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Abstract: A large amount of sludge is produced in the process of municipal sewage treatment. The
recovery and utilization of large amounts of sugar, protein, lipids and other organic matter from sewage
sludge (SS) is of great significance for reducing environmental pressure and producing clean energy. In this
study, microwave combined with thermal-alkaline pretreatment was used to accelerate the dissolution of
primary sedimentation sludge and the release of intracellular substances, and to promote the extraction of
sugar from SS. The results showed that the yield of crude sugar and the extraction efficiency of pure sugar
increased with the increase in NaOH dosage. The extraction of crude sugar reached the equilibrium at
about 30 min. During the response surface analysis, the optimal pretreatment conditions were determined
as follows: the dosage of NaOH was 9.93 mL, and the leaching time and the microwave time were
27.65 min and 33.2 s, respectively. The crude sugar yield and extraction efficiency obtained under this
condition were 39.80 ± 3.57% and 89.74 ± 3.61%, respectively. The pretreated sludge and crude sugar were
characterized with scanning electron microscopy and Fourier transform infrared spectroscopy. The results
showed that the combined use of thermal-alkaline and microwave effectively destroyed the structure of
the sludge and increased the yield of crude sugar.
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1. Introduction

A large amount of sludge is produced during the operation of wastewater treatment
plants. Sewage sludge (SS) contains a large amount of carbohydrates, proteins, lipids and
other organic matter content [1], which will pollute the environment and waste resources if
not treated properly. With the increase in sewage treatment facilities and the increasingly
stringent discharge standards, the cost of SS treatment and disposal may be as high as 60%
of the total operation costs of wastewater treatment plants [2,3]. At the same time, organic
matter content in sludge can reach 50% of dry weight, which provides conditions for its
resource recovery and utilization [4].

The extraction of proteins and lipids from SS has recently gained more attention with a
view to their utilization for animal feed and biodiesel production, respectively [5,6]. Otherwise,
research on recovery from SS is rare. As one of the important organic components in sludge,
sugar can also be extracted, which is beneficial for converting organic biomass into value-added
products and renewable energy [7]. Some studies have been conducted to recover sugar from
pineapple leaves and achieve the production of bioethanol [8]. Recovery of sugars from sludge
cannot only achieve sludge reduction but also prepare fuel ethanol to reduce dependence on
fossil resources and alleviate energy shortages [9,10].

Pretreatments are often required to disrupt the complex sludge structures, solubilize
organic components and improve the efficiency of sludge disintegration [11,12]. Common
pretreatment methods include ultrasonic pretreatment [13], microwave [14], ozone oxida-
tion [2], Fenton oxidation [15] and acid/alkali hydrothermal pretreatment [16,17]. Acid
and alkali pretreatments have the advantages of convenient operation, simple equipment
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and high efficiency. Compared with acid treatment, alkali treatment uses hydroxyl to
decompose and destroy the floc structure and converts insoluble organic matter content in
SS into soluble matter content. Extracellular polymers (EPSs) can be loosened and promote
the dissolution of polysaccharides [11,18].

Microwave pretreatment was found to be most effective in inducing biomass disinte-
gration. Short irradiation time, rapid heating and non-contact heating are the advantages.
Microwave pretreatment used to destroy the structure of sludge flocs not only has the
characteristics of fast heating speed, high thermal efficiency and no secondary pollution but
also can further improve the inactivation rate of pathogens in sludge and the dissolution
rate of total suspended solids and volatile suspended solids [14,19]. However, this pretreat-
ment consumes more energy, which makes it unattractive for scaling up. As a solution,
combining it with another pretreatment may synergistically promote solubilization and
reduce microwave power consumption and treatment time [20]. Microwave combined
with thermal-alkaline pretreatment of sludge was applied in this study to enhance the
extraction of crude sugar from SS. The combined pretreatment could effectively inhibit the
adaptability of microorganisms to temperature at high pH and increase the dissolution
efficiency of organic matter content, due to its shorter treatment duration than microwave
or thermal-alkaline pretreatment alone.

