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Abstract: The extraction of urban water bodies from high-resolution remote sensing images,
which has been a hotspot in researches, has drawn a lot of attention both domestic and abroad.
A challenging issue is to distinguish the shadow of high-rise buildings from water bodies. To tackle
this issue, we propose the automatic urban water extraction method (AUWEM) to extract urban water
bodies from high-resolution remote sensing images. First, in order to improve the extraction accuracy,
we refine the NDWI algorithm. Instead of Band2 in NDWI, we select the first principal component
after PCA transformation as well as Band1 for ZY-3 multi-spectral image data to construct two new
indices, namely NNDWI1, which is sensitive to turbid water, and NNDWI2, which is sensitive to
the water body whose spectral information is interfered by vegetation. We superimpose the image
threshold segmentation results generated by applying NNDWI1 and NNDWI2, then detect and
remove the shadows in the small areas of the segmentation results using object-oriented shadow
detection technology, and finally obtain the results of the urban water extraction. By comparing the
Maximum Likelihood Method (MaxLike) and NDWI, we find that the average Kappa coefficients
of AUWEM, NDWTI and MaxLike in the five experimental areas are about 93%, 86.2% and 88.6%,
respectively. AUWEM exhibits lower omission error rates and commission error rates compared with
the NDWI and MaxLike. The average total error rates of the three methods are about 11.9%, 18.2%,
and 22.1%, respectively. AUWEM not only shows higher water edge detection accuracy, but it also is
relatively stable with the change of threshold. Therefore, it can satisfy demands of extracting water
bodies from ZY-3 images.

Keywords: ZY-3 images; urban water bodies; automatic water extraction; NDWI;, PCA
transformation; shadow detection

1. Introduction

Cities are the crystallization of highly developed civilization. As an important factor in the
urban ecosystem, water bodies play a critical role in maintaining stability of the urban ecosystem [1].
Their changes are closely related with people’s life. Negative changes may lead to disasters, pollution,
water shortage, or even epidemics [2]. Therefore, understanding the distribution and changes of urban
water has become the focus of people’s attention.

In recent years, with the development and application of remote sensing technology, it has played
an increasingly important role in natural resource surveying [3,4], dynamic monitoring [5,6], and
natural surface water planning [7,8], thus attracting researchers’ attention. Remote sensing images
enable us to observe the earth from a totally different perspective and monitor its real-time changes.
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Water bodies are common ground object in remote sensing images, the rapid acquisition of their
dynamic information is apparently valuable for water resource survey, water conservancy planning
and environmental monitoring and protection [9]. Among current water extraction technologies,
a mainstream method is using remote sensing data to gather urban water information in a timely
and accurate way [10]. Thus far, researchers have proposed many methods to extract water
using remote sensing images [10,11]. These models could be roughly divided into four categories:
(a) single-band or multiple-band threshold methods [12,13]; (b) water indices [14-16]; (c) linear
un-mixing models [17]; and (d) supervised or unsupervised classification methods [18,19].
Other methods that are not as frequent used as the above include water extraction technology based
on digital elevation models [20,21], microwave remote sensing imagery [22-24] and object oriented
technology [25,26]. In general, the water indices are most commonly used in practice because of their
simple, convenient and fairly accurate algorithm models [27].

The water indices are under constant refinement. The first model, Normalized Difference Water
Index (NDWI), proposed by McFeeters [16], is based on the principle of Normalized Difference
Vegetation Index (NDVI). Its basic idea is to extract water bodies by enhancing water information
and suppressing non-water information. Xu Hangqiu [17] found that the NDWI algorithm could
not effectively inhibit the impact of buildings and proposed a refined version, in which he used the
Shortwave Infrared (SWIR) instead of the NIR in the original NDWI algorithm. The new algorithm
was called the Modified Normalized Difference Water Index (MNDWI). It exhibits higher accuracy,
but it still could not distinguish shadows. Therefore, Feyisa G L [18] proposed a method called the
automated water extraction index (AWEI) to adapt to different environments. Five bands of Landsat5
Thematic Mapper (Band1, Band2, Band4, Band5, and Band?7) were used to compute the index to
enhance the contrast between water and non-water information which could be used to model the
water images with or without shadows.

Most of the algorithms, however, are proposed based on medium- or low-resolution remote
sensing images. Because of resolution limitations, smaller water bodies cannot be extracted effectively,
especially in urban areas where the size of water bodies varies and there are many small artificial
lakes and rivers [28]. Therefore, we should prioritize the use of high-resolution remote sensing
images in those areas. The ZY-3 satellite is China’s first civil high-resolution stereo mapping satellite
launched in 9 December 2012. Equipped with four sets of optical cameras, it includes an orthographic
panchromatic time delay and integration charge-coupled device (TDI CCD) camera with the ground
resolution of 2.1 m, two front-view and rear-view panchromatic TDI CCD cameras with the ground
resolution of 3.6 m, and an orthographic multi-spectral camera with the ground resolution of 5.8 m.
The acquired data are mainly used for topographic mapping [29], digital elevation modeling [30] and
resource investigation [31]. Therefore, it is an ideal multi-spectral image data source for urban water
extraction [31].

Recently, with the increase of image resolution, most of the high-resolution remote sensing images
(such as those from WorldView-2, IKONOS, RapidEye and ZY-3 satellites) do not have so many
available bands for water extraction compared with those from LandsatTM/ETM+/OLI imagery,
rendering the MNDWI and AWEI algorithms useless. After all, most high-resolution remote sensing
images only have four bands (blue, green, red and near-infrared), lacking the SWIR necessary to
compute the MNDWI/AWEI indices [31]. It is therefore problematic to use the NDWI to extract urban
water from high-resolution images. For instance, it is difficult to remove shadows, especially those of
high-rise buildings in urban areas. The problem dramatically worsens when analyzing high-resolution
images [32], thus it is difficult to distinguish between water bodies and shadows [25,33].

To tackle urban water extraction issue, some scholars have pioneered on this subject and
proposed some preliminary solutions such as the object oriented technology to detect shadows by
computing their texture features [34]. It can achieve expected results, but is relatively complex and
time-consuming in the texture description and computation [35]. Therefore, it is not an optimal model
for the shadow detection. Another method based on Support Vector Machine (SVM) feature training
can be used to remove the impact of shadows on urban water extraction [31]. However, the SVM
training is time-consuming, especially when there are many training samples with high-dimension
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eigenvectors [36]. Some researchers combine the morphological shadow index (MSI) [37] and the
NDWI to extract urban water bodies from WorldView-2high-resolution imagery, in order to increase
the detection accuracy [38]. The principle of this method is simple, but since the urban water extraction
method is based on the NDWI algorithm, the detection accuracy is not very high, especially when
detecting small areas of water surrounded by lush vegetation. In those areas, the spectral features of
water will be severely contaminated and extremely unstable [39]. In addition, urban water bodies are
typically sediment-laden and algae polluted, and thus exhibit different optical features compared with
non-contaminated natural water bodies [31].

