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Abstract: The quality of precipitation forecasting is critical for more accurate hydrological forecasts,
especially flood forecasting. The use of numerical weather prediction (NWP) models has attracted
much attention due to their impact on increasing the flood lead time. It is vital to post-process
raw precipitation forecasts because of their significant bias when they feed hydrological models. In
this research, ensemble precipitation forecasts (EPFs) of three NWP models (National Centers for
Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) (Exeter, UK), and
Korea Meteorological Administration (KMA) (SEOUL, REPUBLIC OF KOREA)) were investigated
for six historical storms leading to heavy floods in the Dez basin, Iran. To post-process EPFs, the
raw output of every single NWP model was corrected using regression models. Then, two proposed
models, the Group Method of Data Handling (GMDH) deep learning model and the Weighted
Average–Weighted Least Square Regression (WA-WLSR) model, were employed to construct a
multi-model ensemble (MME) system. The ensemble reservoir inflow was simulated using the HBV
hydrological model under the two modeling approaches involving deterministic forecasts (simulation
using observed precipitation data as input) and ensemble forecasts (simulation using post-processed
EPFs as input). The results demonstrated that both GMDH and WA-WLSR models had a positive
impact on improving the forecast skill of the NWP models, but more accurate results were obtained
by the WA-WLSR model. Ensemble forecasts outperformed coupled atmospheric–hydrological
modeling in comparison with deterministic forecasts to simulate inflow hydrographs. Our proposed
approach lends itself to quantifying uncertainty of ensemble forecasts in hydrometeorological the
models, making it possible to have more reliable strategies for extreme-weather event management.

Keywords: coupled atmospheric–hydrological modeling; numerical weather prediction models;
ensemble reservoir inflow; HBV hydrological model; multi-model ensemble system

1. Introduction

Precise forecasting of the meteorological variables is crucial in water resource sys-
tem planning for the long-term sustainability of hydrological projects [1,2]. Precipitation
plays a key role in flood and streamflow forecasting systems, which derive data from
rain gauges and radar networks [3]. Many hydrological forecasting systems are based on
observed precipitation [4]. These systems provide a single value for hydrological forecasts,
as deterministic forecasts, and, thus, do not take into account the forecast uncertainties.
Furthermore, the lead time of these forecasts is very short, especially in small and medium
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watersheds which have a short time of concentration [5–7]. Hence, one of the main chal-
lenges in hydrological forecasting is to extend the forecast lead time beyond the time of
concentration in order to provide sufficient time for the management of extreme events.

Determining effective strategies for reservoir operation during flood events is complex
due to the hydrological forecast uncertainties in the river-reservoir systems [8]. Numerical
weather prediction (NWP) models provide probabilistic ensemble forecasts using a group
or a set of possible future states of the meteorological variables instead of producing a
single deterministic forecast. Accordingly, NWP models address the inherent uncertainty
of meteorological forecasts [9,10]. They are able to produce forecasts with a long lead
time (up to 16 days ahead) by solving a set of dynamical and physical equations of the
atmosphere [11–13]. It has been shown that applying coupled atmospheric–hydrological
modeling based on ensemble forecasts is an efficient approach to meeting the uncertainty
of inflow forecasts and increasing the forecast lead time [14–16]. For this reason, hydro-
logical forecasting systems around the world are increasingly moving toward the use
of NWP models. Thus, ensemble forecasts offer a way to consider the uncertainties of
hydrometeorological forecasts.

The atmosphere’s disturbed situation causes uncertainty in the ensemble forecasts.
The main source of this uncertainty is the propagation of error in the initial conditions
of the NWP models and the approximation of physical equations [17]. Although the
use of NWP models is effective in increasing the lead time and applying the uncertainty
of meteorological forecasts, the direct application of the raw weather forecasts leads to
significant errors in the results of hydrometeorological modeling due to the significant
forecast uncertainty [18]. Therefore, post-processing raw weather forecasts is essential due
to their low precision for hydrological simulations and the mismatch between the spatial
scale of ensemble forecasts and hydrological forecasts [18].

One of the important ways to resolve the problems mentioned is to post-process the
raw weather forecasts using statistical approaches. Statistical methods have been widely
used for post-processing ensemble forecasts in previous research. Daoud et al. (2016)
post-processed the daily quantitative precipitation forecasts using the analogue method.
In analogue-based approaches, the current forecasts of a meteorological center are com-
pared with its past forecasts for a similar time period of the year. They concluded that
this approach provides skillful forecasts with a low false alarm rate [19]. Some studies
have applied the quantile mapping method to the post-processing of the ensemble precipi-
tation forecasts (EPFs) and have revealed an improvement in the reliability of ensemble
forecasts [20–22]. Du et al. (2022) post-processed the ensemble precipitation using power
transformations in different ways, involving the use of fixed coefficients for the power
transformations’ parameters and variable coefficients at regional and local scales. They
found that the predictability of NWP models was improved by applying variable coeffi-
cients [23]. Another study by Manzanas et al. (2019) demonstrated the efficiency of the
non-homogeneous Gaussian regression and quantile mapping methods for bias correction
of ensemble precipitation and temperature forecasts [24]. Generally, the results of the
reviewed studies indicate that statistical methods have increased the skill of ensemble
forecasts.

