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Abstract: Crop coefficients (Kc) are important for the development of irrigation schedules, but few
studies on Kc focus on saline soils. To propose the growth-stage-specific Kc values for sunflowers
in saline soils, a two-year micro-plot experiment was conducted in Yichang Experimental Station,
Hetao Irrigation District. Four salinity levels including non-salinized (ECe = 3.4–4.1 dS·m–1), low
(ECe = 5.5–8.2 dS·m–1), moderate (ECe = 12.1–14.5 dS·m–1), and high (ECe = 18.3–18.5 dS·m–1) levels
were arranged in 12 micro-plots. Based on the soil moisture observations, Vensim software was
used to establish and develop a physically-based water flow in the soil-plant system (WFSP) model.
Observations in 2012 were used to calibrate the WFSP model and acceptable accuracy was obtained,
especially for soil moisture simulation below 5 cm (R2 > 0.6). The locally-based Kc values (LKc) of
sunflowers in saline soils were presented according to the WFSP calibration results. To be specific,
LKc for initial stages (Kc1) could be expressed as a function of soil salinity (R2 = 0.86), while R2 of LKc

for rapid growth (Kc2), middle (Kc3), and mature (Kc4) stages were 0.659, 1.156, and 0.324, respectively.
The proposed LKc values were also evaluated by observations in 2013 and the R2 for initial, rapid
growth, middle, and mature stages were 0.66, 0.68, 0.56 and 0.58, respectively. It is expected that the
LKc would be of great value in irrigation management and provide precise water application values
for salt-affected regions.
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1. Introduction

Sunflower (Helianthus annuus L.) is one of the four most important oil crops in the world [1]. Based
on data from the National Sunflower Association, more than 25 million hectares of global croplands are
planted in sunflowers. The Hetao Irrigation District, which is located in northern China, is the largest
sunflower-growing region in China, and sunflower seeds are the main source of income for local
farmers [2]. However, due to high rates of evaporation and low levels of precipitation, the significance
of irrigation in attaining and sustaining optimum productivity of major crops in the Hetao Irrigation
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District or other regions with similar climate conditions is important and has been documented [3,4].
Demir et al. [1] reported that the seed and oil yield of oil sunflowers increased by 82.9% and 85.4%
with irrigation as compared to the treatment without irrigation at three growth stages of sunflowers in
Turkey; Ertek and Kara [5] also conducted a series of deficit irrigation experiments, and concluded
that maize fresh ear yield was affected by water stress. Furthermore, between yield and water use,
a positive linear relationship has been recognized by various researchers [6–10]. However, because
of the limited knowledge of crop water use in this region, flood irrigation without scheduling is still
the main irrigation practice, which is not only a non-efficient use of water resources but also has the
possibility for increasing the risk of groundwater contamination because a large number of solutes
could be leached below the root zone using this irrigation practice [11]. Therefore, it is necessary to
determine an efficient and representative irrigation scheduler to improve the crop productivity and
water resource management for the region.

Crop evapotranspiration (ETc), which represents the combined processes of water loss through
evaporation from soil surface and transpiration from crop surface, has a potential advantage to attain
proper irrigation scheduling [12,13]. Although there are few traditional technologies (e.g., weighting
lysimeters, sap-flow sensors) that can assist scientists with determining ETc [14], it is still laborious,
time-consuming and costly to apply these technologies in large regions [15]. As recommended by Food
and Agricultural Organization (FAO) [16], the approach of the crop coefficient (Kc) is widely used to
estimate crop water use and to schedule irrigations. The concept of Kc was introduced by Jensen [17]
and further developed by the other researchers [16,18,19]. Generally speaking, Kc is defined as the ratio
between ETc and reference evapotranspiration (ET0) which is based on the evapotranspiration (ET) rate
from a well-water (not limiting) reference surface. As discussed and summarized in the FAO document,
the single crop coefficient approach is used for most applications related to irrigation planning, design,
and management due to its simplicity. Values of Kc for most agricultural crops increase from a minimal
value at planting to a maximum Kc value near full canopy cover or pollination. FAO provides details
on the development and use of generalized Kc values for different crops in different regions of the
world [16]. However, few methods available to attain crop coefficients for site-specific values have
been determined experimentally for different growth stages of sunflowers. What data is available is
considerably different from that listed in the FAO-56 paper [20]. Meanwhile, approximately 70% of
the cultivated land in the Hetao Irrigation District is contaminated by soil salinity, which has been
proven to be a vital factor affecting crop growth [3,21]. Based on our previous works, soil salinity
affects sunflower growth elements such as the photosynthesis [22] and dry matter formation [23],
which indicates that there may be a direct relationship between soil salinity and Kc. However, as far as
we know, almost no published studies focus on this correlation. Therefore, it is important to determine
local-based Kc values for more precise crop ETc estimation, especially for crops growing in saline soils.
However the traditional method for estimating Kc is usually via weighting lysimeters [24], which is
both costly and time consuming. Due to the lack of research-based information on sunflower water
use in saline soils and the inconvenience of directly experimental Kc determination, the objectives of
this study were to (1) construct a physically-based model to determine local growth-stage-specific Kc

