.0315Blue + 0.2021Green + 0.3102Red + 0.1594NIR − 0.6806S1 − 0.6109S2
OIL : WET = 0.1511Blue + 0.1972Green + 0.3283Red + 0.3407NIR − 0.7117S1 − 0.4559S2

LST LST = T[
1+

(
λT

1.438×10−2

)
ln ε

] − 273.15

Notes: Red, Blue, Green, NIR, S1, and S2 represent the reflectance values of Landsat imagery in the blue, green, red,
near-infrared, shortwave infrared 1, and shortwave infrared 2 bands, respectively [34]. The calculation of LST
employs an atmospheric correction algorithm [35]. In the LST formula, T represents the sensor’s thermal value; λ
denotes the center wavelength of the thermal infrared band; and ε represents the surface emissivity [36].

After obtaining the four standardized ecological indices for each year, we utilized PCA
to transform these variables, yielding the first principal component (PCA1). The initial
values of the RSEI can be expressed by the difference between PCA1 and 1, namely:

RSEI0 = 1 − {PCA1[ f (NDVI, LST, WET, NDBSI)]}. (1)

To ensure accurate analysis of the RSEI across different time periods, we standardized
the initial RSEI:

RSEI =
RSEI0 − RSEIMin

RSEIMax − RSEIMin
, (2)

where the final RSEI has a value ranging from 0 to 1. A greater value signifies a more
positive impact. RSEImax signifies the highest achievable value of the influence index,
whereas RSEImin denotes the lowest attainable value.

2.4. Geodetector

Geodetector, available at http://www.geodetector.cn/ (accessed on 23 July 2023),
serves as an analytical software tool employed to identify the spatial heterogeneity of a
dependent variable and unveil the contributing elements influencing it [23]. According
to our research requirements, we utilized both the single-factor detector and interaction
detector within Geodetector for analysis herein. The single-factor detector was employed
to examine the spatial differentiation explanatory power of each influencing factor on
the RSEI. This explanatory power is measured by a variable, denoted as q, with values
ranging from 0 to 1. A greater q value represents a stronger explanatory power of the
influencing element on the spatial differentiation characteristics of the RSEI. The expression
is as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 , (3)

where L represents the number of layers for the independent variable xi, Nh represents
the sample size within N layers and in the region, and σ2 and σ2

h represent the population
variances. The model is valid when σ2 ̸= 0. The interaction detector was used to assess
the interaction among different elements (xi) to evaluate the influence on the explanatory
power of variables when driven by multiple elements. Assuming q(x1) and q(x2) represent
the explanatory powers of elements x1 and x2 on the spatial differentiation characteristics
of the RSEI, q(x1∩x2) represents the explanatory power after the interaction between these
elements. There are five different influence patterns, as detailed in Table 2.

http://www.geodetector.cn/
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Table 2. Interaction types.

Criterion Mode

q(x1 ∩ x2) < Min(q(x1), q(x2)) Nonlinear weakening
Min(q(x1), q(x2)) < q(x1 ∩ x2) <

Max(q(x1), q(x2))
Single-factor nonlinear weakening

q(x1 ∩ x2) > Max(q(x1), q(x2)) Two-factor enhancement
q(x1 ∩ x2) = q(x1) + q(x2) Independent
q(x1 ∩ x2) > q(x1) + q(x2) Nonlinear enhancement

2.5. Sen + Mann–Kendall Trend Analysis

The Theil–Sen median method is a non-parametric statistical approach for trend
calculation [37–39]. Its formula is:

β = median
( xj − xi

j − i

)
, ∀j > i, (4)

where xj and xi represent time-series data. A positive β value represents an ascending trend
in the time series, whereas a negative value signifies a descending trend.