In recent decades, some researchers have combined the output of several NWP mod-
els to increase their forecast quality, known as the multi-model ensemble system [25,26].
Wei et al. (2022) compared the forecasting accuracy of equal and variant weight techniques
to create a multi-model ensemble forecast provided by the National Meteorological In-
formation Center of China. They concluded that the variant weight method produced
more accurate temperature forecasts [27]. Medina et al. (2018) developed a multi-model
ensemble system to forecast reference evapotranspiration by combining the models of
the European Centre for Medium-Range Weather Forecasts (ECMWF) and the United
Kingdom Meteorological Office (UKMO) using the linear regression model. The results
of their research revealed the least error and highest skill using multi-model ensemble
forecasts [28]. In other research, Pakdaman et al. (2022) applied the artificial neural network
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(ANN) and random forest models to forecast monthly precipitation using North American
multi-model ensemble models in the southwest of Asia. They found that the random forest
performed better than the ANN model [29]. The results of previous studies verified the
potential of the Bayesian Model Averaging (BMA) approach to enhance the reliability of
multi-model ensemble forecasts [30–34]. Therefore, an assessment of the studies demon-
strated that multi-model ensemble-based systems are a robust approach to post-processing
raw ensemble forecasts.

A number of studies have been performed on the use of post-processed ensemble
precipitation forecasts in a coupled atmospheric–hydrological modeling. Aminyavari
and Saghafian (2019) simulated continuous streamflow using the quantile mapping and
BMA methods as post-processing techniques for raw ensemble precipitation forecasts.
They found that probabilistic streamflow forecasts showed better performance after post-
processing ensemble precipitation [35]. Tian et al. (2019) demonstrated satisfactory per-
formance of a coupled meteo–hydrological modeling system constructed by the Weather
Research Forecasting (WRF) model and the Hebei rainfall–runoff model for flood fore-
cast [15]. The result of research by Yang and Yang (2014) showed the advantage of increasing
lead time for reservoir inflow forecasting during historical typhoons using the combination
of ensemble precipitation forecasts and the HEC-HMS model [36].

To the best of our knowledge, the efficiency of the proposed multi-model ensemble
systems in this research, the Group Method of Data Handling (GMDH) deep learning
model and the Weighted Average–Weighted Least Square Regression (WA-WLSR) model,
has not been investigated to simulate ensemble reservoir inflow during flood events in a
comprehensive atmospheric–hydrological modeling system. On the other hand, despite
the many post-processing techniques used in earlier research, the proposed multi-model
ensemble systems in this research do not require a large precipitation dataset (around
several years). The main purpose of current research is to evaluate the ability of both WA-
WLSR and GMDH models to improve the forecast skill of the NWP models in atmospheric–
hydrological modeling. In this regard, ensemble precipitation forecasts of three NWP
models— NCEP, UKMO, and KMA—were employed. Then, raw precipitation forecasts
were corrected using regression models. After that, the multi-model ensemble systems
were developed using the GMDH model and the WA-WLSR model based on the corrected
precipitation data. Finally, post-processed ensemble precipitation forecasts were employed
to simulate ensemble reservoir inflow during flood events.

2. Material and Methods
2.1. Research Methodology

In the present research, the NWP models were employed to quantify the uncertainty of
precipitation forecasts. Figure 1 shows the research methodology flowchart. The recorded
data from hydrometric and meteorological stations was collected to simulate ensemble
inflow. The ensemble precipitation forecasts of the three meteorological models (NCEP,
UKMO, and KMA) were extracted for six historical precipitation events that caused heavy
floods. Then, the raw forecasts of the NWP models were compared with the observed
precipitation. In order to improve the forecast skill of the NWP models, post-processing
of the precipitation forecasts was carried out in two stages. In the first step, linear and
nonlinear regression models were fitted between observed precipitation and the ensemble-
mean of each single NWP model. The superior regression model was determined based
on the values of goodness-of-fit metrics for both training and testing stages, and it was
employed for the initial correction of all ensemble members. In the second step, corrected
ensemble precipitation forecasts were merged using the GMDH model and WA-WLSR
model to construct a multi-model ensemble system. Finally, a comparative evaluation
was conducted for two modeling approaches containing deterministic forecasts (inflow
forecasting by observed precipitation data) and ensemble forecasts (inflow forecasting by
post-processed ensemble precipitation) to simulate ensemble reservoir inflow using the
HBV model.
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Figure 1. Research methodology flowchart used for ensemble reservoir inflow forecast.