values for sunflowers in different levels of saline soils, and (2) to ascertain the relationship between Kc

values and soil salinity (Kc-S). Also, evaluations for both model performance and the Kc-S relationship
were performed based on field experiments.

2. Materials and Methods

2.1. Study Site Characteristics and Field Experiment Design

This experiment was conducted at the Yichang Experimental Station in the Hetao Irrigation
District (40◦19′ to 41◦18′ N, 106◦20′ to 109◦19′ E), Inner Mongolia, China (Figure 1a).
The Hetao Irrigation District has the largest gravity irrigation area (~1.05 × 106 ha) in China
and is representative of the continental climate. The mean annual precipitation and mean annual
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potential evapotranspiration are approximately 176 mm and 2056 mm, respectively, and 63%–70%
of precipitation is from June to August [4]. Micro-plot experiments were conducted on sunflowers
(Helianthus) for two years, in 2012 and 2013. Each micro-plot covered an area of 1.8 m × 1.8 m and
was surrounded by an impermeable plastic barrier to a depth of 1.5 m to prevent lateral drainage
(Figure 1b,c). Salt crusts on the surface of saline bare soils were collected and used to modify salinity
from the 0–20 cm depth of the micro-plots. Saturated electrical conductivity (ECe) was used to
indicate soil salinity levels. Four different salinity levels were established, including non-salinized
(ECe = 3.4–4.1 dS·m–1), low (ECe = 5.5–8.2 dS·m–1), moderate (ECe = 12.1–14.5 dS·m–1), and high
(ECe = 18.3–18.5 dS·m–1), respectively. Sunflowers (cv. LD5009) were planted on 7 June 2012 and
4 June 2013 in a grid of four rows (0.45 m × 0.4 m spacing) within each subplot (Figure 1d); the plant
density was 4.94 plants m−2, and soil was covered by plastic films in order to decrease soil evaporation.
Plants were harvested on 24 September 2012 and 16 September 2013. More details for the micro-plot
experiments can be found in [21]. Sunflower growth periods were divided into four stages including
initial stage, rapid growth stage, middle stage, and mature stage [25]. Soil samples at different depths
were taken at sowing stage and four times for each subsequent growth stage. Soil samples were taken
at depths of 0–5, 5–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm on 10 June, 13 July, 2 August,
9 August, and 24 September in 2012 and at depths of 0–10, 10–20, 20–30, 30–40, 40–60, 60–80,
80–100 cm on 30 May, 10 July, 24 July, 14 August, and 16 September in 2013, respectively.
After sampling, soil moisture was determined using the oven-dry method. Soil texture was
analyzed using the pipette method [26,27] and the bulk density was measured by the cutting-ring
method [27,28] (Table 1).
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Table 1. Soil physical properties of experimental area.

Depth (cm)
Soil Particle Size Distribution/Mean ± S.D.* (%)

Bulk Density (g/cm3)
Sand (0.05–2.0 mm) Silt (0.002–0.05 mm) Clay (< 0.002 mm)

0–10 12.58 ± 4.30 54.94 ± 12.13 32.48 ± 13.86 1.35
10–20 11.79 ± 3.97 52.81 ± 13.53 35.40 ± 14.67 1.35
20–30 12.02 ± 4.24 52.32 ± 12.43 35.66 ± 14.05 1.35
30–40 12.27 ± 6.86 53.77 ± 12.10 33.96 ± 15.49 1.44
40–60 8.91 ± 12.96 69.77 ± 11.41 21.32 ± 12.29 1.48
60–80 12.48 ± 13.91 70.57 ± 11.80 16.95 ± 10.61 1.51
80–100 16.69 ± 16.69 69.59 ± 13.28 13.72 ± 6.17 1.51

Note: * S.D. indicates standard deviation.

