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Abstract: Typhoon-related heavy rain has unique structures in both time and space, and use of
satellite-retrieved products to delineate the structure of heavy rain is especially meaningful for
early warning systems and disaster management. This study compares two newly-released satellite
products from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG
final run) and the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA 3B42V7) with daily rainfall observed by ground rain gauges. The comparison is implemented
for eight typhoons over the coastal region of China for a two-year period from 2014 to 2015. The results
show that all correlation coefficients (CCs) of both IMERG and TMPA for the investigated typhoon
events are significant at the 0.01 level, but they tend to underestimate the heavy rainfall, especially
around the storm center. The IMERG final run exhibits an overall better performance than TMPA
3B42V7. It is also shown that both products have a better applicability (i.e., a smaller absolute relative
bias) when rain intensities are within 20–40 and 80–100 mm/day than those of 40–80 mm/day and
larger than 100 mm/day. In space, they generally have the best applicability within the range of
50–100 km away from typhoon tracks, and have the worst applicability beyond the 300-km range.
The results are beneficial to understand the errors of satellite data in operational applications, such as
storm monitoring and hydrological modeling.
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1. Introduction

Heavy rain events have profound impacts on human society, hydrological processes, and natural
ecosystems [1,2]. They can adjust river regimes, flood peak, and waterlogging patterns rapidly, and
even cause significant losses in human life and social economy [3–5]. A typhoon is a type of cyclone
formed in the tropical ocean and often brings heavy rainfall to coastal territory. Typhoon-related heavy
rain has unique patterns in both time and space, e.g., it can last from one day to several days, and
is dominated by typhoon track, translation speed, atmospheric environment, etc. Therefore, reliable
measurements of the heavy rainfall provide essential information to monitor and forecast its changing
patterns, which are crucial for early warning systems and disaster management strategies [6–9].
Moreover, detailed regularity of heavy rainfall across different spatiotemporal scales leads to insights
about the variability of runoff, which can further contribute to reduce inundation of urban regions [10].
However, rainfall is highly variable in both space and time during a typhoon event, creating significant
challenges in its accurate monitoring.

Water 2017, 9, 276; doi:10.3390/w9040276 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water


Water 2017, 9, 276 2 of 15

Radar and satellite precipitation measurements provide more homogeneous datasets than
ground gauge observations [11,12]. Radar precipitation estimates are constrained by the monitoring
scope of radar, while satellite precipitation products have advantages in global coverage and fine
resolution [13,14]. There are currently various open access satellite-based precipitation products that
could bring valuable scientific and societal benefits. Meanwhile, those products often contain large
uncertainties and inevitable errors in different aspects, such as the variability of the precipitation
fields and systematic errors [15–17]. These various errors and differential resolutions influence the
accuracy of hydrological modeling [18,19]. Evaluation of these products is, therefore, necessary
for further understanding of their error characteristics, and is vital to algorithm improvement and
subsequent applications.

The Global Precipitation Measurement (GPM) mission, which was launched on 27 February 2014,
provides the next generation satellite-based global observations of rainfall and snow. GPM is built upon
the success of the Tropical Rainfall Measuring Mission (TRMM). Currently, the accessible Integrated
Multi-satellitE Retrievals for GPM (IMERG) Level-3 products have finer resolutions (0.1◦ × 0.1◦, 30 min)
than the TRMM precipitation series (0.25◦ × 0.25◦, 3 h), and are valuable for applications over the band
of 60◦ N to 60◦ S [20]. Meanwhile, the TRMM Multi-satellitE Precipitation Analysis (TMPA) products
have provided abundant precipitation information since 1997 [12]. The recently-updated version,
3B42 version 7 (3B42V7), comprises near-real-time and research-grade products with a resolution of
0.25◦ × 0.25◦ in space and 3 h in time [21,22].