2.2. Case Study and Data

A multi-purpose Dez Dam reservoir has been selected as a study area to forecast
ensemble inflow. The Dez River basin is located in southwest Iran at a latitude of 32◦35′ N
to 34◦07′ N and a longitude of 48◦20′ E to 50◦20′ E. It is one of the main sub-basins of
the Karun River and connects the Bakhtiari and Sezar Rivers. The Dez reservoir aims to
supply domestic and agricultural water, control floods, and produce hydropower [37].
Figure 2 shows the location of the Dez basin, a hydrometric station, and synoptic rainfall
stations. The basin area is 16213 km2, the average height is 1976 m, and the long-term
mean annual rainfall is 784 mm. The flow data from the Taleh-Zang hydrometric station,
located upstream of the reservoir, was applied to forecast ensemble inflow into the reser-
voir [37]. Over the past several decades, flood occurrence in the study area has caused
huge damage [38]. Accordingly, six flood events were selected during 2013–2019. Table 1
illustrates the peak discharge during flood events, cumulative precipitation, and duration
of the events. It is worth noting that these events were selected based on the date of the
annual peak discharge.
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Figure 2. The location of the Dez basin, rain gauges, and the hydrometric station.

Table 1. Observed precipitation and streamflow data.

Event No Date of Events Peak Discharge
(m3/s) Time (h) Precipitation

Depth (mm)

1 29.01.2013 633 48 31.33

2 24.03.2017 1307 72 37.93

3 25.02.2018 622 72 19.67

4 01.04.2019 5222 48 104.39

5 28.12.2016 1037 84 101.26

6 18.02.2018 665 72 48.8

Ensemble forecasts of the three NWP models (NCEP, UKMO, and KMA) were ex-
tracted from the THORPEX Interactive Grand Global Ensemble (TIGGE) database with the
spatial resolution of 0.5◦ × 0.5◦ and 1-day lead time for precipitation events that caused
floods [35,39]. The NCEP meteorological center is in Maryland, the United States. The
source of the UKMO meteorological model is in Devon, United Kingdom. Besides, Seoul,
South Korea, serves as the KMA meteorological model’s primary data source. The charac-
teristics of the NWP models used in this research are presented in Table 2. Precipitation
forecasts are updated with time intervals of six hours (00, 06, 12, and 18) in this database.
The nearest neighbor interpolation method was applied to allocate the values of forecasted
precipitation to the rain gauges [39]. The synoptic rainfall stations shown in Figure 2
contained complete data, and observed precipitation was used to evaluate the validity of
the ensemble precipitation forecasts.

The input data to the HBV hydrological model to simulate ensemble reservoir inflow
are discharge, precipitation, temperature, and potential evapotranspiration (PET) at the
daily time step. The IDW interpolation method was used to estimate precipitation data uni-
formly over the Dez basin [40]. The uniform temperature data were estimated throughout
the basin using the interpolation between the temperature and the elevation of the synoptic
stations [41]. The PET was estimated by the Lowry–Johnson’s method [41,42].



Water 2023, 15, 887 6 of 23

Table 2. Characteristics of the NWP models used in this research.

Center Forecast
Length (Day)

Model Resolution
(lon × lat)

Number of Ensemble
Members

Base Time
(UTC)

NCEP 16 1.00◦ × 1.00◦ 20 00/06/12/18

UKMO 15 0.83◦ × 0.56◦ 23 00/12

KMA 10 1.00◦ × 1.00◦ 24 00/12

2.3. Post-Processing Ensemble Precipitation Forecasts

After extracting the ensemble precipitation forecasts, the power regression model
(PRM) and linear regression model were employed for the initial correction of the ensemble
forecasts as follows [23,43]:

PO = aPb
r (1)

PO = b + aPr (2)

where PO and Pr are the observed precipitation and raw precipitation forecasts, respectively,
while a and b are the coefficients of regressive models.

The power and linear regression models were fitted separately between the ensemble-
mean of each single NWP model (independent variable) and observed precipitation (de-
pendent variable). The superior regression model was determined based on goodness-of-fit
metrics and was applied to the post-processing of all ensemble members. It is worth noting
that 70% of the data were randomly considered for the training stage and 30% for the
testing stage [43].

In this research, corrected precipitation forecasts of the NWP models were integrated
using the GMDH model and WA-WLSR model to construct a grand ensemble system. The
integration of the NWP models forecasts was carried out member by member. Accordingly,
each member of the multi-model ensemble system was composed of a combination of NWP
models’ members. The multi-model ensemble system comprised 20 members overall. The
structure of the GMDH and WA-WLSR models is described in the following.

