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Abstract: The magnitude and frequency of hydrological events are expected to increase in coming
years due to climate change in megacities of Asia. Intensity–Duration–Frequency (IDF) curves
represent essential means to study effects on the performance of drainage systems. Therefore, the
need for updating IDF curves comes from the necessity to gain better understanding of climate
change effects. The present paper explores an approach based on spatial downscaling-temporal
disaggregation method (DDM) to develop future IDFs using stochastic weather generator, Long
Ashton Research Station Weather Generator (LARS-WG) and the rainfall disaggregation tool, Hyetos.
The work was carried out for the case of Bangkok, Thailand. The application of LARS-WG to project
extreme rainfalls showed promising results and nine global climate models (GCMs) were used to
estimate changes in IDF characteristics for future time periods of 2011–2030 and 2046–2065 under
climate change scenarios. The IDFs derived from this approach were corrected using higher order
equation to mitigate biases. IDFs from all GCMs showed increasing intensities in the future for all
return periods. The work presented demonstrates the potential of this approach in projecting future
climate scenarios for urban catchment where long term hourly rainfall data are not readily available.

Keywords: climate change; climate modelling; Intensity–Duration–Frequency; rainfall disaggregation;
urban drainage

1. Introduction

Almost on daily basis we can observe that the world is being overwhelmed by extreme
hydro-meteorological disasters such as hurricanes (or typhoons), widespread flooding and droughts,
all of which are associated with devastating losses and suffering (e.g., [1–4]). Therefore, our search for
optimal configurations of water infrastructure systems represents a great challenge for researchers
and practitioners (e.g., [5–10]). The uncertainty brought by climate change (or climate extremes) make
the above challenge even more significant. Addressing climate change effects in the development
of disaster management plans has been on the agenda of many governments and institutions.
Hydrodynamic flood modelling is an important aspect in the development of flood mitigation
and climate adaptation strategies, which requires high resolution time series data of continuous
precipitation or design storms. Hence, a more effective disaster management planning requires both
current and projected climate change scenarios for which a range of optimal measures needs to be
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sought. The use of physical-based models is invaluable for this purpose [11,12]. For example, with
numerical models, it is possible to explore the generation and propagation of floods and explore any
potential impacts that may be incurred due to floods. However, there is a significant body of literature
that suggests that a great care and caution should be applied to data collection and processing activities
(e.g., rainfall and hydrological data, system data, terrain data, etc.), selection of a model to reflect the
problem at hand and the use of geographic information system (GIS) mapping techniques [13–30].

Gaining understanding of the potential change of frequency, intensity and volume of extreme
rainfall due to climate change has been put forward by many researchers and practitioners
(e.g., [31–35]). The need for such understanding comes from the fact that the existing drainage
systems are designed to cope with past records of rainfall events and as such they may be insufficient
to accommodate future rainfall characteristics. Hence, development of appropriate present and future
Intensity–Duration–Frequency (IDF) curves assist in hydrological study for the urban drainage system
performance analysis, design and operation. The IDF relationship is a mathematical relationship
between rainfall intensity i, duration d, and the return period T [36]. The IDF curve is a convenient
form of rainfall information and, as such, it has been an important data set for the design of urban
drainage systems [37]. However, it has been a well-accepted fact that those IDFs developed from past
climatic conditions cannot be valid for future climatic conditions unless the IDFs are updated to the
future climate trends (see also [38,39]). A study in Mediterranean area, showed that in spite of the
important decreases or lesser increment in corresponding total precipitation, extreme rainfall of shorter
duration will increase in future [40]. Several methods exist for studying changes in IDF under climate
change; for examples, equidistance quantile matching method using spatial and temporal downscaling
of global climate models (GCMs) and sub-daily observed rainfall in Canada [41]; spatial downscaling
and temporal downscaling based on scaling properties of rainfall in urban area of Spain [40]; and
spatial-temporal downscaling approach using scaling generalized extreme value (GEV) distribution in
Canada [42]. Mailhot and Duchesne [38] strongly argue that there is a need to evaluate the climate
induced change of pattern, intensity and frequency of extreme rainfall before embarking on any system
performance analysis. In this regard, the process of downscaling climate data has been an important
task for many researchers and practitioners; and the use of GCMs has been the most appealing method
for studying the implications of climate change. However, there are numerous issues associated with
the process of downscaling climate data. Despite being important tools to project the expected future
scenarios of climatic parameters, GCMs contain biases when compared to observed data due to their
parameterization systems and large grid size, which at the regional scale is insignificant, but are
significant at basin scale [43]. Bias correction methods are applied to correct one or more statistical
aspect, which are referred as statistical bias correction, quantile-based bias correction, and histogram
equalization methods [43–46]. The present paper provides contribution in this direction and it presents
an approach based on spatial downscaling-temporal disaggregation method (DDM), which appears to
give promising results in generating rainfall data for a single site station in an urban catchment.

2. Use of Global Climate Models (GCMs) in Urban Scale Applications

The outputs from GCMs are typically defined at 150–300 km coarse grids, while regional climate
models (RCMs) resolutions are about 12–50 km [47]. The different downscaling techniques in
practice are dynamical downscaling, statistical downscaling, regression based downscaling, weather
typing procedure and the stochastic weather generator (see [47–49]). The most commonly applied
techniques are dynamic and statistical downscaling methods. Long Ashton Research Station Weather
Generator (LARS-WG) is a single site numerical model for simulating time series of daily weather.
The Weather Generator is a model which, after calibrating site parameters with observed weather
data at that site, is capable of simulating synthetic time series of daily weather that are statistically
similar to observed weather [50]. LARS-WG incorporates projections from 15 GCMs, as used in the
Intergovernmental Panel on Climate Change (IPCC) Assessment Report IV, and climate projections are
available for the Special Report on Emissions Scenarios (SRES)—SRB1, SRA1B and SRA2 for most of
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the 15 GCMs [51]. The IPCC’s latest Assessment report V categorized future projections defined by
Representative Concentration Pathways (RCPs) which is based on different 21st century pathways of
greenhouse gases (GHG) emissions and atmospheric concentrations, air pollutant emissions and land
use. It includes a stringent mitigation scenario (RCP2.6) which keeps global warming likely below
2 ◦C above pre-industrial temperatures, two intermediate scenarios (RCP4.5 and RCP6.0) and one
scenario with very high GHG emissions (RCP8.5) [52]. This study is based on analysis and modelling
scenarios based on earlier IPCC Assessment report IV—Special Report on Emission Scenarios (SRES).
The Assessment report IV categorized the scenarios of future climate based on carbon emission levels
and climate policy. The future scenarios can be summarized into four storylines: A1, A2, B1 and B2,
where the A2 family is the most extreme scenario owing to its higher amount of carbon emission [53].
In terms of overall forcing, RCP8.5 is broadly comparable to the SRES A2/A1FI scenario, RCP6.0 to B2
and RCP4.5 to B1 [52].