This study used microwave combined with thermal-alkaline pretreatment to promote
the extraction of sugars from SS. The main objects of this study were: (1) to determine the
effects of NaOH dosage, alkali leaching time and microwave pretreatment time on the
extraction of crude sugar; (2) to optimize the pretreatment conditions for extracting crude
sugar based on response surface optimization analysis; (3) to characterize the extracted
crude sugar with scanning electron microscopy and Fourier transform infrared spectroscopy
(FTIR). Results from this study can offer a better understanding of resource recovery as an
alternative approach for the utilization of SS.

2. Materials and Methods
2.1. Materials

The sewage sludge used in the experiment was taken from the primary sedimentation
tank of a wastewater treatment plant in Nanyang, China. It was recovered and allowed
to stand for 72 h. Then, the supernatant was discarded and stored in a 4 ◦C refrigerator.
The contents of sugar, crude protein and crude fat in the raw sludge were determined with
the DuBois method, Kjeldahl method and Soxhlet extraction method, respectively [21,22].
The ash content was measured by burning at 550 ◦C for 4 h in a muffle furnace. The main
properties of the sludge are shown in Table 1.

Table 1. Characteristics of raw sludge.

Moisture
(wt.%)

Ash
(wt.% dry)

Elemental Compositions (wt.%) 1 HHVs 2

(MJ/kg)
Organic Compositions (wt.% daf.)

C H O 1 N S Carbohydrates Proteins Lipids Others

97.98 ± 1.2 39.75 ± 0.6 29.54 ± 0.2 5.61 ± 0.3 18.84 ± 0.5 5.26 ± 0.4 0.79 ± 0.1 14.77 ± 0.5 16.04 ± 0.8 44.08 ± 1.1 17.37 ± 0.7 22.51 ± 0.9

Notes: 1 Calculated by difference. 2 Higher heating values (HHVs) calculated by the Dulong Formula, i.e., HHVs
(MJ/kg) = 0.3393 C + 1.443 (H − O/8) + 0.0927 S + 0.01494 N [22].

The glucose, anhydrous ethanol, hexane, methanol, sodium hydroxide (NaOH), ace-
tone, phenol, concentrated sulfuric acid and Coomassie brilliant blue G-250 powder were
sourced from Tianjin Kemiou Chemical Reagent Co., LTD, Tianjin, China.

2.2. Experimental Procedure and Analysis
2.2.1. Sludge Pretreatment Test

To determine the effect of the NaOH dosage, 0, 2, 4, 6, 8 and 10 mL of 1 mol/L NaOH
solution were added to 50 mL of raw sludge, respectively, and the mixture was shaken for
30 min at a controlled temperature of 45 ◦C. After cooling, the sugar was extracted from
the mixture.
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To study the effect of NaOH leaching time, 50 mL of raw sludge was oscillated for 0
min, 15 min, 30 min, 45 min, 60 min and 75 min at a constant temperature under the dosage
of 10 mL NaOH.

In the test using microwave combined with thermal-alkaline pretreatment, conical
bottles with 50 mL of raw sludge were sealed with sealing film, subjected to 850 W mi-
crowave irradiation for 0 s, 15 s, 30 s, 45 s, 60 s and 75 s, respectively, and cooled to room
temperature naturally. Then, the crude sugar was extracted after pretreatment with the
dosage of 10 mL NaOH and a leaching time of 30 min.

2.2.2. Extraction of Crude Sugar

After the sludge pretreatment mixture was centrifuged, the supernatant was placed in
a beaker and heated to concentrate to 1/4 of the volume. After concentration and cooling,
95% ethanol was added to the beaker and precipitated for 12 h. The supernatant was cen-
trifuged, and the precipitate was washed with 3 mL anhydrous ethanol and 2 mL acetone.
Then, the mixture was recentrifuged, and the precipitate was washed with ultrapure water.
Finally, the washing was freeze-dried to obtain crude sugar. All experiments were repeated
three times to obtain the mean value.