2.2. Model Descriptions

System Dynamics (SD) was firstly proposed by Forrester [29] and widely applied to analyze
the change of a modeling system based on the linkage and response mechanism among models,
which can represent complex systems and analyze their dynamic behavior [30]. Vensim software
(http://vensim.com/) has been shown to be an adequate tool to depict system dynamics [31–33].
Vensim™, the Ventana® Simulation Environment, is an interactive software environment that allows
the development, exploration, analysis and optimization of simulation models. It was created to
increase the capabilities and productivity of skilled modelers and has the functionality that improves
the quality and understanding of models [34]. In this study, Vensim software was used to establish a
physically-based model to consider the water flow in the soil–plant system (WFSP model). Vensim
is designed to simultaneously solve a series of material held within a stock and its depletion or
replenishment by flow into and out of the stock [35,36], and its open version Vensim PLE is freely
available to the academic community for use in education and research. Here, stocks represent the
mass of water within a given soil layer; while the flows represent the fluxes of water among stocks,
model runs were conducted using a one-day time step, with state variables at each interval. All storage
terms were given in millimeters; also, flow terms were given in millimeters per day. More details
about this model, including the equations used to calculate the stocks and the flows are shown in
following sections.

2.2.1. Basic Principles

Figure 2 indicates the water movement in the root zone of sunflowers for our model. Based on
our soil sampling design, we considered a 100-cm depth soil profile and divided it into seven layers
(0–5, 5–10, 10–20, 20–40, 40–60, 60–80, and 80–100 cm, for 2012 and for 2013, 0–10, 10–20, 20–30, 30–40,
40–60, 60–80, and 80–100 cm).
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recharge (mm); FW is the water flow out of the whole root zone (mm). Subscript i indicates the
layer number.

http://vensim.com/


Water 2017, 9, 215 5 of 17

For the layer 1, layers 2–6, and layer 7, we can describe the water movement by
Equations (1)–(3) respectively.

∆S1 = S1,t − S1,t−1 = P + C1 − RO−U1 − I1 − E (1)

∆Si = Si,t − Si,t−1 = Ci + Ii−1 −Ci−1 −Ui − Ii (2)

∆S7 = S7,t − S7,t−1 = I + RW− FW−U7 −C6 (3)

where S is soil water storage within every soil layer (subscript i represents a soil layer) (mm), P
is precipitation (mm); C is the capillary water movement into the soil layer (mm); I is the seepage
movement out of the soil layer (mm); E is soil evaporation (mm); and U is root water uptake from
the soil layer (mm). RO is the surface runoff (mm), and because of the scarce precipitation in Hetao
District, RO equals zero; RW is the groundwater recharge (mm); FW is the water flow out of the whole
root zone (mm) and ∆S is the change of water storage for the specific soil layer (mm) during the time
interval. Subscript t indicates the current moment (day) and t − 1 indicates the last moment (day).
Subscript i indicates the layer number (from 2 to 6).

2.2.2. Infiltration

Infiltration is described based on Kostiakov [37] model (Equation (4)).

it = i1t−p (4)

where it is the infiltration rate at time t (h) and expressed using the infiltration depth at unit time
(cm·h−1); i1 is the infiltration rate for the first unit time; p is the empirical index which ranges from 0.3
to 0.8 and is based on the soil properties and moisture, and p is initially determined as 0.5 in this study.

Unsaturated hydraulic conductivity (K, mm·d−1) is calculated by van Genuchten [38] and van
Genuchten and Nielsen [39] (Equations (5) and (6)).

K = Ks

(
θ− θr

θs − θr

)0.5
1−

[
1−

(
θ− θr

θs − θr

) 1
m
]m


2

(5)

m = 1− 1
n

(6)

where Ks is the saturated hydraulic conductivity (mm·d−1); θ is the soil moisture (cm3·cm−3); θr and
θs are the residual and saturated soil moistures (cm3·cm−3) respectively; and m, n are dimensionless
empirical parameters. Parameters for Equation (5) were predicted using the Rosetta module [40] based
on soil particle size and bulk density (Table 2).

Table 2. Parameters of Equations (5) and (6) for the model. θr: residual soil moisture; θs: saturated
soil moisture.