Therefore, to remove the limitations of traditional NDWI indices in water extraction and improve
the initial classification accuracy, we propose the NNDWI1, which is sensitive to turbid water bodies,
and NNDWI2, which is sensitive to water bodies whose spectral information is seriously disturbed by
that of vegetation, based on the analysis of water features and shadows. To remove the disturbance
of shadows of high-rise buildings to the water extraction results, and to better express the features
of shadows and water bodies, we use the Object-Oriented Technology to classify the water bodies
and shadows. Meanwhile, if the features expressed by the operators are too complex, it will not be
conducive to reduce the computational time. Thus, it is better to use operators that express the spectral
rather than textural features of ground objects in the algorithm in order to improve the computational
efficiency. To further improve the efficiency, we use thresholds rather than the time-consuming
classification algorithm to differentiate water bodies from shadows. The experimental results show
that the automatic urban water extraction method (AUWEM) algorithm can better identify shadows
and water bodies, and improve the urban water detection accuracy.

2. Study Areas and Data

2.1. Study Areas

To verify the feasibility of the automatic urban water extraction method (AUWEM) algorithm,
we select five images featuring different areas with different environments including lakes and rivers
within territory of China for experiments. The selected areas were located in Beijing, Guangzhou,
Suzhou and Wuhan. As for Wuhan, the city is an ideal place for experiment because of its large
amount of rivers and lakes as well as rich diversity of water bodies, so we select two different coverage
areas for experiment. Details of the experimental areas are described in the following Table 1, and the
corresponding images from ZY-3 satellite are detailed in Table 2.

Table 1. Description of studied areas.

City’s Name Area Coverage Water Body Color Infrared

. : Topography Climate Composite (4/3/2
and Location (Pixels) Type Band Combination)
Beijing 1479 x 1550 Pl Plain Wgrnmt i
(39.9° N, 116.3° E) (77.1 km?) Clear lake continental
monsoon climate
Rivers Typical monsoon
Guangzhou 2351 x 2644 Ponds Basin, plai }l]'p in South
(23° N, 113.6° E) (209.1 km?) Polluted lakes asin, plain c lmatg in Sout
Clear lake sia
Rivers | humid
Suzhou 2351 x 2644 Ponds . s Subtropical humi
(31.2° N, 120.5° E) (209.1 km?) Polluted lakes Basin, plain, hills. monsoon climate

Clear lake
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Table 1. Cont.

. Color Infrared
City’s Name Area Coverage Water Body To . A
. : pography Climate Composite (4/3/2
and Location (Pixels) Type Band Combination)
Rivers
Ponds . .
Wuhan_1 2245 x 2521 - Lo Subtropical humid
(305° N, 114.3° E) (190.4 km?) L“gfaﬁ’(‘;g“ted Basin, plain, hills. " 1 (oon climate
Large clear lakes
Rivers
Ponds . .
Wuhan_2 2894 x 3396 . L Subtropical humid
(30.5° N, 114.3° E) (330.6 km?) Largefaice)lsluted Basin, plain, hills. monsoon climate
Large clear lakes
Table 2. ZY-3 satellite Parameters.
Item Contents

Panchromatic orthographic; Panchromatic front-view and

Camera model rear-view; multi-spectral orthographic

Sub-satellite points full-color: 2.1 m; front- and rear-view 22° full

Resolution color: 3.6 m; sub-satellite points multi-spectral: 5.8 m

Panchromatic: 450 nm-800 nm Multi-spectral: Band1
Wavelength (450 nm-520 nm); Band2 (520 nm-590 nm) Band3
(630 nm—-690 nm); Band4 (770 nm-890 nm)

Sub-satellite points Panchromatic: 50 km, single-view 2500 km?;

Width Sub-satellite points multi-spectral: 52 km, single-view 2704 km?

Revisit cycle 5 days

Panchromatic: nearly 1,000,000 km?2/ day;

Daily image acquisition Fusion: nearly 1,000,000 km?2/ day

2.2. Experimental ZY 3 Imagery and Its Corresponding Reference Imagery

ZY-3 Images used in the experiments can be queried and ordered from http:/ /sjfw.sasmac.cn/
product/order/productsearchmap.htm. We use theZY-3 multi-spectral data to extract water. All image
data are Level 1A products, which have been adjusted through radiometric and geometric correction.
All the images used in the experiments were cloud free.ZY-3 satellite parameters are shown in Table 2.
The experimental image information is described in the following Table 3.

Table 3. Description of ZY-3 scenes.

ZY-3 Scenes
Test Site

Acquisition Date Path Row

Beijing 28 November 2013 002 125
Guangzhou 20 October 2013 895 167
Suzhou 17 December 2015 882 147
Wuhan_1 24 July 2016 001 149
Wuhan_2 28 March 2016 897 148

The reference imagery is used to evaluate the urban water classification accuracy. To acquire the
corresponding reference imagery, we manually delineate the water edge in high-resolution imagery,
which is obtained by fusion of ZY-3’s high-resolution Panchromatic and ZY-3’s Multispectral Images.
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During the experiment, we asked an experienced analyst to manually map out the water bodies.
To prevent arbitrariness, all referential images corresponding to five experimental areas were drawn
by a single person. It took about 10 days, including eight days of imagery creation and two days
of double-checking. Before manually mapping out water bodies and non-water areas, we collected
and studied a large amount of related samples so that relevant criteria can be set up to improve the
accuracy of water boundary mapping. Figure 1 shows the five referential images that are manually
drawn. Here, the water bodies are in blue, and non-water area areas are in black. The relevant criteria
for water body delineate are as follows:

1.  Delineate precision of the fuzzy boundary of water body is within three pixels while the clear
boundary of water body is within one pixels.
Less than or equal to one pixels of water body information is not given to delineate.
We choose reference of higher resolution Google map image in order to distinguish between
water body and building shadow as well as the seemingly water body and non-water body.

4. Urban water system is basically interconnected with each, other except for the river intercepted
by bridge.

¥ N
0459 18 27 36
- — — lometers A

N
0255 1 15 2 \
- — — Kilometers }x

N
0357 14 21 28
- —KﬂcmelerA

Wuhan_1 Wuhan_2

N
048 16 24 32
®w mm— w—Kilometers x

Beijing Guangzhou
Legend [ Water Bl Non-water

Figure 1. Manually drawn referential imagery.