Although it is common practice to downscale the results from GCMs or RCMs to urban scales,
and despite considerable improvements in computational power in recent years, climate models still
remain relatively coarse in space and temporal resolution, and are unable to resolve significant features
at the finer scales of urban drainage systems (see [43,54]). In most places, there are numerous rain
gauges that have been in operation for several decades, but most of them measure daily rainfall while
recordings at hourly or sub-hourly data are not so common. Any hydrological study requires rainfall
data at different time scales, depending on the purpose. The studies of water supply and irrigation
require data on a monthly time scale, while studies on rainwater harvesting and river flow estimation
require data on a daily time scale. However, for urban drainage and pluvial flood studies, it is necessary
to have the rainfall data on sub-daily time scales as hydrological processes in urban drainage systems
and small catchments occur at moderately smaller spatial and temporal scales [55]. Hydrological study
in a small urban catchment may require rainfall data at spatial and temporal resolution of 1 km2 and
5 min respectively. One of the reasons for the lack of availability of high temporal scale rainfall data is
the cost associated with collection of such data. Due to this explicit requirement of small scale and
short duration rainfall, studies dealing with climate change impacts on urban drainage are particularly
challenging [56]. The disaggregation of available coarse rainfall data to a small duration can be one
way to address this limitation. Koutsoyiannis [57] developed a method to utilize the available daily
rainfall data and disaggregate it to hourly scale. Furthermore, numerous disaggregation models have
been developed to disaggregate monthly data to daily scale for a single site stations [57].

Stochastic disaggregation models for rainfall disaggregation can be divided into two categories:
first is the point process theory based on Bartlett–Lewis and Neyman–Scott rectangular pulses; the
second is the scale invariance theory of cascade, fractal and multifractal approaches [58]. Most of the
disaggregation techniques developed before 2001 are essentially single site techniques. However, while
multiple site rainfall disaggregation (as a means of simultaneous spatial and temporal disaggregation)
is of a significant interest to many researchers, this technique comes with issues such as increased
mathematical complexity when compared to a single site disaggregation [57]. Koutsoyiannis and
Onof [59] addressed the problem of single site rainfall disaggregation to a fine scale (of up to 1 h)
by developing a stochastic model based on the Bartlett–Lewis rainfall model referred to as Hyetos.
Kossieris et al. [60] developed the improved version of Hyetos (Version 2.0) for its application to
sub-hourly time scales. In the present paper, we discuss the results obtained from the Hyetos
application (Version 0.3, developed by Koutsoyiannis and Onof, in Imperial College London) for
continuous series hourly rainfall generation from daily observed and downscaled future data.

An example of applying downscaled data for IDF generation is given in the study by
Liew et al. [61] who developed present and future IDF curves for the cities of Singapore, Kuala Lumpur
and Jakarta. Since the data required were scarce, dynamic downscaling using RCM, the Weather
Research and Forecasting (WRF) model and 1957 to 2002 dataset from ERA-40 (European Centre
for Medium range Weather Forecasting) were used. The results from their study showed significant
underestimation of rainfall intensities in WRF-ERA-40 generated data. Bias correction was applied
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for downscaled future data from 2071 to 2100. The study concluded that there is a general increment
in rainfall intensities throughout the future period. The study applied linear adjustment of the IDF
curve to correct biases from the model’s results. The application of linear adjustments is relevant
when the duration considered is at coarse scales: for instance, from 6 h to 24 h, the curve will be of a
linear nature. However, the mathematical representation of IDFs for shorter duration rainfall requires
higher order equations. One of the challenges in urban drainage modelling is that IDFs with very
short duration are required owing to the corresponding time of concentration within the catchment.
As collecting continuous short duration climate variables requires significant resources, projections of
future climate variables using climate downscaling techniques is insufficient as output is generally on
daily scale. To generate future IDFs for urban hydrological studies, such coarse rainfall data requires
disaggregation to a finer scale.

An approach developed based on spatial downscaling-temporal disaggregation (DDM) is
presented in the following sections of this paper and its usefulness is demonstrated on the case
study of Bangkok, Thailand.

3. Case Study Area

Bangkok, the capital and commercial hub of Thailand, is one of the highly urbanized cities
in Southeast Asia. The selected Bangkok metropolis rainfall station is located in Sukhumvit area,
which is in the central part of Bangkok metropolis (Figure 1). Sukhumvit area is surrounded
by major canals on the eastern and northern sides which connects to Chao Phraya River on the
southern side. The geographical location of the study catchment is 13◦44′18.01” N latitudes and
100◦33′41.31” E longitude. The area is flat, with an average altitude of 0.4 m to 1 m above mean
sea level. The climate is tropical wet and dry with long hours of sunshine, fairly high temperatures
year-round and high humidity. The rainy season is observed in mid-May which continues until October.
The average minimum temperature is approximately 20 ◦C which occurs during November–February
and maximum temperature could reach up to 35 ◦C during March–June. Bangkok receives an average
annual rainfall of 1500 mm and is influenced by seasonal monsoons. The drainage outlets from the
Sukhumvit catchment area are connected to canals which discharge further into the Chao Phraya
River. The time of concentration in the urban catchment of Sukhumvit area was observed to be 2.5 h
(see [62]). Bangkok suffered from severe floods in 1942, 1983, 1995 and 2011. The flood event in 2011
was the worst flood event in Thailand over the past 50 years. Climate risks from flooding and potential
sea level rise are causing Bangkok to be one of the most vulnerable coastal cities in the world [63].
The temperature and precipitation in dense urban parts of Bangkok are expected to increase in the
future [64], with increase in the extent of flood prone areas and flood volume [65].
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4. Methodology

4.1. Methodological Framework for the Spatial Downscaling-Temporal Disaggregation Method (DDM) Approach

To produce future IDF curves for Bangkok a methodological framework was developed (Figure 2).
This framework consists of three parts: spatial downscaling of rainfall obtained from GCMs, temporal
disaggregation of daily rainfall series into hourly series and the application of generalized extreme
value (GEV) distribution with annual maximum series to generate IDF curves for the present and
the future.
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(DDM) approach.