2.2.3. Purity of Crude Sugar

The purity of crude sugar was calculated with the DuBois method with d-glucose as
the standard [23,24], as shown in Equation (1).

y = 0.0141 x − 0.0029 (R2 = 0.999) (1)

2.2.4. Response Surface Analysis

Since all three pretreatment conditions may affect the results of sugar extraction,
multivariate statistical models were used to study the weight of any variable and its role for
optimizing the interaction between different variables. The response surface methodology
(RSM) uses a series of designed experiments to estimate the multivariate polynomial fitted
with the independent variables [8,9]. The independent variables were alkali leaching
time (0–75 min), alkali solution addition (0–10 mL) and microwave time (0–75 s) in the
optimization of crude sugar yield. Finally, experimental verification was carried out
according to the optimized sludge pretreatment conditions.

2.2.5. Characterization

Fourier transform infrared spectroscopy (FTIR, ALPHA II, Bruker, Billerica, MA,
USA) was used to characterize the functional groups of the extracted crude sugar and
the pretreated sewage sludge. Scanning electron microscopy equipped with an energy
dispersive spectrometer (EDS) (SEM-EDS, JSM-7900) was used to analyze the surface
morphology of the sludge after different pretreatment methods, and the composition of the
crude sugar.

2.3. Data Definition

The yield of crude sugars was obtained as the quotient of the mass of extracted crude
sugars and the mass of organic matter in the raw sludge, as presented in Equation (2):

Yield of crude sugars(%) =
Extracted crude sugars

Dry sludge organic matter
× 100% (2)

The purity of crude sugars was obtained as the quotient of the mass of pure sugar and
the mass of the crude sugars extracted from the raw sludge, as presented in Equation (3):

Purity of crude sugars(%) =
Extracted pure sugars
Extracted crude sugars

× 100% (3)
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The extraction efficiency was obtained as the quotient of the mass of pure sugar
extracted and the total sugar in the raw sludge, as presented in Equation (4):

Extraction efficiency(%) =
Extracted pure sugars
Total sugars in raw SS

× 100% (4)

3. Results and Discussion
3.1. Effects of Pretreatment Conditions on Sugar Extraction
3.1.1. Effect of NaOH Dosage

It can be seen from Figure 1 that both the crude sugar yield and sugar extraction
efficiency increase with the increase in NaOH dosage. The crude sugar yield and extraction
efficiency are only 2.60% and 3.23%, respectively, with no alkali added, but both reach
the maximum values of 19.91% and 70.35%, respectively, with the NaOH dosage of 10
mL. This is because the larger the dosage of NaOH, the stronger the alkalinity and the
greater the damage to the cell structure in the sludge. Alkali can enhance the hydrolysis of
bio-polymers, improving the solubility and extraction efficiency of sugar monomers [6].
Better EPS cracking effects and dissolution of more sugars were thus achieved. Due to
a higher amount of alkali, the economic cost increases, and a digestion and degreasing
reaction may also occur in the sludge [16], resulting in the structural damage of sugars,
leading to a decrease in extracted yields. Therefore, the NaOH dosage of 10 mL is set as
the maximum.
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Figure 1. Effects of NaOH dosage on crude sugar yield, crude purity and sugar extraction efficiency.

As shown in Figure 1, the purity of crude sugar is only 19.94% with no alkali used.
The purity of crude sugar increases with the increase in the dosage of NaOH, and peaks at
64.47% with the dosage of NaOH of 6 mL. When the NaOH dosage continues to increase,
the purity of crude sugar decreases. In the absence of alkali, the sludge cells are not broken,
the crude sugar is rarely dissolved and the extracted crude sugar contains more inorganic
particles. However, when the dosage of NaOH is higher, lipids and proteins can also be
dissolved and extracted with sugars by thermal treatment, resulting in a lower purity.

3.1.2. Effect of Alkali Extraction Time

Figure 2 shows the effect of leaching time on sugar extraction. In the early stage of
alkali treatment, the yield of crude sugar increased rapidly with time, and reached the
maximum (29.72%) at 30 min. With the increase in leaching time, the yield of crude sugar
decreased slowly. The variation trend of crude sugar purity and sugar extraction efficiency
was similar to that of crude sugar yield, reaching the maxima at 45 min, which were 48.58%
and 89.23%, respectively.
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It is speculated that the extraction of crude sugar from sludge may reach the equi-
librium in about 30 min. Shorter extraction time may result in incomplete extraction of
crude sugar due to insufficient reaction. When the equilibrium point is exceeded, the
leaching treatment may lead to degradation of the extracted sugars. It is well known that
sugars can be easily hydrolyzed into smaller molecules such as organic acids and furfural
under thermal conditions. Meanwhile, polyphenol synthesis can arise between reducing
sugars [25]. Thanks to these processes, the maximum leaching time of crude sugar yield is
30 min with the addition of 10 mL NaOH.