Scientists, worldwide, have been investigating the error characteristics of the satellite precipitation
series at different spatial and temporal scales. Some studies [6,17,23] demonstrated that TMPA
3B42V7 performs better than TMPA 3B42V6, while both products have larger errors in mountainous
regions [6,8]. Some other studies [24–30] made comparisons between IMERG and TMPA products,
and reported that IMERG generally exhibits an overall better performance than TMPA, especially
for estimating heavy and light precipitation. However, IMERG still has room to improve, such as in
arid and high-latitude zones [26,29], and mountainous areas [28,31]. These studies provide a large
amount of information to understand the applicability of IMERG and TMPA, but tend to focus on
annual, seasonal, and monthly scales, not sufficient for short-term heavy rainfall events, especially
when associated with the tropical cyclone rainfall system [4,32]. Evaluation of the products for heavy
rainfall is a high standard to verify their performance, and is important in practical applications, such
as flood forecasting and urban stormwater collection.

The coastal region of China has experienced frequent typhoons and encountered severe
socio-economic losses. In general, typhoons strike the coastal region frequently during the period of
July to September every year and generate a large number of rainstorm events. There were more than
$5.3 billion economic losses per year since 2001, and approximately 34 typhoons landed in this region,
which caused 422 losses to life during 2011–2015 [33]. It is of great significance to focus on typhoon
heavy rains over the coastal region of China.

Therefore, our motivations are: (1) to evaluate the performance of two recently-released products,
i.e., the IMERG final run and TMPA 3B42V7, in estimating typhoon-related heavy rain over the coastal
region of China; and (2) to analyze their applicability with respect to different rainfall intensities and
ranges away from the typhoon track. This paper is organized as follows: Section 2 describes the study
area and datasets; Section 3 describes the statistical methods used in this study; Section 4 presents and
analyzes the results; Section 5 discusses the causes of the error characteristics and the comparative
results; and Section 6 provides a summary and some concluding remarks.

2. Study Area and Datasets

2.1. Study Area

The coastal region of China (18◦–38.5◦ N; 104◦5′–123◦ E), which is located at the leading edge of
Eurasia and Pacific Ocean, comprises seven provinces and one city, i.e., Shandong, Jiangsu, Zhejiang,
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Fujian, Guangdong, Hainan, and Guangxi provinces and Shanghai city (Figure 1). The region is a
typical monsoon climate zone, with annual average precipitation ranging from 550 to 2600 mm, and
a decreasing pattern from the south to the north. The temporal distribution of precipitation is also
uneven, with more than 70% of the annual rainfall concentrating in summer and autumn, when rainfall
is primarily controlled by summer wet monsoons and typhoons. Owing to its rapid urbanization and
topographic feature, i.e., the eastern areas are mainly plains and rivers downstream where most of the
large cities are located, therefore, the risk of flooding is very high over the developed areas. In addition,
the coastal region of China has a well-developed economy and dense distribution of cities and people.
According to the 2015 China Statistical Yearbook, the region possessed a total gross domestic product
(GDP) of $4.48 trillion, accounting for 48% of the national GDP, and had a total resident population of
459 million, accounting for 34% of the country’s total population.

Water 2017, 9, x FOR PEER REVIEW  3 of 15 

 

2. Study Area and Datasets 

2.1. Study Area 

The coastal region of China (18°–38.5° N; 104°5′–123° E), which is located at the leading edge of 
Eurasia and Pacific Ocean, comprises seven provinces and one city, i.e., Shandong, Jiangsu, 
Zhejiang, Fujian, Guangdong, Hainan, and Guangxi provinces and Shanghai city (Figure 1). The 
region is a typical monsoon climate zone, with annual average precipitation ranging from 550 to 
2600 mm, and a decreasing pattern from the south to the north. The temporal distribution of 
precipitation is also uneven, with more than 70% of the annual rainfall concentrating in summer and 
autumn, when rainfall is primarily controlled by summer wet monsoons and typhoons. Owing to its 
rapid urbanization and topographic feature, i.e., the eastern areas are mainly plains and rivers 
downstream where most of the large cities are located, therefore, the risk of flooding is very high 
over the developed areas. In addition, the coastal region of China has a well-developed economy 
and dense distribution of cities and people. According to the 2015 China Statistical Yearbook, the 
region possessed a total gross domestic product (GDP) of $4.48 trillion, accounting for 48% of the 
national GDP, and had a total resident population of 459 million, accounting for 34% of the 
country’s total population. 