Depth θr θs α n Ks
cm3·cm−3 cm3·cm−3 1/cm - mm/d

0–10 cm 0.0883 0.4691 0.0082 1.5057 121.9
10–20 cm 0.0919 0.4774 0.0093 1.4737 125.4
20–30 cm 0.0921 0.4776 0.0094 1.4702 125.9
30–40 cm 0.0901 0.4733 0.0087 1.4893 123.5
40–60 cm 0.0763 0.4540 0.0058 1.6156 131.2
60–80 cm 0.0687 0.4477 0.0051 1.6582 176.0

80–100 cm 0.0616 0.4431 0.0046 1.6903 235.6

Notes: θr and θs are the residual and saturated soil moistures (cm3·cm−3) respectively; Ks is the saturated hydraulic
conductivity (mm·d−1); α and n are dimensionless empirical parameters.
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If soil moisture in the upper layer (θ) is larger than θs, I (Figure 2, Equations (1)–(3)) from the
upper layer to the lower layer is equal to θ − θs; if θ ranges from θr to θs, I is equal to K; otherwise,
I = 0.

2.2.3. Groundwater Recharge

Groundwater table (GWT) depths were obtained according to the local water resources bulletin
and Liang et al. [41]. More exactly, the GWT depths of study area ranged from 1.14 m (November) to
2.59 m (March) and averaged at 1.82 m in 2012. In 2013 the lowest, deepest and average GWTs were
1.45 m (November), 2.33 m (March) and 1.91 m, respectively.

Groundwater recharge (RW) was calculated based on empirical formula proposed by Li [42] and
Du et al. [25].

Wg

Wc
= −0.54742H + 1.66494 (7)

where Wg is available groundwater (mm); Wc is the crop water requirement (mm); and H is
the GWT (m).

Distribution of RW in the soil profile was calculated based on Feng and Liu [43] and
Chen et al. [44], which was also to be used in the CERES-Wheat model (Equation (8)).

wt
i+1 = Wg

(
θt

i+1 − θw i+1
)
hi+1 −

(
θt

i − θw i
)
hi

0.5(hi + hi+1)
(8)

where wt
i+1 is water flux moving upward from layer i + 1 to layer i by capillarity at time t (mm); θt

i+1,
θt

i , θwi+1, and θwi are soil moisture and wilting point of layer i + 1 and layer i at time t (cm3·cm−3); hi
and hi+1 are the thicknesses of layer i + 1 and layer i (cm).

2.2.4. Root Distribution

Root distribution was determined according to the researches of Gale and Grigal [45] and
Jackson et al. [46] (Equation (9)).

Y(z) = 1− βz (9)

where Y(z) is the accumulated root percentage with soil depth (%) and z is the soil depth (100 cm)
calculated from surface and the positive direction is downward (cm). β is an empirical parameter
affected by plant types, soil and climate conditions. Jackson et al. [46] indicated that β ranges from
0.913 to 0.978; in our study, β was defined as 0.95.

2.2.5. Root Water Uptake

The Feddes et al. [47] model was used to determine root water uptake (RWU) (Equation (10)).

RWU =
α(h)∫ L

0 α(h)dz
Tp (10)

where RWU is the root water uptake rate (mm·d−1); L is the root depth (100 cm); Tp is the potential
transpiration rate (mm·d−1); z is the coordinate axis and positive downward (cm); and α(h) is the
function about the soil water potential (SWP) (Equation (11)).

α(h) =


h1
h , h ≥ h1

1 , h2 ≤ h < h1
h−h3
h2−h3

, h3 ≤ h < h2

0 , h < h3

 (11)

In Equation (11), h is the soil water potential (cm). h1, h2, and h3 are three threshold values of soil
water potential. To be specific, if soil is very wet and has poor ventilation when SWP is higher than h1,
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then RWU decreases with SWP. h2 is the SWP when plant suffers from water stress and h3 is the SWP
at the wilting point.