3.1.3. Effect of Microwave Time on Sugar Extraction

As shown in Figure 3, the yield of crude sugar gradually increases when the microwave
exposure time is from 0 to 45 s, and reaches the maximum of 39.38% at 45 s. However,
with the increase in microwave time, the yield of crude sugar decreases obviously. The
trend of sugar extraction efficiency is consistent with that of crude sugar yield, reaching
the maximum of 88.62% at 45 s. This may be because the cracking effect of sludge cells
gradually increases in the first 45 s of treatment. After 45 s, part of the organic matter content
in the sludge decomposes due to excessive microwave exposure time [14,26], resulting in
the reduction in crude sugar yield.
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Figure 3. Effects of microwave time on crude sugar yield, purity and sugar extraction efficiency.

When the microwave treatment time was less than 45 s, the purity of crude sugar
decreased with the increase in time, down to 36.1% at 45 s. When the microwave time
increased to 60 s, the purity of crude sugar increased rapidly to the maximum value of
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46.12%. The maximum yield of crude sugar was obtained at a microwave time of 45 s
with the lowest purity. This might be because the cracking effect of sludge promoted the
dissolution of other organic matter, resulting in a low purity of crude sugar [27].

3.2. Response Surface Analysis

According to the RSM design method and Box–Behnken design principle, the pre-
treatment conditions affecting the yield of crude sugar were optimized, including NaOH
dosage, NaOH leaching time and microwave treatment time. The experimental design and
results are shown in Table 2.

Table 2. Crude sugar yield response surface design and results.

Number NaOH Addition
(mL)

Leaching Time
(min)

Microwave
Time(s)

Crude Sugar
Yield (%)

1 0 30 0 2.60
2 2 30 0 10.04
3 4 30 0 10.52
4 6 30 0 14.72
5 8 30 0 18.16
6 10 30 0 19.91
7 10 0 0 21.82
8 10 15 0 26.65
9 10 45 0 27.31
10 10 60 0 27.07
11 10 75 0 26.92
12 10 30 0 30.55
13 10 30 15 33.24
14 10 30 30 33.79
15 10 30 45 39.38
16 10 30 60 29.68
17 10 30 75 29.50

Taking the yield of crude sugar as the response value, the quadratic multinomial
regression equation obtained by the RSM test is shown as Equation (5), where A, B and C
are NaOH dosage, NaOH leaching time and microwave treatment time, respectively. The
variance analysis of the RSM results is shown in Table 3.

Crude sugar yield (%) = 23.90 + 11.10 A + 2.12 B + 1.02 C + 1.53 A2 − 1.90 B2 − 8.92 C2 (5)

Table 3. Results of ANOVA analysis of the regression model. Parameters with p-value ≤ 0.001 are
considered significant.

Source Sum of
Squares df Mean

Square F-Value p-Value

Model 1395.73 6 232.62 19.84 0.0001 Significant
A 465.68 1 465.68 39.72 0.0001
B 12.69 1 12.69 1.08 0.3253
C 4.16 1 4.16 0.3544 0.5663

A2 2.69 1 2.69 0.2296 0.6433
B2 4.13 1 4.13 0.3524 0.5674
C2 101.52 1 101.52 8.66 0.0164

Residual 105.52 9 11.72

Lack of Fit 48.92 8 6.11 0.1080 0.9840 Not
Significant

Pure Error 56.60 1 56.60
Cor. Total 1501.26 15
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It can be seen from Table 3 that the p values of the model are less than 0.001 (not
significant), indicating the effective model simulation. The yield of crude sugar was
significantly affected by the dosage of NaOH, leaching time and microwave time. Based on
the response surface optimization analysis, the optimum pretreatment conditions (crude
sugar yield = 39.41%) were NaOH dosage of 9.93 mL, leaching time of 27.65 min and
microwave time of 33.2 s. The crude sugar yield obtained with experiments under this
condition was 39.80 ± 3.57%. The crude sugar yield and extraction efficiency obtained in
the experiment under this condition were 39.80 ± 3.57% and 89.74 ± 3.61%, respectively.
The measured value of the crude sugar yield was close to the predicted value, indicating
that the model could predict the crude sugar yield well.