Similarly, the Mann–Kendall method is also a non-parametric test that does not require
distribution assumptions for sample data, thereby reducing the influence of outliers on
the results [40–42]. The Mann–Kendall method sets a test statistic, S, which is calculated
as follows:

θ = xj − xi, (5)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(θ), (6)

where, when θ > 0, sgn(θ) = 1; when θ < 0, sgn(θ) = −1; and when θ = 0, sgn(θ) = 0. Based
on this, we can construct the variance, Var(S), of S, which is formulated as follows:

Var(S) =
n(n − 1)(2n + 5)− ∑m

i=1 ti(t i − 1)(2ti + 5)
18

, (7)

where n represents the number of dots, m is the number of groups with the same value
samples, and ti denotes the number of ties in range i. If n > 10, the slope can be represented
by Z, calculated as follows:

Z =


S−1√
VAR(S)

, (S > 0)

0, (S = 0)
S+1√
VAR(S)

, (S < 0)
. (8)

The Sen + Mann–Kendall trend analysis method merges the Theil–Sen median method
and the Mann–Kendall method. It utilizes the parameter β from the Theil–Sen median
method to determine the direction of the trend and the Z value from the Mann–Kendall
method to assess the significance of the trend. For a significance level, α, of 0.05, the
critical Z value is 1.96. On the basis of this value, trends are categorized as follows: if
|Z| > 1.96 and β > 0.0005, a significant improvement is indicated; if |Z| < 1.96 and
β > 0.0005, a slight improvement is indicated; if |Z| > 1.96 and β < −0.0005, a significant
degradation is indicated; if |Z| < 1.96 and β < −0.0005, a slight degradation is indicated;
and if −0.0005 ≤ β ≤ 0.0005, there is no significant change. These classifications were used
to categorize the trends in RSEI values over multiple years.
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3. Results
3.1. Eco-Environment Quality and Changes in Chongqing

The temporal variation of the RSEI in Chongqing Municipality is illustrated in Figure 2.
Eco-environment changes in Chongqing between 2000 and 2020 can be divided into two
phases, with 2007 as the boundary year. From 2000 to 2007, the RSEI exhibited a fluctuating
descendant trend, gradually decreasing from 0.7005 in 2000 to 0.5904 in 2007. The linear
fit goodness was 0.5576, indicating a distinct deteriorating trend in the eco-environment
of Chongqing during this period. From 2007 to 2020, the RSEI exhibited a fluctuating
upward trend, reaching 0.7163 in 2018. The linear fit goodness was 0.6091, suggesting a
gradual improvement in the eco-environment during this phase. Therefore, during the
study period, the eco-environment quality in Chongqing showed a V-shaped trend of
deterioration followed by improvement. Overall, from 2000 to 2020, there was a slight
improvement in the eco-environment quality in Chongqing.
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Figure 2. Trend of remote-sensing ecological index (RSEI) change in Chongqing Municipality between
2000 and 2020.

The spatial distribution pattern of the RSEI in Chongqing Municipality is illustrated
in Figure 3, where it can be seen that the eco-quality exhibited substantial spatial hetero-
geneity. From 2000 to 2020, the spatial distribution of the RSEI in Chongqing was generally
consistent. The areas with lower RSEI values are depicted in brown on the map, showing
a pattern of “one block, multiple points”. Specifically, the low-value areas consist of a
larger block of low-value area in the southwest part of the map and scattered point-like
low-value areas distributed across the entire map. The block-shaped distribution area is
located within the central urban area of Chongqing, and its shape closely resembles that
of the built-up area in the central urban area of Chongqing. The point-shaped low-value
areas are mainly situated around the central urban area within the main urban districts of
Chongqing, or scattered in the valley areas. These point-shaped low-value areas correspond
to the county-level cities within Chongqing, as their built-up areas are much smaller than
that of the central urban area, resulting in a point-like appearance on the map. Their RSEI
values are <0.5, indicating that the RSEI values in urban built-up areas are lower than those
in non-built-up areas. High-value areas can be mainly divided into two parts: the Daba
Mountains in the northeast and Wuling Mountains in the southeast, corresponding to the
urban spatial pattern of Chongqing. In these areas, the RSEI values are generally >0.75,
indicating a better eco-environment. In the high-value RSEI areas, the distribution trend of
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the RSEI reflects the parallel distribution of ridges and valleys in the Chongqing region,
indicating a potential relationship between the RSEI and altitude.
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To visually illustrate the spatial changes in influence in Chongqing Municipality
during the study period, we employed the Sen + Mann–Kendall analysis method to examine
the spatial variation of the RSEI. The results were categorized, and the proportions of each
change category were calculated, as depicted in Figure 4. This revealed that >70% of the
regions in Chongqing witnessed an improvement in their eco-environment during the study
period. Specifically, 28.27% were classified as significantly improved and 43.59% as slightly
improved. In contrast, only 18.55% of the regions exhibited slight deterioration, with no
areas meeting the criteria for significant deterioration, aligning with our earlier overall
assessment. Upon analyzing the spatial distribution, areas experiencing deterioration
were primarily concentrated in the central urban area and the outskirts of the central city.
Meanwhile, the core area of the central city, urban clusters in the Three Gorges Reservoir
area of northeast Chongqing, and urban clusters in the Wuling Mountains area of southeast
Chongqing exhibited a trend of improvement.