 

Figure 1. Study area and the spatial distribution of rain gauges. 

2.2. Typhoon Events 

Eight typhoon events, which landed in the coastal region of China during the two-year period 
of 2014–2015, are investigated in this study. The study period of 2014 to 2015 is constrained by the 
availability of the IMERG final run data. Additionally, the investigated typhoons are different in 
magnitude, typhoon track, duration and the affected geographical areas. The basic information of 
typhoon events and their storm tracks are obtained from China Typhoon Online [34] and National 
Meteorological Center [35]. For the convenience of making comparisons, the typhoon events are 
further divided into two groups according to the geographical areas where they made landfall and 
their moving directions. Rammasun, Mujigae, Kalmaegi, and Linfa, which made landfall in the 
southern areas (Guangdong or Hainan province) and moved to the south, are divided into Group I. 
Chon-hom, Matmo, Soudelor, and Dujuan, which made landfall in the eastern areas (Fujian or 
Zhejiang province) and moved to the north, are divided into group II. Matmo and Soudelor are two 
stronger typhoons among them and have almost impacted the entire coastal region. The basic 
information of the eight investigated typhoons is listed in Table 1. 

Figure 1. Study area and the spatial distribution of rain gauges.

2.2. Typhoon Events

Eight typhoon events, which landed in the coastal region of China during the two-year period
of 2014–2015, are investigated in this study. The study period of 2014 to 2015 is constrained by the
availability of the IMERG final run data. Additionally, the investigated typhoons are different in
magnitude, typhoon track, duration and the affected geographical areas. The basic information of
typhoon events and their storm tracks are obtained from China Typhoon Online [34] and National
Meteorological Center [35]. For the convenience of making comparisons, the typhoon events are
further divided into two groups according to the geographical areas where they made landfall and
their moving directions. Rammasun, Mujigae, Kalmaegi, and Linfa, which made landfall in the
southern areas (Guangdong or Hainan province) and moved to the south, are divided into Group I.
Chon-hom, Matmo, Soudelor, and Dujuan, which made landfall in the eastern areas (Fujian or Zhejiang
province) and moved to the north, are divided into group II. Matmo and Soudelor are two stronger
typhoons among them and have almost impacted the entire coastal region. The basic information of
the eight investigated typhoons is listed in Table 1.
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Table 1. Basic information of the investigated typhoon events over the coastal region of China.

Group Typhoon
Event Period Mainly Affected Province (City)

Number of
Investigated

Station

Maximum
Daily Rainfall

Group I

Rammasun 18–19 July 2014 Guangdong, Guangxi, Hainan 55 303.6 mm
Mujigae 4–5 October 2015 Hainan, Guangdong, Guangxi 58 192.9 mm

Kalmaegi 16–17 September 2014 Hainan, Guangdong, Guangxi 67 296.5 mm
Linfa 9–10 July 2015 Guangdong, Fujian 39 158.8 mm

Group II

Chon-hom 11–12 July 2015 Zhejiang, Jiangsu, Fujian, Shanghai 37 267.7 mm
Matmo 23–25 July 2014 Fujian, Guangdong, Jiangsu, Shandong 98 238.3 mm

Soudelor 8–10 August 2015 Fujian, Zhejiang, Jiangsu, Guangdong 104 232.1 mm
Dujuan 28–30 September 2015 Fujian, Zhejiang, Jiangsu 80 170.9 mm