Figure 4 depicts the interactive effects of each of the two sludge pretreatment parame-
ters on crude sugar yield. As can be seen in Figure 4a, when the dosage of NaOH is 10 mL
and the leaching time is 15–45 min, there is a good yield of crude sugar. The effect of NaOH
dosage on the yield of crude sugar is greater than that of leaching time. Figure 4b shows
a gentle response surface contour slope, indicating that the interaction between NaOH
dosage and leaching time has little effect on the yield of crude sugar.

Figure 4c shows that the yield of crude sugar is better when the NaOH dosage is
8–10 mL and the microwave time is 15–60 s. The effect of microwave time on the yield
of crude sugar is greater than that of NaOH dosage. The response surface contour slope
is slow (Figure 4d), indicating that the interaction between the two has little effect on the
crude sugar yield.

Figure 4e shows that when the microwave time is 15–60 s and the extraction time
is 15–75 min, the crude sugar yield is higher. The influence of microwave time on the
yield of crude sugar is greater than that of extraction time. Figure 4f shows that the
response surface contour is relatively oval, indicating that the interaction between the
two has a greater impact on the yield of crude sugar. In this response surface model, the
optimal value of crude sugar yield is 39.41%, with NaOH dosage of 9.93 mL, leaching
time of 27.65 min and microwave time of 33.2 s. In the experiments conducted under the
optimal conditions, the crude sugar yield reaches 39.80 ± 3.57%. The integrated process
considerably diminishes the time and specific energy required for biomass disintegration,
which makes the process more attractive for practical applications. Therefore, energy
analysis and technical–economic analysis will be further employed to evaluate the scaling
up of the process.
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3.3. Characterization of Sludge and Crude Sugar
3.3.1. Fourier Transform Infrared Spectra

The Fourier transform infrared spectra of sludge and extracted crude sugar are shown
in Figure 5. It can be seen from Figure 5a that the absorption peaks of raw sludge, thermal-
alkaline pretreated sludge and thermal-alkaline combined with microwave pretreated
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sludge all appeared at the positions of 3432, 1596, 1357 and 1040 cm−1. The absorption
peak at 3432 cm−1 was broad and strong, which was due to the stretching vibration peak of
O–H in the hydrogen bond [4]. The C=O vibration peak at 1596 cm−1 could be attributed
to the carboxylate [9]. The peak at 1357 cm−1 was associated with the N–O vibration
peak [28]. The strong absorption peak at 1040 cm−1 was ascribed to the C–O stretching
vibration, which was also the characteristic peak of a pyran glycosidic bond, indicating that
a pyran glycosidic bond might exist in the sludge [29]. The pretreated sludge showed a
weak absorption peak at 2928 cm−1, which could be attributed to the stretching vibration
of C–H in carbohydrate [30], while the raw sludge showed no absorption peak at this
point, indicating that the alkali extraction and microwave treatment destroyed the sludge
structure and thus made the sugar dissolve out [31].
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Figure 5. FTIR spectra of (a) raw sludge, thermal-alkaline pretreated sludge and sludge with mi-
crowave combined with thermal-alkaline pretreatment; (b) extracted sugars from sludge with com-
bined pretreatment and thermal-alkaline pretreatment.

It can be seen from Figure 5b that the crude sugar extracted by microwave combined
with thermal-alkaline and thermal-alkaline pretreatments alone showed wide and strong
absorption peaks at 3440 cm−1, which were due to the stretching vibration peak of O–H in
the hydrogen bond [4]. The vibration of C=O at 1606 cm−1 may have been caused by amides
in carboxylic acids and derivatives [9]. The peak at 1362cm−1 was associated with the N–O
vibration peak [28]. The absorption peaks at 1026 cm−1 and 845 cm−1 were attributed to
the polysaccharide and glycoconjugates containing galactose and mannose [27,28], which
further confirms the successful extraction of crude sugar.