Following the accepted methodology of related studies, we classified the RSEI values
into five levels: poor, fair, moderate, good, and excellent, using an equal interval approach.
Considering the overall temporal variation in the RSEI, we selected four specific years,
namely 2000, 2007, 2014, and 2020, as key points to reclassify and statistically analyze the
RSEI results. As depicted in Figure 5, the results represent a dynamic transformation in
RSEI levels across Chongqing, with approximately 67.08% of regions experiencing changes
in classification during the study period. Notably, transitions between good and moderate
levels stand out. The predominant transformation pattern involves a shift from a good level
to moderate level at a certain point, followed by a return to a good level. This particular
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transition path covers approximately 36.97% of the study area, markedly influencing the
variation in influence levels across Chongqing. This pattern aligns with the observed
V-shaped temporal trend in the RSEI.
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3.2. Detection Results Based on Geodetectors

According to our research requirements, we selected eight elements to investigate the
main elements influencing the eco-environment in Chongqing. These elements included
elevation, slope, aspect, precipitation, temperature, population, land use, and nighttime
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light. To align with the sampling period of RSEI, the data for precipitation and slope were
collected from June to September each year. These elements exhibit significant differences
and spatial heterogeneity in their distribution across Chongqing, as illustrated in Figure 6,
depicting their overall spatial distribution patterns. To conduct factor detection, a 5 × 5 km
grid was created, and factor attribute values corresponding to spatially relevant points
were extracted. These spatially relevant points are evenly distributed across the study area,
representing the geographical conditions of different regions in Chongqing. Single-factor
detectors and interaction detectors were employed to study the influence of these selected
elements on the RSEI-based eco-environment changes in Chongqing and their interactions.
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slope, and aspect of the study area. (d) represents the mean cumulative precipitation from June to
September for each year from 2000 to 2020. (e) represents the average temperature from June to
September for each year from 2000 to 2020. (f,h) represent population and nighttime light data for
the study area, respectively, shown as the average values from 2000 to 2020. (g) represents land use
data, with the example shown for the year 2020.

Using a single-factor Geodetector to detect selected years, the average interpretability
and significance of each factor’s separate effects on the RSEI and their variations were
analyzed, as shown in Table 3. All elements passed the significance test at the 0.05 level.
The ranking of interpretability for each factor was elevation > temperature > land use
> nighttime light > population > slope > precipitation > aspect. The interpretability of
single-factor detection for each study year was plotted over the study period to show its
variation (Figure 7), wherein nighttime light, land use, and population elements exhibited
a noticeable increasing trend in interpretability; when fitted with linear regression, their
goodness of fit values were 0.6539, 0.6141, and 0.5470, respectively. Other elements did
not show a clear trend in interpretability for the RSEI. Additionally, it is noteworthy that
the interpretability of the precipitation factor showed considerable interannual variation,
which may be related to the distinct differences in annual precipitation distribution across
the region.

Table 3. Single-factor detection significance.