3. Method

3.1. Satellite Image Preprocessing

We used in the study the level-1 imagery taken from ZY-3 satellite without Ortho-rectification,
therefore we used RPC+30m DEM to process the experimental images and applied Ortho-rectification
without control points. We used FLAASH (Fast Line-of-Sight Atmospheric correction model Analysis
of Spectral Hypercubus) for atmospheric correction [40]. All of the above steps were completed in
ENVI5.2 software.

The radiometric calibration coefficient of ZY-3 FLAASH atmospheric correction can be
downloaded from http://www.cresda.com/CN/Downloads/dbcs/index.shtml.  The spectral
response function could be downloaded from http:/ /www.cresda.com/CN/Downloads/gpxyhs/
index.shtml.

Figure 2 depicts the spectral curves of ground objects before and after atmospheric correction.
We can see from this figure that there is huge difference between the two spectral curves of pixels.
The one after the atmospheric correction is more consistent with the actual features of ground objects.
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Vegetation Water Shadow

—

Ground objects

The spectral curves
before atmospheric
correction

The spectral curves
after  atmospheric
correction

Figure 2. Comparison of ground objects’ spectral curves before and after the atmospheric correction.

3.2. Normalized Difference Water Index (NDWI)

The NDWI was first proposed by McFeeters in 1996 and successfully applied to detect the surface
water in multi-spectral imagery from Landsat Multi-spectral Scanner (MSS) [14]. The definition is

as follows: IR
NDWI — (Green — NIR)

(Green + NIR) @)

According to this equation and the spectral feature curves of ground objects, the NDWI index
value of water surface is greater than 0, the NDWI value of soil and other ground objects with high
reflectivity approximately equals 0, while the NDWI value of vegetation is below 0 because the
reflectivity of the vegetation on the infrared band is higher than on the green band. As a result,
the water can be easily extracted from multi-spectral images.

3.3. New Normalized Difference Water Indexes (NNDWI)

In our study, the computation of NNDWI comprises of two steps:
1.  Use the ZY-3 Blue band (Band1) to replace the green band in Equation (1) to obtain NNDWI1, i.e.,

(Blue — NIR)

DWIl = -————=
NNDW (Blue + NIR)

@

2. Four bands of ZY-3 imagery were processed by the Principal Component Analysis (PCA)
transformation [41], use the first principle component after PCA transformation to replace the
Green band in Equation (1) to obtain NNDWI2, i.e.,

(Componentl — NIR)

NNDWI2 =
(Componentl + NIR)

®)

where Componentl is the first principal component after PCA transformation. The PCA
transformation reflects the methodology of dimension reduction [41]. From the mathematic
perspective, it is to find a set of basis vectors which can most efficiently express the relations
among various data. From the geometrical perspective, it is to rotate the original coordinate axis
and get an orthogonal one, so that all data points reach the maximum dispersion along the new
axis direction. When applied to the image analysis, it is to find as few basis images as possible
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to preserve the maximum information of the original images, thus achieving the purpose of
feature extraction.

In our study, the initial water extraction results are generated by the superimposition of the
threshold segmentation results from two water indexes, namely NNDWI1 and NNDW?2. Therefore,
NNDWTI is expressed as follows:

NNDWI = (segmentation_NNDWI1) U (segmentation_NNDWI2) 4)

In Equation (4), segmentation_NNDWI1 and segmentation_NNDWI2 represent the threshold
segmentation results generated by NNDWI1 and NNDWI2 index image, respectively.

The result generated by NNDWI integrates the water extraction results from both algorithms,
thus the omission caused by a singular index is avoided. As shown below in Figure 3, NNDWI2
algorithm is not sensitive to turbid water, whereas NNDWIL1 is a complement because of its sensitivity
to turbid water. Therefore, in practice, these two algorithms can be combined to generate a composite
water extraction result instead of two separate ones, thus the subsequent water extraction accuracy
can be enhanced.

1 '0"E °240"E °270"E 114°21'0"E 114°24'0"F 114°270"E 114°210°E 114°240"E 114°270"E 114°21'0°E 114°240°E 114°270"E

30°210°N

2 114°24'0"E 114°270"E 114°24'0"E 114°27'0"E 114°240°E
(a)False color comp (b)NNDWI 1 (c)NNDWI 2 (d
Legend mmmmm  Water and Shadow Non-water

114°270"E
)NNDWI

Figure 3. Different water extraction results generated by NNDWI1, NNDWI2 and NNDWI, respectively.

3.4. Shadow Detection Based on Object Oriented Technology

3.4.1. Shadow Objects

In the initial water extraction results generated by NNDWI, shadows are extracted along with
the water bodies. While analyzing the image data extracted using NNDWI, we find that the areas
of shadows are generally smaller than those of water bodies, except for some small artificial ponds
and lakes in the city. Therefore, in practice, we only need to detect objects that cover small areas.
These objects will encompass almost all possible shadows and small area water bodies. The model for
acquiring small-area objects can be described as follows:

component = water if area(component) >t , component € NNDWI

component = shadow or water if area(component) < t,component € NNDWI

where f indicates the set segmentation threshold, whose value is the number of pixels that enables
the maximum shadow objects; it is a minimum detectable size of water bodies that equals exclusion.
The number of pixels of the largest shadow area varies in different images, resulting in different values
of t, which should be set accordingly. The experimental statistics show that if we set 2000 < ¢ < 5000,
the results will be satisfactory. component indicates the discrete objects in the water extraction results
generated using NNDWI, including water and shadow areas. area(component) indicates the object areas:
if area(component) > t, then it indicates the water objects, while, if area(component) < t, then it indicates
either small area water or shadow objects.
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It is impossible to extract all the shadow pixels from the water extraction results generated by
using NNDWI. For better application of the Object Oriented Technology, the acquired shadow objects
are under morphological dilation [42], so that the dilated objects can better include shadow pixels in
the area. Meanwhile, to limit the dilation results in the actual shadow areas, we use the threshold
segmentation results on the near infrared band (Band4) of ZY-3 images as the constraint. (Due to
relatively low reflectivity of water and shadows on the near infrared band (Band4), the values of water
and shadow pixels are relatively small. The water and shadow areas are in dark black on this band. The
threshold segmentation can effectively enable the extraction of water and shadow objects. Therefore,
the threshold segmentation results of Band4 serve as a constraint.) Specifically, the constraint on the
dilation results is set by intersecting the dilated images and those under threshold segmentation on
Band4, expressed as below:

component2 = (dilate_component) N (segmentation_Band4) (6)

In Equation (6), the dilate_component indicates dilation results of component (i.e., the objects of
water /shadow whose areas are below the threshold); and the segmentation_Band4 indicates threshold
segmentation results on the near-infrared band (Band4). How the dilation results are constrained by
way of intersection is shown in Figure 4.

Morphological
Dilation

Intersectio

Intersection result

False color image

Segmentation_Band4

Figure 4. Diagram of dilation constraint.