The rainfall data of 3 h and 24 h, from 1981 to 2010 were acquired from the Bangkok metropolis
rainfall station of Thai Meteorological Department. These data were utilized for the present IDFs
generation, estimation of Bartlett–Lewis Rectangular Pulse (BLRP) parameters, and inputs for
LARS-WG and Hyetos. Each of the methodological details is described in the following Sections 4.2–4.4.

4.2. Spatial Downscaling Using Long Ashton Research Station Weather Generator (LARS-WG)

LARS-WG uses a semi-empirical distribution (SED), the cumulative probability distribution
function (PDF) with 23 intervals, to approximate probability distributions of dry and wet series of daily
precipitation in each month [51]. The semi-empirical distribution Emp = {a0, ai; hi, i = 1, . . . , 10} is
a histogram with 10 intervals, [ai−1, ai] where ai−1 < ai, and hi denotes the number of events from the
observed data in the i-th interval. Each interval contains a number of events based on the observed
data. For each climatic variable v, a value of a climatic variable vi corresponding to the probability pi is
calculated as [51]:

vi = min{v : P(vobs ≤ v) ≥ pi} i = 0, .., n (1)

where P() denotes probability based on observed data {vobs}, p0 = 0 and pn = 1 and these are
fixed parameters with corresponding values of v0 = min{vobs} and vn = max{vobs}. The simulation of
precipitation occurrence is modeled as alternate wet (precipitation > 0.0 mm) and dry series. The length
of each series is chosen randomly from the wet or dry semi-empirical distribution for the month in
which the series start. For a wet day, the precipitation value is generated from the semi-empirical
precipitation distribution for the particular month, independent of the length of the wet series or
the amount of precipitation on previous days. The methodology for spatial downscaling using
LARS-WG to generate future climate variables includes three major steps: site analysis, calibration
i.e. comparison of the statistical properties of the synthetic data with observed data; and generation
of climate data. First, an analysis of the observed weather parameters such as temperature, rainfall
and solar radiation was done and second, the synthetic daily weather data are generated utilizing
these weather parameters. Site analysis involved the LARS-WG model calibration process, which
is done to determine the statistical characteristics of the observed data. The synthetic weather of
similar time period as observed data is generated using the parameter file derived during the model
calibration step, to validate the model. The statistical characteristics determined from the observed
weather data are used to generate synthetic weather data, which have the same statistical properties
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as observed weather. Climate data are generated based on site parameters and climate scenarios
from GCMs of interest. A scenario file is required for this process which can be manually edited and
prepared or can be derived automatically from GCMs’ data in grid. The latest version of the stochastic
weather generator was developed as LARS-WG 5.0, which is able to generate high resolution climate
change scenarios over a region using direct outputs from GCMs. LARS-WG incorporates predictions
from 15 GCMs, namely BCM2, CGMR, CNCM3, CSMK3, FGOALS, GFCM21, GIAOM, HADCM3,
HADGEM, INCM3, IPCM4, MIHR, MPEH5, NCCCSM and NCPCM; and climate predictions are
available for IPCC Assessment Report IV’s SRES emissions scenarios SRB1, SRA1B and SRA2 for
most of the GCMs (see [51]). In this study, two scenarios, SRA1B and SRA2, were considered and
future projections of these scenarios are available from 9 GCMs, namely, CNCM3, GFCM21, HADCM3,
HADGEM, INCM3, IPCM4, MPEH5, NCCCSM and NCPCM (Table 1).

Table 1. Global climate models applied in the study.

Model Research Center Grid Resolution Scenarios

CNCM3 Centre National de Recherches Meteorologiques, France 1.9◦ × 1.9◦ SRA1B, SRA2
GFCM21 Geophysical Fluid Dynamics Laboratory, USA 2.0◦ × 2.5◦ SRA1B, SRB1, SRA2

HADCM3 UK Meteorological Office, UK 2.5◦ × 3.75◦ SRA1B, SRB1, SRA2
HADGEM UK Meteorological Office, UK 1.3◦ × 1.9◦ SRA1B, SRA2

INCM3 Institute for Numerical Mathematics, Russia 4.0◦ × 5.0◦ SRA1B, SRB1, SRA2
IPCM4 Institute Pierre Simon Laplace, France 2.5◦ × 3.75◦ SRA1B, SRB1, SRA2
MPEH5 Max-Planck Institute for Meteorology, Germany 1.9◦ × 1.9◦ SRA1B, SRB1, SRA2

NCCCSM National Centre for Atmospheric Research, USA 1.4◦ × 1.4◦ SRA1B, SRB1, SRA2
NCPCM National Centre for Atmospheric Research, USA 2.8◦ × 2.8◦ SRA1B, SRA2

4.3. Disaggregation to Hourly Time Scale Using Hyetos

Hyetos is based on the Bartlett–Lewis Rectangular Pulse (BLRP) process theory which has been
developed into a computer program and it is a proven disaggregation technique which adjusts finer
scale data in order to obtain the coarser scale data without affecting stochastic structure by the model
(see [57]). The general assumptions of the model are: storm origins occur following a Poisson process
(rate lambda-λ), origins of cells of each storm arrive following a Poisson process (rate Beta-β), arrivals
of each storm terminate after a time exponentially distributed (parameter gamma-γ), each cell has
a duration exponentially distributed (parameter eta-η), and each cell has a uniform intensity with a
specified (exponential or gamma) distribution. The parameter η is randomly varied from storm to storm
with a gamma distribution with a shape parameter alpha-α and a scale parameter v. Subsequently,
parameters β and γ also vary such that the ratios k = β/η and φ = γ/η stay constant. The distribution
of uniform intensity Xij is typically assumed to be exponential with the parameter 1/µX. Alternatively,
two-parameter gamma can be assumed with mean µX and standard deviation σX. The relationship for
mean, variance, lag 1 autocovariance and proportion of dry periods, depending upon these variables
of the Bartlett–Lewis parameters at the particular time had been derived into equations as presented
in [57]. Hyetos adopts the Bartlett–Lewis model for the generation of synthetic rainfall along with an
adjusting procedure to preserve consistency with observed daily data. For a sequence of wet days,
model runs several times and generates a sequence that best matches with the observed daily data.
The sequence of synthetic hourly rainfall is modified according to the proportional adjusting procedure,
which aggregates to daily data, such that certain statistics are preserved among daily and hourly
data [60]. In addition to adjusting procedure, the model uses repetition to ensure similarity in observed
and modelled data. For the longer series, the model divides the wet series into independent cluster
separated by at least one day, which reduces the computational time. The model runs separately for
each wet cluster series, until the departures of the sequence of daily sums from the given sequence
of daily rainfall becomes lower than an acceptable limit. For the sequence of L wet days generated,
the daily rainfall depths are calculated and compared with the observed ones by logarithmic distance,
which is mathematically given as [59]:
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d =