2.3. Gauge Observations

Daily rain gauge observations are collected from the National Meteorological Information Center
of the China Meteorological Administration (CMA). There are 165 observation stations in total over the
study area (Figure 1) with the gauge density of 1.734 stations per 104 km2. Regarding the data quality
control, the dataset has passed homogeneity assessments through the Standard Normal Homogeneity
Test method [36]. Non-uniform stations, such as “Shaoguang” “Qingyuan”, and “Shangchuandao”,
have been corrected using the ratio method by CMA. Few missing records, which were amended
by the CMA, have been replaced by the mean value of adjacent dates. This study mainly analyzes
these stations which had total rainfall larger than 10 mm during a typhoon event and have substantial
spatial relation with the typhoon track. Thus, the 10 mm rainfall depth threshold [37], which refers
to accumulated rainfall from gauge observations, is applied to screen out the light rainfall since the
focus of this study is to investigate the performance of both latest satellite precipitation products for
heavy rainfall. In addition, some stations with total rainfall less than 10 mm are still retained if they
are within a 150-km range of the typhoon track. One and two stations with rainfall <10 mm have been
retained for the Rammasun and Linfa events, respectively.

2.4. TMPA 3B42V7

The latest post real-time 3B42V7 precipitation product of TMPA is used in this study. It integrates
various satellite microwave radar data, including that from TRMM Microwave Image (TMI), Special
Sensor Microwave Image (SSMI), Special Sensor Microwave Image/Sounder (SSMIS), Advanced
Microwave Scanning Radiometer-EOS (AM-SR-E), Advanced Microwave Sounding Unit-B (AMSU-B),
and Microwave Humidity Sounder (MHS) [20]. In addition, the 3B42V7 version combines the ground
rain gauge products of the Global Precipitation Climatology Center (GPCC) [21]. The improved 3B42V7
data (0.25◦ × 0.25◦, 3 h) are collected from the Precipitation Measurement Missions website [38]. This
study utilized all of the TMPA 3B42V7 data, in HDF format, during the period of the typhoons. The
unit of the precipitation field is mm per hour, which refers to the precipitation rate. The three-hour
3B42V7 precipitation is further accumulated into daily and event-total rainfall during the period of
each typhoon event, based on ENVI version 5.1 which is developed by Exelis Visual Information
Solutions company in the United States, and MATLAB R2015a which is developed by MathWorks
company in Natick, Massachusetts, USA. The precipitation in a grid that corresponds to the ground
gauges can be extracted by ArcMap 10.1 which is provided by Environmental Systems Research
Institute in RedLands, California, USA.

2.5. IMERG Final Run

The IMERG final run-calibrated precipitation data are analyzed in this study. The geophysical
parameters of IMERG Level-3 have been spatially or temporally re-sampled from Level-1 or Level-2
data, and the Level-3 products include early run, late run, and final run versions. Currently, IMERG
employs the 2014 version of the Goddard Profiling Algorithm (GPROF2014) to compute precipitation
estimates from all passive microwave (PMW) sensors onboard GPM satellites, and is an improvement
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compared to TMPA’s retrieval algorithm (GPROF2010) [21,39]. The IMERG final run data [38], with a
latency of four months, are available from March 2014 to present, so that the investigated typhoon of
this study is constrained in the period of March 2014 to September 2015. All of the IMERG final run
datasets in HDF5 format, are collected for the periods of typhoon events. The unit of the precipitation
field is mm per half hour. Similar to TMPA 3B42V7, the half-hour IMERG precipitation is also
accumulated into daily and event-total rainfall.

3. Methods

A series of common statistical metrics, which include relative bias (RB), mean error (ME), mean
absolute error (MAE), root-mean-squared error (RMSE), and Pearson linear correlation coefficient (CC),
are used to perform the comparative evaluation. RB is used to evaluate the errors in a gauge-grid pair
while ME, MAE, and RMSE are for regional-scale evaluations [40].