3.4.2. The Shadow Objects Description (The Description of Spectral Feature Relations between
Water-Body Pixels and Shadow-Area Pixels)

Generally, the water extraction results generated by the NNDWTI only cover water and shadow
areas. Thus, we only need to analyze their features and find the proper ones. In the study, we find
that textural features can be used to effectively describe shadows and water bodies, but those of
ground objects (such as Gray Level Co-occurrence Matrix, GLCM) are complex and time-consuming
to compute and thus unfit for the classification of water bodies and shadows. As a result, we use the
spectral features of ground objects to describe the pixels of water and shadow areas and distinguish
between them.

Through an extensive analysis of the spectral feature curves of water bodies and shadows,
we find that, in general, the spectral relation of water pixels satisfies the following inequality:

Band2 > Band4 (7)

The spectral curves of shadow-area pixels are more complicated. When the sunshine is blocked
by buildings, there will be shadows. The spectral features of the pixels in the shaded areas typically
resemble those of other ground objects, such as vegetation, cement and soil. After analyzing the
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spectral features of those areas, we summarized five different spectral curve models, as shown in
Figure 5.

Spectral Profile Spectral Profile Spectral Profile Spectral Profile Spectral Profile

value

value
value
value
value

| I

| ' ! :
| | | | |
I |
X | ! ; . | !
Bandl Band2  Band3  Band4 Band] Band2 Band3  Bandd  Bandl Band2  Band3  Band4  Bandl Band2 and3  Bandd  Bandl Band2  Band3  Band4

® ®) © @ &

1
|
|
|
|
|
|
|
B

Figure 5. The spectral feature curves of the shadow-area pixels: (a—e) typical spectral curves of five
types of pixels.

Accordingly, we can set up the following model that shows the spectral relations of shadow pixels:

Band2 > Band1
Band3 > Band?2 (8)
Band4 > Band3

Band1 > Band?2
Band4 > Band2 9)
Band4 > Band3

Band3 > Band?2
Band3 > Band4 (10)
Band4 > Band?2

If the spectral curves in the experimental results generated by the NNDWI index correspond with
the pixels shown in the above three models, they will be classified as shadow pixels, and vice versa.

3.4.3. The Shadow Objects Detection Method

In the experiments, the classification of each small-area discrete object is determined.
First, the spectral relation of each pixel of discrete objects is described to judge whether it satisfies the
constraint of a shadow pixel. The number of shadow pixels in each object is recorded. According to
extensive statistical experiments, we find that if the proportion of shadow pixels exceeds the threshold
T, then the object can be classified as a shadow area. Otherwise, the object is classified as a water body.
The judgment function can be expressed as:

{ component2 = water if " <T 1)
component2 = shadow if% > T

where n indicates the total number of pixels of an object, and m indicates the number of its shadow
pixels. The threshold T is an empirical number optimized through experiments. In a statistical analysis
of the shadow pixels of the ZY-3 images, we find that when T equals 0.5, water and shadow objects can
be effectively differentiated.

3.5. Urban Water Extraction and Its Accuracy Evaluation

Figure 6 depicts the steps of the AUWEM algorithm. First, preprocess the imagery (by using
Ortho rectification and atmospheric correction). Second, use the NNDWI described in Section 3.3
to obtain the initial water extraction results. Third, use the shadow detection method of the Object
Oriented Technology detailed in Section 3.4 to detect shadow objects. Finally, remove detected shadow
objects to obtain the final results of urban water extraction. The overall flow chart of AUWEM is
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shown in Figure 6. In order to compare image classification accuracy, we use six indicators to describe
the extraction accuracy of different algorithms, including producer accuracy, user accuracy, Kappa
coefficient, omission error, commission error and total error.

| Ortho-rectification and
atmospheric correction

Image after

preprocessing
PCA transformation
he first principle Component after PC. i
/ transformation (Component1) Blue{bandl) NIR(band4)

Component! T = (Green — NIR ) Blue replace
replace Green (Green + NIR ) Green

Threshold(T3)

Threshold(T2 Threshold(T1

Y

Segmentation result of Segmentation result of Segmentation
NNDWI2 NNDWII result of Band4

| |

Union operation

Segmentation
result of NNDWI
Large-a.rea water Small-area objects
objects

Morphological dilation ‘

Morphological
dilation result

operation
Small-area
objects

<—¢ Shadow detection and removal ‘

Small-area
water objects

Union operation

Results of Urban water body
extraction

Figure 6. The overall flowchart of AUWEM.
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4. Experimental Results and Analysis

4.1. Water Extraction Maps

To demonstrate the feasibility of the algorithm, we compare the water extraction results generated
by using NDWI algorithm and the supervised Maximum Likelihood (MaxLike) classifier was also
included in our comparison as the latter one is one of the most widely used methods in land cover
classification [16]. Table 4 shows the settings of threshold parameters in different algorithms that are
used to extract water from each area. To evaluate the accuracy of the three algorithms, high-resolution
fusion imageries are used as the accuracy reference data. We obtain the reference imageries by
manually delineating the water edge in fusion imagery, whose information is shown in Table 3.
We compare reference imageries with the classification results generated by the three algorithms.
For visual interpretation and analysis of classification results generated by different algorithm, the
correct classification of water pixels is colored in blue, correct classification of non-water pixels in black.
If there are erroneous classifications, corresponding pixels will be highlighted in white.

The experimental results are shown in Figure 7. To facilitate the observation and analysis,
we select a small area in yellow rectangular frame from the image, and the classification results are
shown in Figure 8. According to the results, the classification accuracy of AUWEM was better than
that of NDWI and MaxLike. The AUWEM algorithm excels in classifying mixed pixels of the water
edge (judging from the water classification results shown in Beijing, Wuhan_land Wuhan_2), detecting
small pond water compared with NDWI and the MaxLike (judging from classification results shown
in Suzhou), and removing shadows of buildings (judging from the classification results shown in
Suzhou and Wuhan_2). The NNDWTI algorithm is excellent in extracting water bodies that are turbid
or whose spectral information is seriously disturbed by vegetation. Therefore, it shows better edge
classification results compared with the NDWI algorithm. On the other hand, the classification results
of the MaxLike depend on selection of water samples. A limited number of samples will result in
unsatisfactory results, especially when the edge pixels are seriously affected by the mixed spectrum.
Similarly, small rivers in urban areas are usually flanked with trees, so their spectral information will
be seriously disturbed by that of the vegetation. Therefore, the NDWI and MaxLike are inadequate
to extract water bodies of small rivers. The Object-Oriented Technology is adopted to differentiate
shadows from water bodies by expressing their spectral features, in order to eliminate the influence of
high-rise urban buildings on water extraction results.

Table 4. Threshold setting of the three algorithms in different experimental areas. Among them, T, T1,
T2 and T3 are the threshold of NDWI, NNDWI1, NNDWI2 and Band4, respectively.