[
L

∑
i=1

ln2
(

Zi + c
Z̃i + c

)]1/2

(2)

where Zi and Z̃i are observed and generated daily rainfall depth of day i of wet day sequence,
respectively, and c is constant (=0.1 mm). The model verifies if departure d is smaller than acceptable
limit da, which continues for the allowed number of repetitions and if the condition is not satisfied, the
cell is discarded and new one is generated.

4.4. Intensity–Duration–Frequency (IDF) Generation and Correction

There are different distribution functions for IDF analysis: Extreme Value Type I, i.e., Gumbel
(EVI) distribution, Generalized extreme value (GEV) distribution, Gamma distribution, Log Pearson
III distribution, Lognormal distribution, Exponential distribution, and Pareto distribution. Gumbel
distribution function (see for example, [36]) and GEV distribution (see [42]) are the most commonly
used function for IDF analysis. In this present work, the annual maximum series from observed
rainfall data (1981–2010) were fitted into GEV, Log Pearson III, Lognormal, Gamma and Gumbel
distributions using method of moments and L-moments. The mathematical expression for GEV
probability distribution is given by,

F(x) = exp

⌊
−
(

1− k
x− µ

σ

)1/k
⌋

(3)

where k (shape parameter), σ (scale parameter, σ > 0) and µ (location parameter) are to be determined.
For k = 0, GEV reduces to Gumbel (EVI) distribution and for k < 0, it reduces to Extreme Value Type II
distribution, which implies an upper bound of the variable, which is not the case in maximum rainfall
intensity [36].

The method of moments, first developed by Karl Pearson in 1902, considers that the good
estimates of the parameters of a probability distribution are those for which moments of the probability
density function about the origin are equal to the corresponding moments of the sample data [66].
L-moments are the improvement over the conventional moments, which has major advantage, being
linear functions of the data, suffer less from the effects of sampling variability and are more robust
than conventional moments to outliers in the data. It is also less subjected to bias in estimation
and enable more secure inferences to be made from small samples about an underlying probability
distribution [67]. Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be an order statistics of the random sample of size n
from distribution X, and X is the real valued random variable with cumulative distribution function
F(x), the L-moments can be estimated by,

λr = r−1
r−1

∑
k=0

(−1)k

(
r− 1

k

)
EXr−k:r (4)

r = 1, 2, . . . , where the expectation of an order statistic can be expressed as,

EXj:r =
r!

(j− 1)!(r− j)!

∫
x{F(x)}j−1{1− F(x)}r−j dF(x) (5)

For the details of L-moments and parameters for different probability distributions, readers are
referred to Hosking and Wallis [68].

For the selection of distribution functions, the goodness of fit of the probability distributions
are carried out by comparative test of theoretical and sample values of the relative frequency or
the cumulative frequency function, using Kolmogorov–Smirnov (K-S) test and Chi-Squared test to
determine if the annual maximum rainfall data follow the specified distribution. The K-S test is based
on the largest vertical difference between the theoretical and the empirical cumulative distribution
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function. For the given sample size of x1, ... , xn, of the distribution with cumulative distribution
function (CDF) F(x), the K-S test statistic is expressed as,

D = max
1≤i≤n

(
F(xi)−

i− 1
n

,
i
n
− F(xi)

)
(6)

The Chi-squared test statistics is defined as,

χ2 =
k

∑
i=1

(Observedi − Expectedi)
2

Expectedi
(7)

where Observedi is observed number of occurrence in interval i, Expectedi = F(x2)− F(x1) is the
corresponding expected number of occurrences in interval i, F is the cumulative distribution function
being tested and k = 1+ log2 N(sample size). The p-value from the goodness of fit tests are calculated
based on test statistics of each fitted distribution, which compares the suitability of each distribution.
Finally, the graphical comparison of IDFs from observed and disaggregated data and the corrections
carried out using suitable equation in this study are discussed in Section 5.

5. Results and Discussion

5.1. Spatial Downscaling

In this study, the observed precipitation data were analysed to determine their statistical
characteristics and to compute site parameters. Weather generation was done for 1981–2010. The total
monthly mean rainfall and maximum daily rainfall for each month were selected as statistics for
comparing observed and generated data (Figure 3).
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Figure 3. Weather estimation for 1981–2010 (Black: Synthetic, Grey: Observed).

The Root Mean Square Errors (RMSE) and Efficiency Index (EI) have been used as standard
metrics to show that the model is capable of reproducing past rainfall. RMSE and EI are mathematically
expressed as:

RMSE =

√
1
n

n

∑
i=1

(Xi −Yi)
2 (8)

EI =
∑n

i=1
(
Xi − X

)2 −∑n
i=1(Xi −Yi)

2

∑n
i=1
(
Xi − X

)2 (9)

X =
1
n

n

∑
i=1

Xi (10)
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where Xi is observed data at time i, X is mean of observed data, Yi is synthetic data at time i and n
is the total number of data points. The RMSE for both mean and maxima are in acceptable range
and further EI are over 90%. Developing a set of IDFs generally depends on extreme rainfall and
the LARS-WG results showed its ability to project extreme rainfall as close to the observed rainfall
maxima, hence, LARS-WG was used for future downscaling of climate variable (i.e., rainfall series).
The above-mentioned nine GCMs (in Section 4.4) (for SRA1B and SRA2) were used in the analysis to
estimate range of likely changes in future IDFs.