Due to the SWP measurements being costly and time consuming, Feddes et al. [48] also proposed
that SWP could be replaced by soil moisture (Equation (12)).

f(θ) =


0 , θ ≤ θwilt

θ−θwilt
θstress−θwilt

, θwilt < θ < θstress

1 , θ > θstress

(12)

In Equation (12), θ is soil moisture (cm3·cm−3); θwilt is the wilting point expressed by moisture
(cm3·cm−3); θstress is the soil moisture when plant is under water stress (cm3·cm−3). The details
about parameters in Equation (12) are shown in Table 3. More exactly, the ranges of parameters in
Equations (10)–(12) were determined according to previous studies [32,49] and the exact parameters
value were calibrated based on the soil moisture observations in non-saline treatments using a
trial-and-error method, which is a fundamental method of problem solving, characterized by repeated,
varied attempts until acceptance of results [50].

Table 3. List of Feddes model parameters.

Parameter Units Range Value Description Reference

θwilt cm3·cm−3 0.06–0.10 0.10 Wilting point [49]
θfc cm3·cm−3 0.32–0.42 0.39 Field capacity [49]

θstress cm3·cm−3 (0.45–0.9)·θfc 0.6·θfc Stress point [32]

By considering the root distribution (Section 2.2.4) together, the rate of RWU can be expressed as
Equation (13).

RWU = Tp · f(θ) · Y(z) (13)

2.2.6. Evapotranspiration and Crop Coefficients (Kc)

Reference evapotranspiration (ET0) was calculated based on Penman–Monteith equations [16]
(Equation (14)).

ET0 =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(14)

where ET0 is the reference evapotranspiration (mm·d−1); Rn is net radiation at the crop surface
(MJ·m−2·d−1); G is soil heat flux density (MJ·m−2·d−1); T is mean daily air temperature at 2-m height
(◦C); u2 is wind speed at 2 m height (m·s−1); es is saturation vapor pressure (kPa); ea is actual vapor
pressure (kPa); es − ea is saturation vapor pressure deficit (kPa); ∆ is slope vapor pressure curve
(kPa·◦C−1); and γ is psychrometric constant (kPa·◦C−1).

Since sunflowers were sown below plastic films (reducing surface evaporation), the single crop
coefficient (Kc) method was used to calculated the crop water requirement (ETc) (Equation (15)).

ETc = Kc·ET0 = Ep + Tp (15)

In Equation (15), Ep and Tp are potential soil evaporation and potential transpiration, respectively
(mm·d−1). Considering the plastic films that could reduce evaporation and regarding its coefficient as
an adjustable parameter (values ranging from 0 to 0.5) [51], and through calibration we chose 0.1 for
an appropriate value; thus Ep was determined as in Equation (16).

Ep = 0.1 · ETc (16)

Then,
Tp = Kc·ET0 − Ep (17)
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Sunflower growth periods were divided into four stages (noted as day after sowing (DAS)), initial
stage (DAS: 1–36), rapid growth stage (DAS: 37–57), middle stage (DAS: 58–90), and mature stage
(DAS: 90–109) according to the study of Du et al. [25] and Allen et al. [16]. Initial Kc values for each
stage were 0.3, 0.75, 1.2, and 0.35, respectively [16].

2.2.7. Modeling Process

Soil water flow and water uptake by sunflowers were computed for a soil profile with 100-cm
depth. The simulation period extended from the early June to late September, and corresponded to
the growth period of sunflowers. First, soil moisture observations in 2012 were used to calibrate the
Kc for each stage of sunflowers. In this step, only Kc values were modified and other parameters
(e.g., Tables 2 and 3) were not changed because we assumed that the effects of salinity on sunflower
growth could be reflected by Kc. Then the local-based Kc values for sunflower growing in the saline
soils involving a relationship between Kc of initial stage and soil salinity were proposed. After that,
soil moisture observations in 2013 were used to evaluate the proposed local-based Kc values and the
contrastive analysis between our Kc values against previously reported research results.

2.3. Statistical Analysis

The determination coefficient (R2, Equation (18)) and the root-mean-square error (RMSE,
Equation (19)) were used to evaluate the model performance.

R2 =


n
∑

i=1

(
Yobs

i − Yobs
i

)(
Ysim

i − Ysim
i

)
√

n
∑

i=1

(
Yobs

i − Yobs
i

)2
√

n
∑

i=1

(
Ysim

i − Ysim
i

)2


2

(18)

RMSE =

√√√√√ n
∑

i=1

(
Yobs

i − Ysim
i

)2

n
(19)

where Yi
obs is the ith observed value, Yi

sim is the ith simulated value, and Yobs
i and Ysim

i are the means
of the observed and simulated values, respectively.