RB is the ratio of underestimating or overestimating, in percentage, and it is applicable to reflect
errors between the satellite estimates and the corresponding gauge observations. RB is calculated for a
typhoon event at individual sites by Equation (1):

RBi =
Si − Gi

Gi
× 100 (1)

where i is a rain gauge number; Si represents the satellite precipitation estimates; and Gi represents the
gauge observations.

The other metrics (ME, MAE, and RMSE) are used to measure the magnitude of errors for a whole
region or sub-region in this study. MAE is a statistical metric with absolute value, while ME is a metric
having positive and negative value, so it can be used to reflect the direction of accumulated errors, i.e.,
overestimation or underestimation at all stations. Furthermore, RMSE is the squared root of errors
emphasizing extremes [8]. These statistical metrics can be calculated by Equations (2)–(4):

ME =
1
n

n

∑
i=1

(Si − Gi) (2)

MAE =
1
n

n

∑
i=1
|Si − Gi| (3)

RMSE =

√√√√√ n
∑

i=1
(Si − Gi)

2

n
(4)

where n represents the number of samples.
In addition, Pearson linear correlation analysis is used to examine the linear agreement of satellite

precipitation estimates and rain gauge observations. The CC can be obtained by Equation (5) [32].

CC =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(5)

where CC is the correlation coefficient, ranging from −1 to 1; x = 1
n

n
∑

i=1
xi and y = 1

n

n
∑

i=1
yi n represents

the number of gauge-grid samples; and xi and yi represent the grid-scale satellite measurements and
rain gauge observations, respectively.
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4. Results

4.1. Characteristics of the Metrics

The statistical metrics (ME, MAE, RSME, and CC), which can reflect the error characteristics of
satellite rainfall data over the region during typhoon events, were computed for each gauge-grid pair.
The results are presented in Figure 2. With the exception of the products for Mujigae and Rammasun
and the IMERG final run for Soudelor, all MEs have a negative value, highlighting that both IMERG
and TMPA tend to underestimate typhoon heavy rainfall at the regional scale. Moreover, except for
the typhoon Dujuan, the absolute ME of IMERG is smaller than that of TMPA. Since some samples
have large values of positive RB (more than 100%), the positive ME for Mujigae and Rammasun is
highly possible. Meanwhile, there are six typhoon events where the MAE of IMERG is slightly larger
than that of TMPA. This is also likely to be influenced by some large values of positive RB in IMERG.
The RSME presents a similar pattern with MAE, i.e., RSMEs of IMERG are larger than that of TMPA
during the periods of Rammasun, Mujigae, Linfa, Soudelor, and Dujuan. Regarding the correlations
between the satellite products and gauge observations, all CCs for the investigated typhoon events
are significant at the 0.01 confidence level, and there are five typhoon events, i.e., Mujigae, Kalmaegi,
Linfa, Soudelor, and Dujuan, that the CC of TMPA 3B42V7 is higher than that of the IMERG final run.
These larger CCs are partially attributed to the smoothing effect of the larger grid size of TMPA (25 km)
than IMERG (10 km).
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Figure 2. Statistical metrics (ME, MAE, RSME, and CC) of (a1–a8) the IMERG final run and (b1–b8)
TMPA 3B42V7 against gauge observations for each typhoon event over the coastal region of China.
The units of ME, MAE, and RSME is mm/day, and the range of CC is −1 to 1. ** The correlation is
significant at the 0.01 level.
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Overall, both satellite products underestimate the heavy rainfall at the regional scale. The IMERG
final run can provide a slightly better performance than TMPA 3B42V7 in estimating typhoon heavy
rainfall. Taking one of the largest typhoon events, Matmo, for example, the Kriging interpolation
method [41] was used to map the spatial patterns of total rainfall from gauge observations, as shown
in Figure 3. It is also shown that the IMERG final run and TMPA 3B42V7 have captured similar spatial
patterns of total rainfall, but they all tend to underestimate the extreme values of total rainfall in the
storm center.
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Figure 3. Spatial distribution of total rainfall plotted for (a) gauge observations, (b) the IMERG final
run, and (c) TMPA 3B42V7 for typhoon Matmo during the period of 23–25 July 2014.