5.2. Temporal Disaggregation

The method follows the assumption of the BLRP process that can be derived into expressions
defined by parameters—λ, k, φ, α, v, µX and σX—which mathematically elucidate the rainfall event
(see also, [57,59]). The method aims to preserve statistical characteristics such as mean, variance, lag 1
autocovariance and proportion of dry periods of observed time series with the synthetically generated
disaggregated time series. The estimation of the BLRP parameters was done by calculating these
statistical characteristics from the observed 3 h, 12 h and 24 h data from 1986 to 2000 for each month,
separately (Figure 4). A period between 1986 and 2000 was selected for the analysis since maximum
daily rainfall occurred in the same period. The parameters λ, k, φ, α, v, µX and σX were optimized
to minimize relative error between synthetic and observed values. The synthetic rainfall generated
preserves the statistical properties of observed rainfall series.
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Figure 4. Comparison of: (a) mean; (b) variance; (c) lag 1 autocovariance; and (d) proportion of dry
periods for synthetic rainfall simulated by Bartlett–Lewis parameters and historical observed data
(1986–2000).

Optimization of the variables to minimize weighted error between synthetic and historical
observed data is shown in Figure 4. The overall error in simulating disaggregated data is below
2 mm for 3 h, 12 h and 24 h, with satisfactory optimization of mean, variance, lag 1 autocovariance
and proportion of dry periods. The optimized parameters for each month (Table 2) were used to
disaggregate present observed data and future downscaled daily data. The same parameters have
been used for past and future disaggregations.

Table 2. Bartlett–Lewis Rectangular Pulse (BLRP) Parameter Estimation.

Month λ (day−1) K = β/η (−) Φ = γ/η (−) α (−) ν (day) µX (mm·day−1) σX (mm·day−1)

January 0.1190 0.0260 0.0227 69 1.500 70 70
February 0.1200 0.2400 0.1500 69 2.300 70 70

March 0.1150 0.1700 0.0900 86 3.200 85 85
April 0.1900 0.1750 0.0910 65 3.690 90 90
May 0.3000 0.2500 0.0910 40 3.770 90 90
June 0.4100 0.4500 0.1250 69 2.600 70 70
July 0.2900 0.1430 0.0330 69 2.450 90 90

August 0.2350 0.1360 0.0150 69 2.300 90 90
September 0.9000 0.6640 0.1150 90 2.500 70 70

October 0.1620 0.3150 0.0150 69 2.560 70 70
November 0.1150 0.1900 0.0900 95 4.387 95 95
December 0.0240 0.1826 0.1590 100 1.960 69 69

The maximum 3 h precipitation for each month is compared between disaggregated and observed
data for the period 1981–2010 (Figure 5). The disaggregated data indicated under prediction, especially
in the months of April, May, September and October.
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Figure 5. Comparison of maximum 3 h rainfall from 1981 to 2010 (Black: Disaggregated, Grey:
Observed/Historical).



Water 2017, 9, 145 11 of 22

5.3. Generation of IDF Curves

The annual maximum rainfalls at different durations from 1981 to 2010 were fitted into
Generalized extreme value (GEV) distribution, Gamma distribution, Gumbel distribution, Log
Pearson III distribution and Lognormal distribution. The goodness of fit test (Table 3) using
Kolgomorov-Smirnov (K-S) test showed that GEV distribution fits better for annual maximum rainfall
at 3 h, 6 h and 24 h durations, while for 12 h duration Log normal distribution fits better, although GEV
also fits as closely to Log normal distribution. The Chi-squared (χ2) test results showed GEV fits better
for annual maximum rainfall at 12 h and 24 h durations, while GEV and Gamma distribution fits better
at 3 h duration and Gumbel distribution fits better at 6 h duration. In overall comparison, GEV seemed
to fit better than other distribution so we have considered GEV distribution to generate present and
future IDFs. The future annual maximum rainfall for 2011–2030 and 2046–2065 at different rainfall
durations of 1 h, 3 h, 6 h, 12 h and 24 h also fit well with GEV distribution, the distribution analysis for
future are not shown here due to brevity of the paper. Table 3 also shows the comparison of rainfall
intensities at 2-, 5- and 20-years return periods when annual maximum rainfalls are fitted into different
distribution. The result showed minimal differences in the rainfall intensities. The standard deviation
of rainfall intensities however increases accordingly to higher return periods.

For the comparison of disaggregated rainfall (daily to hourly) with the observed 3 h rainfall, the
disaggregated 1 h data were aggregated to 3 h data, from 1981 to 2010, and IDFs were generated.
The disaggregated data (i.e., modelled data) showed significant underestimation as compared to the
observed data for the duration of 3 h; however, the underestimation was observed to be relatively
lower for longer durations (Figure 6). Thus, the correction factors were used to correct the bias for
modelled rainfall intensities (Table 4). The differences and ratios between observed and simulated
intensities were found to be larger for shorter durations and smaller for durations of longer than 3 h.
For all durations, the differences increased with return periods. Nevertheless, the ratio remained
almost equal for different return periods for a specific duration of rainfall.
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Table 3. Goodness of Fit between different distributions for annual maximum precipitation (1981–2010), showing parameters, Kolgomorov-Smirnov (K-S) test and
Chi-squared (χ2) test statistics and p-values, and intensities at different return periods for each distribution and different durations.