3. Results

3.1. Meteorological Conditions

The daily precipitation measured by the field meteorological station of the experiment station
from April to October in 2012 and 2013 varied from 0–67.2 mm·d−1 to 0–20.8 mm·d−1, respectively,
with an accumulated precipitation of 254 mm for 2012 and 64.8 mm for 2013 (Figure 3), which indicated
that the year 2012 was much wetter than 2013. Furthermore, the local water resources bulletin also
confirmed that the 2012 was a wet year while 2013 was a drier one. Specifically, the total precipitation
of 2012 in our experiment station is 400.6 mm (from April to October), which was about 127.6% higher
than the historical mean precipitation (176 mm). Meanwhile, the total precipitation of 2013 was only
about half of the historical mean precipitation. Inversely, calculated ET0 values in 2012 were relative
smaller than those in 2013 according to the accumulated ET0 during the sunflower growth stages
(Figure 3). The different weather conditions of 2012 and 2013 increased the challenge for model
calibration and evaluation but could also prove an indication of the stability of the model, if it could
perform accurately in both years.
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3.2. Calibration of the WFSP Model

Soil water flow and water uptake by sunflower were computed for a soil profile with 100-cm depth.
The simulation period was from early June to late September, and conceded with the growth period of
sunflowers. Model setup required specific daily precipitation and reference evapotranspiration as input
data. The parameter calibration analysis was carried out using the main factors affecting the water
regime (i.e., soil moisture, the cumulative values of actual transpiration and evaporation, capillary rise
and other additional parameters) as the objective variables. After that, the above-mentioned sensitive
parameters and some parameters introduced in Section 2.2 were calibrated using a trial-and-error
method. An iterative calibration approach was adopted to account for the interactions between
the measured soil moisture and simulated soil moisture. After proper calibration, the model was
considered to be adequate for the evaluation of water movement in the soil-plant-atmosphere
continuum (SPAC) system. The observed soil water contents in different soil layers relative to 2012
and 2013 were used to calibrate and validate the model, respectively. To assess the performance of the
model, several goodness-of-fit indicators proposed in Section 2.3 were used as in the paper (e.g., R2

and RMSE). Based on the parameter sensitivity analysis, many parameters were only slightly adjusted
depending on the goodness-of-fit indicators. The root water uptake parameters, including Feddes’
parameters and the basic soil parameters for sunflowers were calibrated and were shown in the former
section. Some calibrated Kc values for sunflowers were slightly lower than those recommended in
literature. This may due to the fact that the crop varieties planted in Hetao Irrigation District were
more salt-tolerant than in the non-salinized area.

Soil moisture observed at different sunflower growth stages were well captured by the WFSP
model except for the surface soil (0–5 cm) in the model calibration process (Figure 4, Year 2012). More
exactly, R2 in initial, rapid growth, middle, and mature stages for 5–100 cm depth were 0.60, 0.61, 0.66,
and 0.72 respectively while RMSE were only 0.07, 0.04, 0.07 and 0.09 cm3·cm−3 respectively.
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Accumulative evapotranspiration (AETc) was also calculated, and the average AETc of the four
growth stages were 77.1, 66.5, 156.2, and 44.3 mm respectively in 2012 (Figure 5a); and 60.0, 74.2,
123.6, and 19.7 mm respectively in 2013 (Figure 5b), indicating that the AETc of sunflowers was
comparable in first two growth stages and achieved highest and lowest values in the middle and
mature stages respectively.
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Figure 5. Box plot of accumulative evapotranspiration (AETc) of the four growth stages of sunflowers
in 2012 (a) and 2013 (b) respectively. The line in the box is the median, the edges of the box are the
lower hinge (25%, Q1) and the upper hinge (75%, Q3), the up and low boundary lines out of the box
indicate the maximum and minimum values and the cross symbols near the up and low boundaries
are the 99% and 1% hinges respectively.
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3.3. Establishment and Evaluation of the Locally-Based Sunflower Kc Values

Calibration of the WFSP model also indicates that Kc values for sunflowers in saline soils
(ECe = 3.3–18.5 dS·m−1) ranged from 0.25–0.37, 0.51–0.86, 0.80–1.49, and 0.11–0.73 of initial (Kc1), rapid
growth (Kc2), middle (Kc3), and mature stages (Kc4) respectively. Meanwhile, linear regression analysis
indicated that all Kc values except Kc1 decreased with soil salinity levels (Figure 6). Furthermore, Kc1

had a very good linear correlation with the initial salinity level of 0–20 cm depth (Equation (20)).