3.3.2. Sludge Surface Morphology

The micromorphology of raw sludge, thermal-alkaline treated sludge and sludge with
microwave combined thermal-alkaline treatment is shown in Figure 6. It can be seen that
the raw sludge in Figure 6a has a cluster-like porous structure, in which the sludge is
closely combined into a cluster and distributed with several pores of different sizes. The
raw sludge in Figure 6b has a multi-prism block structure, and the surface of the block
protrudes with a plurality of irregular edges.
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The microscopic shape of the sludge after 30 min of thermal-alkaline treatment is
shown in Figure 6c,d. Compared with the raw sludge, the sludge after thermal-alkaline
treatment has a greatly changed microstructure. In Figure 6c, the agglomerated porous
structure becomes loose, changing from agglomerates to many small, scattered groups.
Pores can still be observed on the surface of small groups, indicating that although alkali
treatment has a certain crushing effect on the agglomerated porous structure of the sludge,
it does not change the porous characteristics of its surface. It can be seen from Figure 6d
that the multi-surface protrusions of the raw sludge after thermal-alkaline treatment are
destroyed, and the porous morphology on the surface appears. This may be because alkali
leaching has a crushing effect on the convex structure of the sludge surface but fails to
break its large, combined structure.

The morphology of the sludge after microwave combined with thermal-alkaline
pretreatment is shown in Figure 6e,f. Compared with the raw sludge, the change of the
aggregate porous structure of the sludge after the thermal-alkaline combined microwave
treatment is not obvious (Figure 6e), indicating that the microwave treatment has no
significant effect on the aggregate porous structure of the sludge. The raw sludge with a
polygonal block structure changes obviously after thermo-alkali combined with microwave
pretreatment. The convex prismatic structure on the surface is destroyed, while the block
structure becomes relatively loose, and a layered structure with smooth surface and pores
appears (Figure 6f). This shows that microwave treatment can destroy the surface structure
of the sludge and reduce the tightness of the sludge structure.

3.3.3. Crude Sugar Surface Morphology and Composition

Figure 7 presents the morphology and elemental composition of crude sugar extracted
by microwave combined with thermal-alkaline pretreatment. It can be seen from Figure 7a
that the overall structure of the crude sugar is flocculent, and a large number of tiny voids
are distributed on the surface. As presented in Figure 7b, the proportions of O, C, N,
S, K and Na in crude sugar are 47.4%, 31.6%, 3.7%, 1.6%, 0.6% and 15.2%, respectively.
Common sugars and their derivatives mainly contain C, H, O, N and other elements, but
the proportion of Na in the crude sugar obtained in this experiment is 15.2%, which can
reduce the purity of sugar. This phenomenon is consistent with the fact that the purity
of crude sugar extracted by microwave combined with thermal-alkaline pretreatment in
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Figure 3 is lower than 50%, indicating that a high NaOH dosage affects the purity of
crude sugar.
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Figure 7. SEM image (a) and EDS spectra (b) of the extracted crude sugar.

4. Conclusions

The extraction efficiency of sugars from SS was evaluated under different microwave
pretreatment combined with thermal-alkaline conditions. The yield of crude sugar and the
extraction efficiency increased with the increase in NaOH dosage, but the purity decreased
when the NaOH dosage was too high. The extraction of crude sugar from sludge reached
the equilibrium at about 30 min. Microwave treatment for 45 s could increase the yield of
crude sugar to 39.38%, but decreased the purity of the crude sugar.

Based on the response surface optimization analysis, the optimal pretreatment process
conditions with a crude sugar yield of 39.41% were obtained as follows: the dosage of
NaOH was 9.93 mL, the leaching time was 27.65 min and the microwave time was 33.2
s. The crude sugar yield and extraction efficiency obtained in the experiment under this
condition were 39.80 ± 3.57% and 89.74 ± 3.61%, respectively. Higher NaOH dosage,
longer leaching time and stronger microwave conditions decreased sugar yields due to the
hydrolysis of soluble sugars.
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