The characteristics of gauge-grid RB of over- and underestimated amounts are illustrated in
Figures 4 and 5 for the typhoon events of Group I and Group II, respectively. Table 2 summarizes the
percentages of overestimate and underestimate that are illustrated in Figures 4 and 5.

Table 2. The percentage (%) of gauge-grid pairs of over- and underestimation of IMERG and TMPA
against gauge observations illustrated in Figure 2.

Typhoon Events IMERG TMPA

Overestimate Underestimate Overestimate Underestimate

Group I

Rammasun 47.27 52.73 38.18 61.82
Mujigae 58.62 41.38 67.24 32.76

Kalmaegi 26.87 73.13 23.88 76.12
Linfa 25.51 74.49 17.95 82.05

Group II

Chon-hom 8.11 91.89 8.11 91.89
Matmo 39.80 60.20 35.71 64.29

Soudelor 55.77 44.23 50.96 49.04
Dujuan 38.75 61.25 46.25 53.75

The typhoons of group I made landfall in Southern China, such as in Guangdong, Guangxi, or
Hainan province. Both IMERG and TMPA underestimated the total rainfall in the storm centers
and along the typhoon tracks (Figure 4). For instance, the percentages of IMERG and TMPA’s
underestimated samples are 74.49% and 82.05% for typhoon Linfa, and 73.13% and 76.12% for typhoon
Kalmaegi, respectively (Table 2). However, only one exception exists, for typhoon Mujigae, when both
products overestimated the total rainfall in most regions and their percent of overestimated samples
are 58.62% (IMERG) and 67.24% (TMPA).

The typhoons of group II made landfall in Eastern China (Fujian and Zhejiang provinces) and
moved toward northern areas. Similar to Group I, both the IMERG final run and TMPA 3B42V7 show
underestimation for the total rainfall in the storm centers (Figure 5). Both products underestimated
the total rainfall of most samples for typhoon Chon-hom, and their underestimated percentages
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are all 91.89% (Table 2), with different magnitudes of underestimation (Figure 5). This relates to
the rain intensity of Chon-hom, as it was a powerful typhoon with a maximum daily rainfall of
267.7 mm (Table 1). Moreover, its track through the coastal areas should also contribute to the largest
underestimation. In contrast, for typhoon Soudelor, IMERG and TMPA both displayed larger values
than the gauge observations, especially in the east of the typhoon track. Their overestimated samples
were 55.77% (IMERG) and 50.96% (TMPA).

Figure 4. Spatial distribution of total rainfall (a1–a4), RB (%) in (b1–b4) IMERG and (c1–c4) TMPA for 
the typhoon events of Group I (Rammasun, Kalmaegi, Linfa, and Mujigae). Dots are scaled according 
to the magnitude of the overestimation or underestimation. The arrowed lines represent typhoon 
tracks. 

 

 

 

Figure 4. Spatial distribution of total rainfall (a1–a4), RB (%) in (b1–b4) IMERG and (c1–c4) TMPA for
the typhoon events of Group I (Rammasun, Kalmaegi, Linfa, and Mujigae). Dots are scaled according to
the magnitude of the overestimation or underestimation. The arrowed lines represent typhoon tracks.
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Figure 5. Spatial distribution of total rainfall (a1–a4), RB (%) in (b1–b4) IMERG and (c1–c4) TMPA for 
the typhoons of Group II (Chon-hom, Matmo, Soudelor, and Dujuan). Dots are scaled according to the 
magnitude of the overestimation or underestimation. The arrowed lines represent typhoon tracks. 