Threshold
Method
Beijing Guangzhou Suzhou Wuhan_1 Wuhan_2
T1=0,T2=0, T1=0,T2=0, T1=0,T2=0, T1=0,T2=0, T1=0,T2=0,
AUWEM T3 =38 T3 =20 T3 =25 T3 =45 T3 =65
NDWI T=-0.04 T=-0.07 T=0.07 T=0.08 T=0.02

MaxLike - - - - -
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Figure 7. Comparison of water extraction results of three algorithms in different experimental areas.
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Figure 8. Comparison of water classification results among different algorithms in local areas (a small

area in yellow rectangular frame from the image of Figure 8).

4.2. Water Extraction Accuracy

Accuracy of water extraction can be evaluated by visual interpretation and one-by-one pixel
comparison. The visual interpretation has been discussed in Section 4.1. In this section, we will evaluate
the classification accuracy by using some quantitative indicators. Table 5 shows the comparison of
water classification accuracy among three algorithms in different experimental areas. A statistical
analysis of Table 5 indicates that the classification accuracy of AUWEM is greater than that of NDWI
and MaxLike. AUWEM algorithm exhibits the greatest classification accuracy in five experimental
areas with the average Kappa coefficient of 93%; the NDWI exhibits the lowest classification accuracy
with the average Kappa coefficient of about 84.4%; and the MaxLike falls in between, with the
average Kappa coefficient of about 88.6%. As shown in the schedule, we use the detailed statistics
of the confusion matrix to describe the classification accuracy of the three algorithms in different
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experimental areas. Among them, Tables A1-A15 shows the detailed classification accuracy of the
three algorithms in different experimental areas.

Table 5. The statistics of accuracy of three algorithms in different experimental areas.

Classification Beijing Guangzhou Suzhou Wuhan_1 Wuhan_2
Algorithm (1479 X 1550) (2973 X 3495) (2351 X 2644) (2245 x 2521) (2894 X 3396)
Kappa (%) Kappa (%) Kappa (%) Kappa (%) Kappa (%)
AUWEM 91.6924 95.5355 87.8783 96.3811 93.7445
NDWI 83.0431 85.2771 78.8652 84.6675 90.2501
MaxLike 84.3326 91.7285 85.6260 91.8418 90.7601

Figure 9 shows the histogram of water classification accuracy of three different algorithms in
the five experimental areas. From the histogram, we can find that the water extraction classification
accuracy of AUWEM algorithm is higher than that of NDWI and MaxLike. The commission error of
AUWEM is below 5% in most experimental area except in Suzhou (9.5%). The omission error rate of
AUWEM is significantly lower than that of NDWI and MaxLike in all the five areas. When both the
commission and omission error rates are low, the total error rate will be minimal. From the histogram,
we can find that the proposed algorithm exhibits the lowest total error rate, followed by the MaxLike
and NDWI. The approximate average total error rates of the three algorithms are about 11.9%, 18.2%
and 22.1%, respectively.

In terms of the water classification producer accuracy, the AUWEM algorithm ranks first with the
average accuracy of about 91.6%, followed by MaxLike with an average of about 84.8% and NDWI
with an average of about 82.9%. In terms of the user accuracy, MaxLike ranks first with the average
accuracy of about 96.6%, followed by the proposed algorithm with an average of about 96.4% and
NDWI with an average of about 91.2%.
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Figure 9. A comparison of classification accuracy among different algorithms in five experimental
areas. (a) water commission error; (b) Water omission error; (c) Water total error; (d) Water producer
accuracy; (e) Water user accuracy; (f) Kappa coefficient.

4.3. An Analysis of Water-Edge Pixel Extraction Accuracy

In order to evaluate the edge detection accuracy of the three algorithms more objectively,
we design the algorithm below. The steps are as follows:

1. Use the reference image to acquire the water edge by applying the Canny operator.

2. Apply the morphological dilation to the acquired edge to establish a buffer zone centered around
the edge with a radius of four pixels.
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3. Determine the pixels in the buffer zone. Suppose that the total number of pixels in the buffer
zone is N, the number of correctly classified pixels is N, the number of omitted pixels is N,,
and the number of commission error is N, then:

A

Eo

Ec

A

— % 100%
N X

No
— X% 100%
N < 00%

N¢

— % 100%
N><00/

(12)

(13)

(14)

where A + E, + E; = 100%. A indicates the proportion of correctly classified edge pixels (accuracy
of edge detection), E, indicates the proportion of omitted edge pixels (omission error), and E, is the
proportion of commissioned edge pixels (commission error). The edge detection results generated
by the approach indicate a comparative rather than absolute conclusion. After all, the reference
imageries we use are manually obtained so there will be limitations in visual observations
and statistical results are an approximate reflection of the algorithms’ edge extraction accuracy.
The process of obtaining the algorithm to acquire the water edge area for evaluation is shown

below in Figure 10.

Table 6 showed the statistics about the water edge detection accuracy of above methods in the
experimental areas. The statistics include the commission error, omission error and the accuracy
of edge detection. Comparison in Figure 11 clearly shows that the edge detection accuracy of the
AUWEM algorithm exceeds that of NDWI and MaxLike. The maximum and minimum rates of correct
classification of water edge pixels by AUWEM algorithm are 93.7691% (shown in Guangzhou) and
79.5798% (shown in Wuhan_2); the maximum and minimum correct rates of NDWI are 84.0917%
(shown in Suzhou) and 69.8310% (shown in Beijing); the maximum and minimum correct rates of
MaxLike are 85.8149% (shown in Guangzhou) and 69.7974% (shown in Wuhan_2).

Reference image

False color composite

Figure 10. Process of acquiring water edge area for evaluation. Edge of the reference images are
extracted and processed by morphological dilation to acquire the water edge for evaluation.
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Figure 11. Comparison of water edge detection accuracy among different algorithms
experimental areas. (a) Commission Error; (b) Omission Error; (¢) Accuracy of edge detection.

in five



Water 2017, 9, 144 16 of 27

Table 6. Statistics about water edge detection accuracy of different algorithms in five experimental areas.