Duration Distribution Parameters
K-S Test χ2 Test Intensity (mm/h) at Return Periods:

Statistic p Statistic p 2 Years 5 Years 20 Years

3 h

GEV k = 0.08325, µ = 20.652, σ = 76.138 0.098 0.899 2.013 0.570 27.86 35.09 43.49
Gamma α = 13.698, β = 6.3132, γ = 0 0.102 0.869 1.383 0.709 28.13 35.09 42.72
Gumbel α = 18.218, µ = 75.962 0.119 0.725 3.739 0.291 27.55 34.43 43.36

Log Pearson III α = 1518.3, β = 0.00689, γ = −6.0309 0.106 0.842 2.206 0.531 27.78 35.05 43.69
Log Normal α = 0.26397, µ = 4.4251, γ = 0 0.110 0.807 2.226 0.527 27.84 34.77 42.98

Standard Deviation 0.21 0.29 0.39

6 h

GEV k = 0.12065, µ = 22.557, σ = 83.159 0.079 0.982 0.358 0.949 15.27 20.04 27.29
Gamma α = 8.8257, β = 11.241, γ = 0 0.116 0.751 1.297 0.730 15.92 20.95 26.63
Gumbel α = 26.039, µ = 84.183 0.093 0.926 0.119 0.998 15.62 20.54 26.92

Log Pearson III α = 11.027, β = 0.09135, γ = 3.5429 0.085 0.966 0.345 0.951 15.30 20.10 27.21
Log Normal α = 0.29842, µ = 4.5502, γ = 0 0.105 0.848 0.145 0.997 15.78 20.28 25.77

Standard Deviation 0.29 0.37 0.61

12 h

GEV k = 0.20531, µ = 23.843, σ = 86.68 0.135 0.581 0.475 0.924 7.98 10.71 15.35
Gamma α = 5.3666, β = 19.836, γ = 0 0.179 0.241 7.317 0.026 8.33 11.83 15.96
Gumbel α = 35.828, µ = 85.771 0.164 0.335 3.010 0.390 8.24 11.63 16.02

Log Pearson III α = 3.2755, β = 0.18536, γ = 3.9984 0.157 0.386 0.874 0.832 7.85 10.70 15.74
Log Normal α = 0.33002, µ = 4.6056, γ = 0 0.127 0.657 1.005 0.800 8.34 11.01 14.35

Standard Deviation 0.22 0.52 0.69

24 h

GEV k = 0.28101, µ = 24.575, σ = 97.168 0.107 0.835 0.542 0.763 4.44 5.96 8.80
Gamma α = 4.7342, β = 25.493, γ = 0 0.192 0.180 8.616 0.035 4.68 6.80 9.33
Gumbel α = 43.249, µ = 95.726 0.183 0.224 5.639 0.131 4.65 6.69 9.34

Log Pearson III α = 2.0027, β = 0.23836, γ = 4.2507 0.126 0.661 3.161 0.293 4.36 5.97 9.07
Log Normal α = 0.33184, µ = 4.7281, γ = 0 0.121 0.707 1.205 0.752 4.71 6.23 8.13

Standard Deviation 0.16 0.40 0.50
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Table 4. Ratio and difference between observed and simulated rainfall intensities.

Duration Comparison *
Return Period

2 Years 5 Years 10 Years 20 Years 50 Years 100 Years

3 h
Ratio = O/M 1.426 1.426 1.406 1.377 1.332 1.295

Difference (mm/h) = O −M 8.327 10.483 11.399 11.908 12.050 11.783

6 h
Ratio = O/M 1.047 1.093 1.159 1.242 1.373 1.489

Difference (mm/h) = O −M 0.684 1.705 3.235 5.310 8.858 12.147

12 h
Ratio = O/M 1.007 1.020 1.036 1.057 1.090 1.119

Difference (mm/h) = O −M 0.058 0.208 0.453 0.832 1.585 2.393

24 h
Ratio = O/M 1.013 1.025 1.035 1.045 1.060 1.072

Difference (mm/h) = O −M 0.055 0.144 0.243 0.380 0.642 0.922

Notes: * O = Observed and M = Modelled or from disaggregation.

The average ratios of observed to modelled data at different rainfall duration were fitted into
a power and polynomial equations and the resulting equations are the function of rainfall duration,
which is independent from the return period (Figure 7). Coefficient of Determination (R2) for the fitted
polynomial equation showed better accuracy than other equation. Using the equation,

y = 0.0017x2 − 0.0606x + 1.5417 (11)

where y is the correction factor for a specific rainfall duration of x in hours, the
downscaled-disaggregated IDFs were graphically corrected. IDFs generated from nine GCMs were
corrected using the respective correction factors. The corrected IDFs for 1981–2010 are shown in Figure 6.
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Figure 7. Correction factor for modelled rainfall intensities fitted into higher order equations.

The downscaled and disaggregated outputs from nine GCMs under SRA1B and SRA2 scenarios
were used to develop IDFs for future periods for a duration varying from 1 h to 24 h and return periods
of 2 years, 5 years and 20 years. The return periods of 2 years, 5 years and 20 years are selected which
are of practical relevance for design and operation of drainage systems. The comparisons of present
and future IDF curves are shown in Figure 8.
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Figure 8. Results in box and whiskers plot from nine GCMs’ derived IDF curves for 2-, 5- and 20-years
return periods: for the SRA1B scenario (a,c,e,g,i,k); and for the SRA2 scenario (b,d,f,h,j,l) for future
periods (2011–2030, and 2046–2065) compared with present IDFs (1981–2010).

Figure 8 presents the future IDFs projections shown by box and whiskers plot for three quartile
regions, which is compared with baseline (1981–2010) and Table 5 shows the detail changes in future
intensities compared to baseline period. Comparison of present and future IDFs for return periods
(2-, 5- and 20-years), showed that intensities increases under climate change at most of the rainfall
durations. In comparison to the rainfall intensities the uncertainties among GCMs are found to be
higher for smaller duration, which then increases with higher return periods. Even the median of
the projected nine GCMs data showed the increases in future rainfall intensities when compared to
the present IDFs, in all durations except for 1 h duration in 20 years return period. The maximum
projected by some GCMs shows future rainfall intensity increments also in 1 h, while even minimum
projected by some GCMs is higher than the present scenario, except at smaller durations in 20 years
return period. There is no significant difference among the results from SRA1B and SRA2 scenarios in
2- and 5-years return periods, while SRA2 showed maximum increments in 20 years return period.
It can be observed that few of the GCMs in 20 years return period at 1 h duration projected decrease
in rainfall intensities. Compared to 1981–2010, during 2011–2030 in 20 years return period, the
maximum decrease in 1 h rainfall intensities is projected by NCPCM in SRA1B (−7.8%) and GFCM21
in SRA2 (−10.1%). Similarly, for 2046–2065 in 20 years return period, the maximum decrease in 1 h
rainfall intensities are projected by IMCM3 and HADGM3 in SRA1B (−10.2%) and HADGEM in
SRA2 (−18.3%). The maximum increase in 1 h rainfall intensities during 2011–2030 are projected
by NCCCSM in SRA1B (20.4%) and IMCM3 in SRA2 (20.4%) in 2 years return period, NCCCSM in
SRA1B (13.9%) and INCM3 in SRA2 (18.7%) in 5 years return period, GFCM21 in SRA1B (3.7%) and
NCCCSM in SRA2 (25.9%) in 20 years return period. The maximum increase in 1 h rainfall intensities
during 2046–2065 are projected by NCCCSM in SRA1B (25.6%) and IMCM3 in SRA2 (15.7%) in 2 years
return period, NCCCSM in SRA1B (18.7%) and HADCM3 in SRA2 (14.3%) in 5 years return period,
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IPCM4 in SRA1B (10.2%) and HADCM3 in SRA2 (14.5%) in 20 years return period. Besides, it is
noticeable that all GCMs showed only positive increments in rainfall intensities for higher duration in
all return periods and scenarios (Figure 8). This is possibly due to the limitation and potential biases
in the methods in preserving extreme values of disaggregated data at finer scales and limitation of
extrapolating correction factor to 1 h using fitted correction equation.