 

 

 

 

Figure 5. Spatial distribution of total rainfall (a1–a4), RB (%) in (b1–b4) IMERG and (c1–c4) TMPA for
the typhoons of Group II (Chon-hom, Matmo, Soudelor, and Dujuan). Dots are scaled according to the
magnitude of the overestimation or underestimation. The arrowed lines represent typhoon tracks.

4.2. Applicability Associated with Rain Intensity and Typhoon Track

The above analysis indicates that the performance of IMERG and TMPA are associated with
the storm center or rain intensity. Therefore, the applicability of the products associated with rain
intensity and typhoon track are further investigated. Figure 6 shows that both IMERG and TMPA
have many large overestimate samples (RB > 100%) when rain intensity is less than 20 mm/day,
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and the percentages of IMERG and TMPA’s overestimated samples are 44.31% and 54.90%, with
mean an RB of 31.51% and 45.23% (Table 3). When the rain intensity is larger than 20 mm/day,
both IMERG and TMPA capture smaller rainfall than gauge observations, and the magnitude of the
underestimation is generally increased with the increased rain intensity. When rain intensities are
20–40 and 80–100 mm/day, the absolute RB (|RB|) are smaller than those of 40–80 and larger than
100 mm/day. Meanwhile, the |RB| of IMERG are much smaller than those of TMPA in all rain
intensity ranges, which again suggest the better performance of IMERG than TMPA.
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Table 3. The percentage (%) of overestimate (over-per) and underestimate (under-per) and mean RB
(%) in IMERG and TMPA at different rain intensity (mm/day) for the eight typhoon events.

Rain Intensity
IMERG TMPA

Over-Per Under-Per RB Over-Per Under-Per RB

0–20 44.31 55.69 31.51 54.90 45.10 45.23
20–40 39.86 60.14 −9.23 33.11 66.89 −19.58
40–60 33.33 66.66 −12.14 21.57 78.43 −23.77
60–80 18.18 81.82 −27.92 18.18 81.82 −41.13

80–100 50.00 50.00 −7.87 25.00 75.00 −22.50
>100 12.50 87.50 −30.17 12.50 87.50 −34.81

Furthermore, the distance of stations away from the typhoon central track also has an influence
on the rain intensity, as well as the performance of satellite rainfall products. As shown in Figure 7,
the rain intensity mainly decreases with the increase of the distance from typhoon tracks, which are
consistent with storm centers that are around the typhoon tracks (Figures 4 and 5). Meanwhile, the
averaged RB of both IMERG and TMPA are mainly larger for those stations with a range >300 km than
those within smaller ranges. Table 4 shows that IMERG has the smallest absolute mean RB in the range
of 50–100 km, and has the largest RB in a range within 300 km. TMPA also has the smallest absolute
mean RB in the range of 50–100 km, but its largest value is within the range of 50 km, although RB has
fluctuations for the eight typhoon events when the range is larger than 300 km. Therefore, IMERG and
TMPA mainly have the best applicability within the range of 50–100 km away from the typhoon tracks,
and the worst applicability beyond a range of 300 km. This is also illustrated in Figures 4 and 5.
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Table 4. Mean RB (%) of IMERG and TMPA within the different buffer ranges away from
typhoon tracks.

Buffer
Ranges

(km)

IMERG

Group I Group II
Mean

Rammasun Mujigae Kalmaegi Linfa Chon-hom Matmo Soudelor Dujuan

<50 30.18 63.66 −24.11 −55.77 −65.57 −11.76 6.32 −37.47 −11.82
50–100 54.36 1.31 −17.26 −55.49 −58.78 −28.33 69.95 −17.47 −6.46

100–300 47.02 15.00 6.19 −1.13 −38.93 21.10 70.48 6.37 15.76
>300 −46.94 63.79 −42.82 −91.89 −96.40 82.81 0.84 −4.92 −16.94

Buffer
Ranges

(km)