Factor Elevation Slope Aspect Precipitation Temperature Population Land Use Nighttime Light

q 0.499 0.197 0.005 0.126 0.440 0.217 0.404 0.221

p 0.000 0.000 0.048 0.000 0.000 0.000 0.000 0.000
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Using the interaction detector to explore the interactions between different elements
and the RSEI, representative years (2000, 2007, 2014, and 2020) were again chosen to
construct interaction power heatmaps for pairwise coupling effects (Figure 8). The coupling
effect between the elevation and land-use elements exhibited the strongest interpretability
for the spatial distribution of the RSEI, reaching 0.463, 0.612, 0.617, and 0.605 for the four
respective years. Additionally, the coupling effects between elevation and nighttime light,
elevation and temperature, and temperature and nighttime light also showed relatively
strong explanatory power. In terms of coupling mechanisms, all interaction types were
enhancing effects, with the majority (74.11%) being double-factor enhancement patterns
and the rest (25.89%) being nonlinear enhancement patterns.
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4. Discussion

Our trend analysis of the RSEI revealed two phases of influence change in Chongqing
Municipality over the past 20 years, with 2007 as the turning point. Before 2007, Chongqing
experienced a relatively deteriorating trend in influence, associated with rapid industrial
development and urbanization at that time. With the increasing frequency of human
activity and irrational land-use practices, vegetation coverage in the region decreased,
leading to soil erosion and negative influences on the eco-environment [43,44]. After
2007, the eco-quality in Chongqing gradually improved, possibly owing to the gradual
manifestation of the ecological benefits of the Grain for Green project. China initiated the
nationwide Grain for Green project in 2002; previous studies have shown that there have
been significant positive effects from this project on the eco-environment in western China,
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with a certain temporal lag effect [45–47]. Given the unique topography, landforms, and
climatic conditions in Chongqing, afforestation is the primary form of land conversion,
with such areas exceeding 25,000 hectares; this is a major type of land conversion with
substantial economic benefits [48]. In studies focused on the Chengdu–Chongqing region,
the dominant role of the NDVI in the improvement of urban cluster environments has
been recognized [49]. Therefore, the continuous improvement of vegetation coverage
may be a key factor in reversing the deteriorating trend and gradually improving the
eco-environment quality in Chongqing Municipality.

Our Sen + Mann–Kendall analysis has demonstrated the spatial heterogeneity of eco-
environment changes in Chongqing Municipality. It is evident that there is considerable
spatial heterogeneity in the eco-environment in Chongqing. Areas exhibiting a deteriorat-
ing trend are concentrated in the southwest of Chongqing, characterized by relatively flat
terrain and a comparatively dense population. In contrast, most areas in the northeast and
southeast of Chongqing, which have complex terrain and small populations, exhibit an im-
proving trend. Because the areas displaying a declining trend in southwestern Chongqing
constitute a minor proportion of the entire municipality, the overall eco-environment qual-
ity in Chongqing exhibits an improving trend. Combined with the “one zone, two groups”
urban spatial pattern in Chongqing, further analysis reveals that areas with deteriorating
ecological conditions are concentrated on the outskirts of the main new urban area and
central urban area. These areas are designated as the main focal point for the aggregation
of advanced manufacturing and industrial urbanization, serving as the primary areas for
expansion and construction of the central urban area and the main sites for population
transfer. During the rapid development of the past 20 years, these areas have been rapidly
urbanized, with the transformation of extensive forest and arable land into impervious
surfaces (Figure 9); this is the main reason for the relatively deteriorating eco-environment
in these regions. In this regard, Ren et al. (2021) incorporated point-of-interest data to
analyze the relevant indicators of the RSEI in the main urban district of Chongqing, corrob-
orating the results obtained herein [50]. However, the eco-quality of the old urban district
of Chongqing, also part of the main urban area, has shown a marked trend of improvement.
This is intricately linked to the ecological restoration activities carried out in the core area of
Chongqing over the last few years. Overall, the results of our Sen + Mann–Kendall analysis
are highly consistent with the policy guidance of the “one zone, two groups” urban spatial
pattern in Chongqing Municipality.