Kc1 = 0.0059ECe + 0.2401 (20)

Therefore, we assume that sunflower’s Kc1 value in saline soils could be easily obtained through
Equation (20) while the locally-based Kc values for another three stages could be 0.51–0.86, 0.80–1.49,
and 0.11–0.73 for use as reference values. To further simplify, we averaged the Kc2, Kc3, and Kc4 values
obtained in our model (0.659, 1.156, and 0.324, respectively) and applied the WFSP model to evaluate
their accuracy with the calculated Kc1 value (Equation (20)) using soil and weather conditions in 2013
(Figure 7). Similar to the model calibration process, higher accuracies for soil moisture simulations were
also obtained for all four growth stages when the surface soils were ignored (0–10 cm in 2013). More
exactly, R2 in the initial, rapid growth, middle, and mature stages for 10–100-cm depth were 0.66, 0.68,
0.56, and 0.58, respectively, while RMSEs were only 0.04, 0.04, 0.08 and 0.11 cm3·cm−3, respectively.
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4. Discussion

4.1. Performance of the WFSP Model

Different from other models (e.g., HYDRUS) which use Richards equation to describe soil water
flow [52,53], the WFSP model calculated water movement in the soil-plant system based on the water
balance principle. The method is simpler than others and can overcome the iterative convergence
issue when solving the Richards equation [54,55]. In our study, the WFSP model could simulate
soil water dynamics accurately in both 2012 and 2013 except for the surface soils (Figures 4 and 7,
R2 > 0.56, RMSE < 0.1 cm3·cm−3). Meanwhile, the AETc values for the different growth stages of
the sunflower calculated by the WFSP model were also similar to those in research by Ren et al. [56],
Du et al. [25], and Xin et al. [57]. Therefore, the WFSP model could obtain reasonable simulations of
soil water flow in the soil–plant system and could be used as a tool for analyzing the agro-hydrological
processes and inverting the sunflower crop coefficient under salt stress. However, the poor accuracy
for surface soil moisture simulation may be caused by the unusual weather conditions in 2012.
In addition, the uncertainties of input data and field measurements such as groundwater table [58],
the possible preferential flow [59] and even the observation errors might also bring adverse influences
on the accuracy of the simulations for all four stages.
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4.2. Sunflower’s Kc Values in Saline Soils

Crop coefficient (Kc) is a key parameter for estimating crop water use and to schedule
irrigations [12]. In our study, Kc in the initial stage (Kc1) was determined by initial soil salinity
of 0–20 cm depth due to a very high correlation (R2 = 0.86, Figure 6a). For the rapid growth, middle
and mature stages, sunflower’s Kc were 0.659, 1.156, and 0.324, respectively. However, locally-based
Kc values for sunflowers in saline soils proposed in our study (LKc) were different to previous research
(Table 4). FAO-56 reported Kc values were 0.35, 1.0–1.15, and 0.35 for initial, middle and mature
stages of sunflowers respectively [16]. LKc used four growth stages and were adjusted a little (<8%) in
middle and mature stages, which increased R2 of soil moisture simulation (10–100 cm) for about 10%
(Table 4) in moderately salinized soil (ECe = 9.44 dS·m−1). In India, Tyagi et al. [20] reported Kc values
for sunflowers as 0.52, 1.1, 0.32 and 0.41, estimating Kc values 11.6%–74.2% higher than the values
suggested by FAO-56, also different to our LKc values. Even for the same plants in close areas, Kc

values may also be extremely different. In Hetao Irrigation District, Dai et al. [60] reported Kc values of
0.697, 0.751, 0.804, and 0.35, respectively for the four growth stages, with Kc values over 100% higher
than ours in the initial stage, and about 30% lower in the middle stage. Du et al. [25] also obtained
different Kc values for sunflowers compared to both Dai et al. [60] and our results (Table 4). The
differences among Kc values might be caused from both soil and climate conditions and one of the most
important factors was soil salinity [61,62]. Taking FAO-56 as an example, it deals with the calculation
of crop evapotranspiration (ETc) under standard conditions. The values for Kc in FAO-56 are values
for non-stressed crops cultivated under excellent agronomic and water management conditions and
achieving maximum crop yield (standard conditions). Meanwhile, FAO-56 also ignores the difference
among varieties. In addition, some specific agricultural practices such as plastic film covering the
soil surface might also impact Kc determination. Therefore, FAO-56 strongly encouraged users to
obtain appropriate local Kc values for a specific crop variety based on local soil and weather conditions.
By considering salinity effects, LKc values obtained the highest accuracy for soil moisture simulation
(R2 = 0.7) in moderately salinized soils when compared to previous research (Table 4).