Since the time of concentration for the case study area is approximately 2.5 h, it becomes relevant
to compare intensities/accumulated rainfall for 3 h, in the perspective of urban flood and urban
drainage management (see [62]). In 2011–2030, the maximum 3 h rainfall increments are projected
by HADCM3 and IMCM3 in SRA1B (15.4%) and NCPCM in SRA2 (27.8%) in 2 years return period,
HADCM3 and IMCM3 in SRA1B (20.4%) and NCPCM in SRA2 (24.4%) in 5 years return period,
HADCM3 and IMCM3 in SRA1B (21.9%) and HADCM3 in SRA2 (30.4%) in 20 years return period.
In 2046–2065, the maximum 3 h rainfall intensities increments are projected by HADGEM in SRA1B
(27.0%) and MPEH5 in SRA2 (19.1%) in 2 years return period, NCCCSM in SRA1B (28.8%) and GFCM21
in SRA2 (26.7%) in 5 years return period, IPCM4 in SRA1B (41.2%) and HADCM3 in SRA2 (30.4%) in
20 years return period (Table 5).

Figure 8 showed the range of uncertainty, through box and whisker plots, in agreement among
GCMs outputs. By considering multiple GCMs and two future scenarios we quantified the range of
future uncertainty. Again considering 3 h rainfall, the future rainfall intensities will increase compared
to present condition by 2.4% to 27.8% in 2 years return period and 1.3% to 30.4% in 20 years return
period during 2011–2030; and 5.4% to 27.0% in 2 years return period and 8.5% to 41.2% in 20 years
return period during 2046–2065. These increments in future rainfall intensities will affect performance
of urban drainage systems which increase further challenges in managing urban storm water in
Bangkok. The GEV distribution fitted better for annual maximum series in all duration for present as
well as future. A study using Gumbel distribution for same station [62], the results of the study which
is not presented here showed similar behaviour from the selected GCMs, however with some changes
in projected rainfall intensities. The selected future scenarios SRA1B and SRA2 represents medium
to high greenhouse gases emission scenarios, and RCP8.5 is broadly comparable to SRA2. However,
the individual GCMs outputs, in two scenarios, in term of fitted rainfall intensities showed no precise
differences. The highest future increments in rainfall intensities were projected under SRA2 scenario
in 2011–2030 and under SRA1B scenario in 2046–2065. The temporal disaggregation of daily to hourly
rainfall series is important part of the DDM approach. One of the major advantage of using temporal
disaggregation is its ability to support urban hydrological studies and its practical applications, using
only short term higher resolution data together with fairly coarser resolution long term data that
are available in most cities. The application of robust disaggregation techniques and analysis under
newer future climate scenario will further improve this approach. The DDM approach is applicable
and relevant to other urban catchments in different climatic conditions where availability of higher
resolution data is constraint.
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Table 5. Percentage change (%) of rainfall intensities at 2-, 5-, and 20-years return periods in 1 h, 3 h, 6 h, 12 h and 24 h durations from baseline 1981–2010 to future
scenarios of 2011–2030 (I) and 2046–2065 (II) periods.

GCMs Future Period Scenario

Return Period 2 Years
Duration (h)

Return Period 5 Years
Duration (h)

Return Period 20 Years
Duration (h)

1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

CNCM3
I

SRA2 4.9 8.9 19.0 11.3 10.3 5.6 9.6 23.0 19.8 20.2 8.5 15.2 34.6 37.8 31.2
SRA1B 9.0 9.4 18.2 11.9 7.5 6.9 11.1 22.2 24.8 17.9 0.1 11.3 34.7 52.7 32.9

II
SRA2 9.0 15.4 28.7 16.6 11.4 6.9 16.6 34.0 27.6 21.9 0.8 21.4 49.6 54.9 37.9

SRA1B 7.3 5.4 16.9 6.7 7.7 8.2 9.6 18.0 17.1 16.7 6.0 18.9 30.2 45.8 31.9

GFCM21
I

SRA2 6.9 10.4 24.9 13.7 6.3 1.6 9.4 27.6 26.5 14.7 −10.1 1.3 25.0 39.8 22.7
SRA1B 0.8 12.6 24.4 12.5 5.7 −0.2 17.2 29.8 21.3 14.1 3.7 18.4 32.8 33.1 23.1

II
SRA2 12.0 17.6 30.6 16.3 10.5 13.2 26.7 41.7 30.6 20.4 6.0 28.9 51.2 49.2 29.3

SRA1B 14.6 18.4 25.1 17.1 15.4 6.9 18.1 29.0 26.2 24.7 −4.8 14.9 41.3 43.6 29.7

HADCM3
I

SRA2 13.2 16.5 18.9 12.1 10.7 14.3 20.5 27.0 27.2 25.4 14.5 30.4 47.9 62.5 47.5
SRA1B 10.1 15.4 22.9 16.8 13.0 6.9 20.4 35.2 30.9 26.4 −1.5 21.9 58.1 59.8 46.3