Site Method Commission Error (%) Omission Error (%) A (%)

AUWEM 1.8032 15.8446 82.3522

Beijing NDWI 0.2042 29.9648 69.8310
MaxLike 0.0738 29.9747 69.9515

AUWEM 0.3417 5.8892 93.7691

Guangzhou NDWI 0.1438 21.4114 78.4448
MaxLike 0.0833 14.1019 85.8149

AUWEM 2.3455 12.5791 85.0755

Suzhou NDWI 2.2140 13.6943 84.0917
MaxLike 0.9649 14.2155 84.8196

AUWEM 0.6422 9.8925 89.4653

Wuhan_1 NDWI 0.9452 27.8494 71.2054
MaxLike 0.0211 26.3919 73.5870

AUWEM 1.3827 19.0375 79.5798

Wuhan_2 NDWI 0.4743 27.8402 71.6855
MaxLike 0.0335 30.1691 69.7974

5. Discussion

5.1. Effect of PCA Transformation

By replacing Green in Equation (1) with the first principal component of PCA transformation,
we obtain the improved NNDWI2. The NNDWI2 computational result has good resistance to mixed
spectral interference, especially when the water bodies are eutrophicated or surrounded by dense
vegetation. The pixels of those water bodies exhibit the spectral information of non-water because they
are affected and interfered by the spectral information of vegetation like algae, thus their detection will
be severely disturbed. According to the classification results shown in Figure 12, the pixels of the water
bodies whose spectral information is interfered can be effectively classified in threshold segmentation
results of NNDWI2. The number of misclassified pixels generated using the algorithm is less than that
generated using NDWI and MaxLike. In addition, the water edge pixels in the images are effectively
classified, thus the overall water extraction accuracy is enhanced.

False color composite l AUWEM NDWI MaxLike

Figure 12. Comparison of results of classifying pixels of spectrally contaminated water bodies among
different algorithms. The yellow circle indicates an area clearly undetected by the NDWI algorithm.
The water body in this area is eutrophicated with a lot of algal vegetation that affects its spectral
information, making it hard for the NDWI to detect.
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5.2. Effect of Intersection

In Section 3.4.1, we set the constraint on dilation results by intersecting the dilated images and
those under threshold segmentation on Band4. However, how many pixels are in the result of the
segmentation prior to intersection, and how many pixels are there after the intersection? We choose
the following four urban areas for the experiment. The results are shown in the Figure 13. The value
changes of water body/shadow pixels before and after computing the intersection are shown in the
Table 7. The statistics show that the number of pixels increases after the computation in Figure 13a—c
where there are many shadows. After zooming in Figure 13a, we find that after the computation, the
building shadows correctly represent the shaded areas. However, the number of pixels is reduced in
Figure 13d after the computation, indicating that the computation can result in the removal of error

detections generated by the NNDWI algorithm. It can be explained by the experimental results in
Figure 14.

| Intersection operation
between small area and
segmentation result of
| band4

Intersection operation
between small area and
segmentation result of
band4

Small area of
segmentation result
of NNDWI

Small area of
segmentation result |
of NNDWI

False color composite | False color composite

Figure 13. Intersection operation results. (a) First experimental results; (b) Second experimental results;
(c) Third experimental results; (d) Fourth experimental results.

Large area

Segmentation result of NNDWI2

Union operation result

Small area

Intersection operation between small
area and segmentation result of band4

False color composite

Legend Segmentation result of band4

EN Water
[ Misclassfication
N Non-water

Segmentation result of NDWI

Figure 14. Comparison between intersection result and NDWI result.
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Table 7. Statistics shows the changes of the number of water body/shadow pixels before and after
the computation of intersection. Nb represents the number of pixels of water/shadow before the
intersection, and Na represents the number of pixels of water/shadow after the intersection.

Image Name Image Size Nb Na Nb-Na
a 361 x 361 11,883 15,888 4005
b 327 x 335 12,336 17,630 5294
c 299 x 319 9923 12,218 2295
d 677 X 762 76,932 57,389 —19,543

As shown in Figure 14, the ground objects in the yellow rectangle are misclassified as water by
both NNDWI and NDWI. In fact, these objects are the roof surface of buildings. On the other hand,
the objects in this area can be correctly classified by using threshold segmentation result on Band4.
After morphological dilation of small-area objects, intersecting it with the images under threshold
segmentation on Band4 enables the correction of pixel classification in this area, thus the subsequent
classification accuracy of the water bodies will be enhanced.

5.3. Shadow Detection Ability of the Shadow Object Description Method

Since the shadow detection algorithm model is established on the premise of extracting water
and shadow, we cannot guarantee a sound result by solely relying on it, as shown in Figure 15.
The spectral features of the shadows are similar to those of such ground objects as cement surface, soil,
vegetation, etc. In our study, we find that the spectral features of such ground objects are presented in
the shaded areas. Therefore, it is not ideal to solely use the spectral relation model to detect shadows.
Otherwise, almost all of the objects other than water bodies will be detected as shadows. In that case,
the imagery is classified into water and non-water areas. However, when zooming in, we find that the
water edge detection accuracy is poor; the pixels in water edges cannot be detected properly. On the
other hand, when the shadow detection model is used in the NNDWI extraction results, the effect is
quite satisfactory, as shown in Figure 16.

k A (@ (b)
R v
\
\e
“Remotc sensing detection” Fal 1 : Remote sensing detection
emote sensing detection alse color composite

False color composite result

result

Figure 15. Shadow detection results generated when solely applying the model. (a) First experimental
results; (b) Second experimental results.

Shadows detected in )
False color composite NNDWI results False color composite

Shadows detected in
NNDWI results

Figure 16. The shadow detection results generated when combining the model with the NNDWI
extraction results. (a) First experimental results; (b) Second experimental results.

From the experiment described above, we can conclude that a combination of the model and
the NNDWTI extraction results will enable us to effectively detect shadows. When applied solely,
the model is not competent in detecting shadows, resulting in misclassification.
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5.4. Threshold Setting and Stability of Algorithm in Correlation Computation

Although there are many problems concerning threshold setting in AUWEM algorithm, it is
necessary to set three thresholds, namely NNDWI1, NNDWI2 and Band4 segmentation thresholds.
The optimized segmentation threshold value of near-infrared (Band4) is obtained by gray histogram.
Before image histogram statistics, we use the Equation (15) to normalize the segmented image pixel
value into the range of (0~255). The standardized expression is shown as follows:

(x — xmin)

(xrnax - xmin)

y =255 x (15)
where y indicates the standardized value, x indicates all of the pixel values that need to be processed
on Band4, xi, indicates the minimum value on Band4, and xm.x indicates the maximum value
on Band4.

NNDWII1 is more sensitive to the turbid water. When the threshold value is set to 0, the turbid
water will be effectively extracted. As for NNDWI2 threshold setting, we can analyze and discuss
in detail the following figures. Figure 17a is the false color image for experimental analysis, and
Figure 17b shows the pixel value of the first principal component after the PCA transformation on the
four bands of the image. It can be seen from the figure that the pixel values of water areas are below
0 in the first principal component (the maximum pixel value is —176.333), while the pixel values of
non-water areas are above 0 (the minimum pixel value is 39.8416); in the NNDWI2 calculation results,
as shown in Figure 17c, the pixel values of water areas are above 0 (the minimum and maximum pixel
values are 2.65607 and 25.17149, respectively), while the pixel values of non-water areas are below 0
(the minimum and maximum pixel values are —6.90065 and —0.44693, respectively). The difference
between the minimum value of water areas and the maximum value of non-water areas is 3.103 (in
some parts of the image, the actual difference is even greater). Therefore, the optimal segmentation
threshold of the images after the computation of NNDWI2 can be set to 0. This is also verified by other
experiments, and zero can be used as the best segmentation threshold of NNWI2 index image.
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Figure 17. The different index of pixels after the PCA transformation, NNDWI2 and NDWI, respectively.