The application results of the Geodetector tool indicate that, at the spatial scale,
elevation, temperature, and land use are the main driving elements influencing the eco-
environment in Chongqing Municipality. The explanatory power of other elements is
relatively low, which aligns with conclusions reached in other studies carried out in the
region [9]. Owing to the complex terrain of Chongqing and the considerable influence of
elevation and temperature on vegetation growth in the region [51], complex topography
affects land use, and high-altitude areas are often unsuitable for human activities owing
to topographical constraints. As a result, vegetation is well preserved in these areas,
contributing to better eco-environment quality. In terms of temporal changes, elements
closely related to human activities, such as nighttime light, land use, and population
distribution, show an increasing explanatory power for the RSEI over recent years, while
the explanatory power of other natural elements does not exhibit a clear trend. Considering
the development status of Chongqing Municipality during our study period, we suggest
that, compared with natural elements (e.g., climate and topography). Human activities
can produce more pronounced trends over a relatively short period, and further analysis
suggests that human activities emerge as the predominant factor influencing the changes
in RSEI over the timescale examined in this study. Compared with elements such as
climate/precipitation, the intensity of human activities can undergo substantial changes
over a short period. Incorporating the results of Sen + Mann–Kendall analysis, it is evident
that the regions where the RSEI shows a deteriorating trend are precisely the regions
with intense human activities in the “one zone, two groups” spatial pattern, while the
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regions showing improvement align with areas covered by the Grain for Green project.
This indicates that government policies can have a marked influence on human activities
and can change the eco-quality of a region over a relatively short time frame.
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The above results and discussion demonstrate the effectiveness of policymaking.
Therefore, we suggest that policymakers continue to promote the development adjustment
of ecological functional areas according to the established route. Furthermore, given the
decline in the surrounding eco-environment of the central urban area and the main new
urban area, we advise policymakers to carry out more comprehensive local environmental
assessments prior to initiating urbanization development in order to mitigate the serious
harm that intense urban development causes to the local eco-environment. Compared
with the similar methodological studies conducted by Kang et al. (2023) and Wang et al.
(2023) in the region, this study provides a new perspective on the urban spatial pattern
for the application of RSEI [9,10]. In contrast to the element detection conducted by
Zhang et al. (2023) and Wang et al. (2023), this study not only offers mean detection
results but also provides element influence detection results under time series, which
effectively supplements previous research [8,10]. However, this study only conducted
the overall detection of driving factors in the study area using Geodetector, without fully
considering the complex geographical conditions and spatial heterogeneity within the
research area. Therefore, in future research, it could be beneficial to integrate the urban
spatial pattern of Chongqing’s “one zone, two groups” policy and conduct long-term
element detection on various sub-regions, with full consideration of the differences in
conditions across Chongqing to compare the differential effects of influencing elements
under different conditions. This will provide more specific recommendations for tailored
ecological protection measures.
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5. Conclusions

In this study, we employed Landsat RS imagery to construct an RSEI model. Simulta-
neously, we utilized the Sen + Mann–Kendall analysis method to summarize the spatial
distribution and trend changes of the RSEI in Chongqing Municipality. Additionally, we
applied single-factor and interaction detectors within the Geodetector tool to analyze the
impact of various detection elements on the eco-environment in Chongqing. This study
yielded the following conclusions:

(1) On the basis of RS data from 2000 to 2020 in Chongqing Municipality, we revealed
a changing trend in the eco-environment quality, characterized by deterioration fol-
lowed by recovery. Before 2007, the eco-environment quality in Chongqing deterio-
rated, while, after 2007, it gradually improved. Overall, the eco-quality in Chongqing
is now trending positively. In terms of spatial distribution, the changes in the eco-
quality in Chongqing align with the overall development pattern of the “one zone, two
groups” spatial pattern, exhibiting marked spatial heterogeneity. The eco-environment
in the peripheral areas of the main new urban area and central urban area has de-
teriorated to some extent, while the eco-environment in the old urban district of
Chongqing and other areas where ecological conservation and protection has been
prioritized has significantly improved.

(2) The application of the Geodetector tool revealed that, at the spatial scale, elevation,
temperature, and land use are the main explanatory elements influencing the eco-
environment in Chongqing. They play a fundamental role in shaping the spatial
pattern of the RSEI. Interaction detector results show that the combined effects of vari-
ous influencing elements enhance the impact of a single element, with the combined
influence of elevation and land use exhibiting a strong explanatory interpretability for
the RSEI. On the temporal scale, compared with natural elements, elements related to
human activities show a more pronounced trend in explanatory power changes. Influ-
enced by local government policy preferences, economic development, and elements
like the Grain for Green project, human activities dominate the temporal changes in
the RSEI in Chongqing.
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