II
SRA2 13.2 16.5 18.9 12.1 10.7 14.3 20.5 27.0 27.2 25.4 14.5 30.4 47.9 62.5 47.5

SRA1B 13.6 20.8 29.9 19.2 16.6 4.6 17.0 34.0 36.1 30.8 −10.2 8.5 42.5 69.8 51.2

HADGEM
I

SRA2 1.8 -0.1 11.4 1.1 1.6 0.0 2.2 17.6 8.9 12.3 1.3 18.9 34.9 27.8 28.4
SRA1B 7.5 2.4 10.2 9.1 5.9 1.6 3.6 19.8 19.4 16.2 −4.4 11.0 39.9 42.8 29.0

II
SRA2 4.5 11.1 26.0 11.9 9.9 −2.3 5.9 26.4 23.6 21.4 −18.3 −7.0 19.7 41.7 31.1

SRA1B 12.0 27.0 47.5 33.3 22.5 7.9 24.7 43.0 45.6 34.9 −1.4 18.8 28.0 50.9 40.6

IMCM3
I

SRA2 20.4 21.2 23.1 11.7 3.8 18.7 22.9 24.7 22.0 12.6 14.8 23.6 42.0 51.9 32.1
SRA1B 10.1 15.4 22.9 16.8 13.0 6.9 20.4 35.2 30.9 26.4 −1.5 21.9 58.1 59.8 46.3

II
SRA2 15.7 17.6 20.0 12.6 9.6 5.1 9.3 20.4 19.3 17.5 −10.5 −3.2 25.0 40.7 30.1

SRA1B 13.6 20.8 29.9 19.2 16.6 4.6 17.0 34.0 36.1 30.8 −10.2 8.5 42.5 69.8 51.2
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Table 5. Cont.

GCMs Future Period Scenario

Return Period 2 Years
Duration (h)

Return Period 5 Years
Duration (h)

Return Period 20 Years
Duration (h)

1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

IPCM4
I

SRA2 7.2 10.4 14.3 4.1 2.2 7.4 9.6 15.1 13.0 11.2 3.3 7.1 20.0 34.3 26.7
SRA1B 2.2 5.5 14.6 13.7 10.9 −0.5 0.8 9.8 16.0 16.7 −5.2 −3.0 2.1 14.0 16.2

II
SRA2 8.4 14.9 20.8 10.0 5.8 1.4 11.2 24.9 21.0 14.7 −10.0 7.3 32.7 48.0 31.2

SRA1B 2.2 15.2 28.4 24.1 16.5 4.4 24.1 40.3 34.8 26.2 10.2 41.2 75.3 56.4 37.9

MPEH5
I

SRA2 10.1 12.6 15.5 4.1 3.9 7.7 15.3 21.0 16.6 18.1 0.9 18.7 36.8 43.2 40.1
SRA1B 11.6 12.1 13.5 6.0 3.8 8.8 16.5 21.3 18.4 17.4 0.0 20.3 44.4 45.0 39.6

II
SRA2 10.6 19.1 19.6 3.4 −1.0 10.8 21.7 30.5 14.5 7.1 11.1 16.6 43.1 46.4 28.2

SRA1B 12.4 14.7 29.0 25.8 21.5 6.9 18.3 34.5 39.2 37.8 −2.7 18.0 51.0 68.4 65.0

NCCCSM
I

SRA2 11.9 8.8 16.4 13.7 10.7 15.6 15.6 23.3 27.1 24.3 25.9 25.6 43.1 56.4 42.1
SRA1B 20.4 15.1 22.1 15.5 11.7 13.9 14.0 24.9 25.3 22.9 −1.6 8.6 32.9 42.7 36.9

II
SRA2 1.3 8.1 18.6 14.9 13.9 0.6 7.9 22.0 25.5 24.8 −4.3 1.0 24.0 46.6 35.6

SRA1B 25.6 26.0 29.5 19.9 11.6 18.7 28.8 37.8 33.1 22.6 1.5 26.3 48.1 54.4 36.8

NCPCM
I

SRA2 19.9 27.8 30.9 14.8 7.2 12.8 24.4 33.0 21.9 13.6 2.3 16.6 34.3 36.2 22.7
SRA1B 7.4 14.6 16.5 12.9 9.0 2.5 16.0 15.6 19.8 15.1 −7.8 12.3 20.9 34.7 19.0

II
SRA2 8.5 13.6 23.4 12.0 9.1 1.9 6.0 19.4 15.3 13.1 −13.0 −4.6 19.7 23.0 12.1

SRA1B 15.6 19.0 21.7 10.2 7.2 13.4 19.1 25.2 15.4 11.6 3.6 11.6 28.6 27.0 14.2
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6. Conclusions

The present paper presents an approach based on spatial downscaling—temporal disaggregation
method (DDM)—to develop future IDFs using stochastic weather generator, Long Ashton Research
Station Weather Generator (LARS-WG) and the rainfall disaggregation tool, Hyetos. The work was
carried out for the case of Bangkok, Thailand. The results obtained show that the DDM approach
is capable of producing promising results that can be applied to other catchments. Downscaling
with LARS-WG gave reasonable results in estimating extreme climate variable (i.e., rainfall series).
The downscaled-disaggregated IDFs showed underestimation in intensities, especially for short
durations; hence, it was found necessary to correct the bias in IDFs generation.

The results obtained show that IDFs for shorter durations, which exhibit non-linear properties
compared to general IDF in higher durations (e.g., 12 h to 24 h) which exhibit linear properties, are
corrected using higher order equation. With the availability of only 3 h interval observed rainfall data
for the study, the correction factor for 1 h is extrapolated with the same equation. Nine GCMs were
analysed which incorporate future projections in SRA1B and SRA2, and all of them projected higher
intensities for durations from 3 h to 24 h. The few discrepancies at 1 h rainfall are due to limitations of
spatial downscaling and temporal disaggregation method in preserving maxima. The overall findings
indicate an increase in future rainfall for Bangkok region. Most of the rainfall stations globally lack
long-term higher temporal resolution rainfall data for long periods while most GCMs outputs are in
daily time scale. In places where such data availability is an issue, the DDM approach can provide
quantified evidence of climate change implication on rainfall intensities. The short term sub-daily scale
rainfall at the particular rainfall station or nearby stations is needed for generation of BLRP parameters
using Hyetos. However, BLRP parameters will vary in relation to the location and nature of rainfall
data. Our future research in this direction will focus on improving temporal disaggregation methods
and achieving more robust outputs of future climate downscaling models in higher resolutions. We also
intend to incorporate the subsequent IPCC emissions scenarios in our future research work.
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