Table 4. Comparison of crop coefficients/Kc between different researchers and our model in moderately
salinized soil (ECe = 9.44 dS·m−1).

Item Initial
Stage

Rapid Growth
Stage

Middle
Stage

Mature
Stage R2 Location Reference

1 0.52 1.1 1.32 0.41 0.55 Karnal, India
(29◦43′ N, 76◦58′ E) [20]

2 0.697 0.751 0.804 0.35 0.55 Dengkou County, Hetao
(40◦24′ N, 107◦02′ E) [60]

3 0.194 0.779 1.26 0.315 0.67 Linhe County, Hetao
(40◦43′ N, 76◦58′ E) [25]

4 0.14 — 1.08 0.24 0.66 Yangchang, Hetao
(40◦48′ N, 107◦05′ E) [56]

5 0.35 — 1–1.15 0.35 0.64 California, US [16]

6 Equation
(20) 0.659 1.156 0.324 0.7 Wuyuan County, Hetao

(41◦04′ N, 108◦00′ E)
WFSP
model

In general, higher soil salinity results in lower Kc, which is also in accordance with our Kc2,
Kc3, and Kc4 (Figure 6b–d). However, a very high positive correlation was found between Kc1 and
salinity level (Figure 6a), which was unusual but also demonstrated that effects of salinity on Kc1
were more pronounced than in other stages. Similar results also obtained by Grattan and Grieve [63],
who indicated that the initial stage of the crop was generally more salt sensitive than later growth
stages and that crop failures during initial stages are common on saline lands. However, Bernstein
and Hayward [64] reported that salt accumulations at seed depths are often much greater than at
lower levels in the soil profile and when response to actual ambient salinity is considered, the initial
stage is generally no more salt sensitive than later stages. Meanwhile, sunflowers were classified as
moderately salt-tolerant plants by Katerji et al. [65] and previous studies also proved that a certain
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extent of salinity level might enhance sunflower growth [66]. Therefore, it is reasonable to believe that
two or more of these processes with respect to the positive or negative effects of salinity on sunflowers
may occur at the initial stage, but whether they ultimately affect Kc value or crop yield depends upon
the salinity level, composition of salts, the crop species, and some other environmental factors which
need further research.

5. Conclusions

Crop evapotranspiration calculation (ETc) plays a pivotal role in evaluating irrigation management
strategies for improving agricultural water use, especially in saline regions. Appropriate irrigation
schedules are of vital importance to adequately manage it. To determine ETc and make appropriate
irrigation schedules, crop coefficients (Kc) have to be representatively determined. Based on soil
moisture observations, a strong dynamics analysis tool (Vensim software) was used to establish and
develop a physically-based model (WFSP model) for estimating the crop coefficients (Kc) of sunflowers
in the Hetao Irrigation District. The two main findings were that firstly, only soil moisture data
is needed for WFSP model, which makes this method more practical for developing an irrigation
schedule. Meanwhile, the WFSP model could estimate reasonable simulations on the soil water
flow in the soil–plant system and thus could be used as a tool for analyzing the agro-hydrological
processes and deducing the sunflower crop coefficient under salt stress conditions. Secondly,
our study indicates that the effects of salt stress on plant could be considered with Kc determination.
Kc1 had a very good linear correlation with the initial salinity level of 0–20 cm depth (Equation (20)),
and local-based Kc values for rapid growth, middle, and mature stages are recommended as 0.659,
1.156, and 0.324, respectively. These local crop coefficients could be very useful in irrigation schedules
for local agricultural water managers.

However, there are still several shortcomings of our study. Firstly, soil salt dynamics were not
considered in the study and further work should focus on the effects of salt dynamics with respect
to Kc at the different crop stages. In addition, ECe was used to reflect the total salt content and
the effects of salt composition on Kc and would need further study. Meanwhile, the LKc values for
sunflowers, especially Equation (20) also need to be evaluated in other saline soils to test their stability
and applicability.
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