In Figures 18-21, we compare the water extraction accuracy among algorithms when the threshold
changes. The statistical results show that AUWEM algorithm will not have an obvious impact on
classification accuracy when the threshold is within the range of T £+ AT. (T is the selected or optimal
threshold. In Figures 18-20, AT = 0.05, and in Figure 17, AT = 3.) On the other hand, NDWT's accuracy
is greatly affected when the threshold changes. By analyzing the accuracy data of NDWI in Figure 18,
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we can find that the water extraction accuracy changes drastically when the threshold changes, the
variance are 0.4639 (Beijing), 0.7902 (Guangzhou), 1.0588 (Suzhou), 0.2651 (Wuhan_1) and 0.4749
(Wuhan_2). Thus, the changes in threshold affect NDWI'’s accuracy (especially in Guangzhou and
Suzhouy). It shows that the algorithm is unstable. In Figures 19 and 20, we find that when the threshold
changes, the accuracy of NNDWI1 and NNDWI2 is almost unchanged. In Figure 21, we find that the
accuracy on Band4 is to some extent influenced by the changes in threshold, but such influence is
minimal, and the mean square deviation of the accuracy in the experimental areas corroborates with
the observation (variance are 0.0433 (Beijing), 0.0056 (Guangzhou), 0.0013 (Suzhou), 0.0011 (Wuhan_1)
and 0.0066 (Wuhan_2)). In summary of the statistical analysis of Figures 18-21, we can conclude that
when the thresholds change, the water extraction accuracy of AUWEM algorithm is more stable than
that of NDWI. Even though three threshold values need to be set, the setting is quite simple, so there is
no need to consider too many influencing factors.

When the threshold changes, the water extraction accuracy on Band4 is to some extent influenced.
Through the experimental analysis, we find that it is mainly caused by the way we compute intersection
in Section 3.4.1. The computation results in constraints on the dilation. The related analysis is shown
in Figure 22. From the figure, we can find that different threshold segmentation results cover different
areas, but the area variation is very small, within the range of T &+ AT. The threshold will not impact
on the water in terms of covering area and detection, thus barely affecting the detection accuracy.

Beijing (a) Guangzhou (b) Suzhou (c)
825 88 85
82 87 4 84 1
g 851 £ g g 81
g 81 2 3 82
& £
& s0s L 2 81
80 & 80
795 83 79
0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -002 -001 0 001 -0.12 -0.11 -0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 0.02 003 004 005 006 007 008 0.09 01 012 013
Threshold Threshold Threshold
Wuhan_1 (d) Wuhan_2 (e)

Kappa (%)

003 004 005 006 0.07 008 009 0.1 011 012 013 003 002 001 0 001 002 003 0.04 005 0.06 007
Threshold Threshold

Figure 18. A comparison among changes of NDWTI's water extraction accuracy when the threshold
changes. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou;
(c) Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction
accuracy of Wuhan_2.
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Figure 19. The changes in NNDWI1 when the threshold changes and Band4 and NNDWI2 remain
unchanged. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou;
(c) Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction
accuracy of Wuhan_2.
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Figure 20. The changes in NNDWI2 when the threshold changes and Band4 and NNDWII1 remain
unchanged. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou;
(c) Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction

accuracy of Wuhan_2.
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Figure 21. The changes in Band4 when the threshold changes and NNDWI1 and NNDWI2 remain
unchanged. (a) Water extraction accuracy of Beijing; (b) Water extraction accuracy of Guangzhou; (c)
Water extraction accuracy of Suzhou; (d) Water extraction accuracy of Wuhan_1; (e) Water extraction

accuracy of Wuhan_2.
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Figure 22. Comparison of intersection on Band4 under different thresholds as constraint. The yellow
segmentation area is larger than the green one, so according to the results in the figure, after the

intersection there will be water body or shadow objects that cover different areas and are to be detected.
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5.5. Summary

Although results are quite satisfactory in different experimental areas, some issues remain to be
considered, such as seasons, the sun’s height angle, components of the atmosphere, and the chemical
composition of water bodies. All of these factors have an impact on the reflection features. Different
atmospheric correction for subsequent image segmentation threshold may be different, thus affecting
the subsequent water detection accuracy; the same atmospheric correction method will exhibit different
atmospheric correction accuracy under different weather conditions, especially when there is heavy
haze. Heavy haze has been a serious issue in Chinese urban areas during wintertime in recent years.
The current atmospheric correction model may not necessarily work well when correcting atmospheric
haze. In some areas of the imagery, shadows and water bodies are adjacent. If water body area is large
enough, the whole area will be classified as water. Our algorithm is proposed for ZY-3 image data,
so whether it has a wider applicability or not needs to be validated by image data from other sources
and in different areas. These issues are worth of our follow-up study and verification.

6. Conclusions

We propose a new method for urban water extraction from high-resolution remote sensing
images. In order to improve the accuracy of water extraction, we improve the NDWI algorithm and
propose two new water indices, namely the NNDWI1 which is sensitive to turbid water, andNNDWI2
which is sensitive to water bodies whose spectral information is interfered by that of vegetation.
We superimpose NNDWI1 and NNDWI2 image segmentation results, and then use Object-Oriented
Technology to detect and remove shadows in the small areas, in order to obtain the final results of
urban water extraction. Our experiments test the accuracy of algorithms in five urban areas. According
to the results, the AUWEM algorithm has greater water extraction accuracy compared with NDWI
and the MaxLike, with an average Kappa coefficient of 93% and an average total error rate of about
11.9%. In contrast, the average Kappa coefficient and error rate of the MaxLike are about 88.6% and
18.2%, respectively; the average Kappa coefficient and error rate of NDWI is about 86.2% and 22.1%,
respectively. In addition, AUWEM exhibits greater accuracy when detecting water edge and small
rivers. It can effectively distinguish shadows of high buildings from water bodies to improve the
overall accuracy. More importantly, AUWEM has more stable detection accuracy than NDWI has
when the threshold changes. It can also be applicable for other water features extraction, and can be
applied to monitor and study the changes in water bodies in other places.
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Appendix A

Table Al. Statistic results of image water extraction based on maximum likelihood method in
Beijing area.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 34,961 11,657 46,618 74.9946 25.0054
No_water 1061 2,244,771 2,245,832 99.9528 0.0472
Total 36,022 2,256,428 2,292,450
User Accuracy (%) 97.0546 99.4834
Commission Error (%) 2.9454 0.5166

Overall Accuracy = 99.4452%; Kappa Coefficient = 84.3326%
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Table A2. Statistic results of image water extraction based on the NDWI index in Beijing.

Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 34,827 11,791 46,618 74.7072 25.2928
No_water 2125 2,243,707 2,245,832 99.9054 0.0946
Total 36,952 2,255,498 2,292,450
User Accuracy (%) 94.2493 99.4772
Commission Error (%) 5.7507 0.5228

Overall Accuracy = 99.3930%; Kappa Coefficient = 83.0431%

Table A3. Statistic results of image water extraction based on AUWEM in Beijing.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 40,929 5689 46,618 87.7966 12.2034
No_water 1571 2,244,261 2,245,832 99.9300 0.0700
Total 42,500 2,249,950 2,292,450
User Accuracy (%) 96.3035 99.7471
Commission Error (%) 3.6965 0.2529

Overall accuracy = 99.6833%; Kappa Coefficient = 91.6924%

Appendix B

Table A4.
in Guangzhou.

Statistic results of image water extraction based on maximum likelihood method

Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 1,212,617 169,976 1,382,593 87.7060 12.2940
No_water 19,157 8,988,885 9,008,042 99.7873 0.2127
Total 1,231,774 9,158,861 10,390,635
User Accuracy (%) 98.4448 98.1441
Commission Error (%) 1.5552 1.8559

Overall accuracy = 98.1798%; Kappa Coefficient = 91.7285%

Table A5. Statistic results of image water extraction based on the NDWT index in Guangzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 1,087,494 295,099 1,382,593 78.6561 21.3439
No_water 29,105 8,978,937 9,008,042 99.6769 0.3231
Total 1,116,599 9,274,036 10,390,635
User Accuracy (%) 97.3934 96.8180
Commission Error (%) 2.6066 3.1820

Overall accuracy = 96.8798%; Kappa Coefficient = 85.2771%

Table A6. Statistic results of image water extraction based on AUWEM in Guangzhou.

Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 1,304,001 78,592 1,382,593 94.3156 5.6844
No_water 26,733 8,981,309 9,008,042 99.7032 0.2968
Total 1,330,734 9,059,901 10,390,635
User Accuracy (%) 97.9911 99.1325
Commission Error (%) 2.0089 0.8675

Overall accuracy = 98.9863%; Kappa Coefficient = 95.5355%
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Table A7. Statistic results of image water extraction based on maximum likelihood method in Suzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 415,717 76,225 491,942 84.5053 15.4947
No_water 50,948 5,673,154 5,724,102 99.1099 0.8901
Total 466,665 5,749,379 6,216,044
User Accuracy (%) 89.0825 98.6742
Commission Error (%) 10.9175 1.3258

Overall accuracy = 97.9541%; Kappa Coefficient = 85.6260%

Table A8. Statistic results of image water extraction based on the NDWI index in Suzhou.

Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 420,726 71,216 491,942 85.5235 14.4765
No_water 130,884 5,593,218 5,724,102 97.7135 2.2865
Total 551,610 5,664,434 6,216,044
User Accuracy (%) 76.2724 98.7428
Commission Error (%) 23.7276 1.2572

Overall accuracy = 96.7487%; Kappa Coefficient = 78.8652%

Table A9. Statistic results of image water extraction based on AUWEM in Suzhou.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 429,101 62,841 491,942 87.2259 12.7741
No_water 45,182 5,678,920 5,724,102 99.2107 0.7893
Total 474,283 5,741,761 6,216,044
User Accuracy (%) 90.4736 98.9055
Commission Error (%) 9.5264 1.0945

Overall accuracy = 98.2622%Kappa Coefficient = 87.8783%

Appendix D

Table A10. Statistic results of image water extraction based on maximum likelihood method in

Wuhan_2.
Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 1,562,974 182,267 1,745,241 89.5563 10.4437
No_water 9274 3,905,130 3,914,404 99.7631 0.2369
Total 1,572,248 4,087,397 5,659,645
User Accuracy (%) 99.4101 95.5408
Commission Error (%) 0.5899 4.4592

Overall accuracy = 96.6157%; Kappa Coefficient = 91.8418%

Table A11. Statistic results of image water extraction based on the NDWI index in Wuhan_2.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 1,526,202 219,039 1,745,241 87.4494 12.5506
No_water 146,867 3,767,537 3,914,404 96.2480 5.4944
Total 1,673,069 3,986,576 5,659,645
User Accuracy (%) 91.2217 94.5056
Commission Error (%) 8.7783 3.7520

Overall accuracy = 93.5348%; Kappa Coefficient = 84.6675%
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Table A12. Statistic results of image water extraction based on AUWEM in Wuhan_2.

Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 1,676,387 68,854 1,745,241 96.0548 3.9452
No_water 17,803 3,896,601 3,914,404 99.5452 0.4548
Total 1,694,190 3,965,455 5,659,645
User Accuracy (%) 98.9492 98.2637
Commission Error (%) 1.0508 1.7363

Overall accuracy = 98.4689%; Kappa Coefficient = 96.3811%

Appendix E

Table A13. Statistic results of image water extraction based on maximum likelihood method in

Wuhan_3.
Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 2,084,870 303,303 2,388,173 87.2998 12.7002
No_water 17,198 7,422,653 7,439,851 99.7688 0.2312
Total 2,102,068 7,725,956 9,828,024
User Accuracy (%) 99.1819 96.0742
Commission Error (%) 0.7201 3.9258

Overall accuracy = 96.7389%; Kappa Coefficient = 90.7601%

Table A14. Statistic results of image water extraction based on the NDWI index inWuhan_3.

Ground Truth (Pixels)
Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 2,114,412 273,761 2,388,173 88.5368 11.4632
No_water 68,478 7,371,373 7,439,851 99.0796 0.9204
Total 2,182,890 7,645,134 9,828,024
User Accuracy (%) 96.8630 96.4191
Commission Error (%) 3.1370 3.5809

Overall accuracy = 96.5177%; Kappa Coefficient = 90.2501%

Table A15. Statistic results of image water extraction based on AUWEM in Wuhan_3.

Ground Truth (Pixels)

Class Water No_Water Total Produc Accuracy (%) Omission Error (%)
Water 2,207,784 180,389 2,388,173 92.4466 7.5534
No_water 41,320 7,398,531 7,439,851 99.4446 0.5554
Total 2,249,104 7,578,920 9,828,024
User Accuracy (%) 98.1628 97.6199
Commission Error (%) 1.8372 2.3801

Overall accuracy = 97.7441%; Kappa Coefficient = 93.7445%
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