TMPA

Group I Group II
Mean

Rammasun Mujigae Kalmaegi Linfa Chon-hom Matmo Soudelor Dujuan

<50 2.65 63.83 −69.00 −55.57 −65.57 −23.96 −13.21 −26.76 −23.45
50–100 34.03 7.64 −35.35 −57.20 −62.21 43.31 54.52 −9.42 −3.09

100–300 11.50 27.12 −30.00 −13.73 −50.51 14.50 58.09 40.88 7.23
>300 −9.30 79.40 −24.80 −98.11 −55.34 22.23 22.23 23.90 −4.97

5. Discussion

Why do both IMERG and TMPA generally perform better along the typhoon track than farther
away from it? One possible explanation is its association with the physical structure of the typhoon
and the underlying surface topography of typhoon tracks, both of which can influence the spatial
distribution of rainfall intensity [42]. As shown in Figure 7, the mean rain intensity decreases with the
increase of buffer ranges. Most storm centers are within the range of 50 km, where both IMERG and
TMPA tend to underestimate the heavy rainfall. Meanwhile, when the range is larger than 300 km away
from the typhoon track, there is light rain, for which the satellite products show large RB and have
large uncertainties. Moreover, the impact range of typhoon-related heavy rain is also associated with
the magnitude of each typhoon. This applicability range suggested in this study is just a simplified
analysis and indicator of the error characteristics of satellite products in estimating typhoon heavy rain.
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It has been reported that the current satellite rainfall products have limitations for monitoring
typhoon heavy rain [43]. In particular, Chen et al. [44] found that TMPA 3B42V7 is least capable in the
coastal region and significantly underestimates the heavy rainfall, which is the primary motivation of
this study to investigate the performance of the latest released IMERG in the typhoon-affected coastal
region and to compare its performance with TMPA 3B42V7. Our results also confirm this error pattern
of both IMERG and TMPA in the coastal region of China. In addition, the daily rain gauge observations
are used to validate the total rainfall estimated by both IMERG and TMPA. This is constrained by
the availability of the hourly precipitation data in a large region in a timely way. Moreover, the
density of the observation gauges in the studied area have impacts on the satellite-based rainfall errors.
Thus, higher spatiotemporal density of gauges or gauge-satellite merged products could, potentially,
be better in evaluating the errors and to monitor the evolution of heavy rainfall [32,45].

IMERG Level-3 and TMPA 3B42V7 are the emerging satellite precipitation products with relatively
high resolutions in time and space, and have the potential to provide more reliable information
for flood/drought monitoring, hydrologic modeling, and global climate change study. Previous
studies [17,24,25] have demonstrated that the latest products have better performance, but few studies
focused on typhoon-related heavy rain events that occur in a short time. That is another objective of
this study to evaluate the performance of both products for typhoon rainfall. Overall, IMERG shows a
better performance than TMPA.

6. Summary

This study compared the performance of the IMERG final run and TMPA 3B42V7 for typhoon
heavy rain using ground gauge observations for reference, with focus on eight typhoon events that
made landfall in the coastal region of China from July 2014 to October 2015. The main conclusive
remarks are as follows:

1. All correlation coefficients (CCs) both of IMERG and TMPA for the investigated typhoon events
are significant at the 0.01 level, but they tend to underestimate a total amount of heavy rainfall,
especially around the storm center.

2. The IMERG final run shows an overall better performance than TMPA 3B42V7.
3. Both IMERG and TMPA exhibit a better performance (i.e., smaller absolute RB) when rain

intensities are within 20–40 and 80–100 mm/day than those of 40–80 mm/day and larger than
100 mm/day. Meanwhile, both products generally have the best applicability in the range of
50–100 km away from typhoon tracks, and have the worst applicability beyond a 300-km range.

4. It needs to be emphasized that the study lacks physical insights to strengthen the statistical
analysis. Future works, which will be devoted to further understand the limits of the applicability
and accuracy of such satellite products in monitoring typhoon rainfall, should be focused on the
physical process of typhoon rainfall, with consideration for the moving speed and direction of
the typhoon, and the underlying topography.
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