2.3.1. Multi-Model Ensemble System by the WA-WLSR Model

According to this approach, the corrected ensemble precipitation forecasts of NWP
models were combined member by member using a weighted average model [17,44]. In
this way, each member of the multi-model ensemble system has been obtained based on
the weighted average of the three used NWP models [45]. The weighted average was
calculated using the following equation:

Pw =
∑N

i=1 p fi
wi

∑N
i=1 wi

(3)

where Pw is the weighted average of ensemble precipitation forecasts for all NWP models
used in this research, N is the number of NWP models which is equal to 3, p fi

is the
ensemble precipitation forecasts of NWP models, and wi is the weight of each member for
the NWP models.

The WLSR model was employed to estimate the weights in Equation (3). The WLSR is
an efficient way to analyze small precipitation datasets for hydrological applications [46]. If
yi = b + axi represents the WLSR model, it minimizes the weighted sum-of-squared-error
based on the following equation [46]:

LS =
∑n

i=1 w′i(yi − axi − b)2

∑n
i=1 w′i

(4)
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From which the parameters a and b are obtained as:

a =
∑n

i=1 w′ixiyi −
∑n

i=1 w′i xi∑n
i=1 w′iyi

∑ w′i

∑n
i=1 w′ix

2
i −

(∑n
i=1 w′i xi)

2

∑ w′i

(5)

b =
∑n

i=1 w′iyi − a∑n
i=1 w′ixi

∑ w′i
(6)

where w′i is the weight of the ith observation in the WLSR model [46].
In reality, the regression coefficients of the WLS model with a zero intercept were

used as the weights in Equation (3). The weights have been estimated for each member
separately so that the more precise observation (ensemble precipitation forecast) is given
greater weight and vice versa [47].

2.3.2. Multi-Model Ensemble System by the GMDH Model

GMDH is a subset of inductive deep-learning models that creates the relationship
between input–output variables for a complex system using binomial functions as a feed-
forward multilayer network [48]. This model adopts the Kolmogorov–Gabor polynomial
to estimate the output variable (Y) based on the input dataset as follows:

Y = a0 + ∑n
i=1 aixi + ∑n

i=1 ∑n
j=1 aijxixj + ∑n

i=1

n

∑
j=1

∑n
k=1 aijkxixjxk + . . . (7)

where X = (x1, x2, . . . , xn) is the vector of input variables and A = (a 1, a2, . . . , an) is the
vector of coefficients [49]. The general structure of this algorithm is that all input variables
are selected as neurons in the first layer. In the second layer, all possible bivariate combina-
tions between the input variables in the first layer are generated and compared together to
obtain the best possible fit for the output variable (Figure 3). In general, if we have N input
variables, it will generate N(N − 1)/2 neurons at the next layers. Each neuron consists
of two input variables, e.g., x1 and x2, and employs the partial polynomial equation to
estimate the output variable as:

Y = a0 + a1x1 + a2x2 + a3x2
1 + a4x2

2 + a5x1x2 (8)

where the coefficients {a0, . . . , a5} are unknown and are estimated using the least squares
method [50]. Therefore, as the number of layers, and subsequently neurons, increases, the
model gradually becomes more complex. Consequently, a self-selection threshold is used in
each layer to filter out neurons that do not contribute to the estimate of the output variable.
The neurons that have better predictability than the previous generation are allowed to be
transferred to the next layer. Then, the best result of the present layer is compared with the
previous layer. If the results do not improve, the process will be stopped [50,51].



Water 2023, 15, 887 8 of 23
Water 2023, 15, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 3. The structure of the GMDH model with four input variables. 

In this research, ensemble precipitation forecasts and observed precipitation were 
applied as input and output variables, respectively. For each member, 70% of the dataset 
was used for the training model, and the remaining 30% was applied to the testing model. 
Since this model separates the information into efficient and inefficient parts to estimate 
the output variable, it is more accurate than the neural network model. For this reason, 
the GMDH model has been employed in the current research. 

2.4. HBV Hydrological Model 
The HBV hydrological model was set up to simulate ensemble reservoir inflow under 

two modelling approaches involving a deterministic forecast and an ensemble forecast. A 
deterministic forecast refers to a forecast based on observed precipitation data, while an 
ensemble forecast denotes a forecast based on post-processed ensemble precipitation data. 
The HBV model consists of three sub-models: snow accumulation and melt, soil moisture, 
and runoff response (Figure 4). This model calculates runoff based on precipitation (∆𝑃), 
soil moisture (𝑆𝑀), field capacity (𝐹𝐶), and empirical coefficient (𝐵𝐸𝑇𝐴) that determines 
the relative contribution of runoff caused by snowmelt and precipitation (see the upper 
left side of Figure 4). The runoff is converted into discharge at the basin outlet by the 
runoff response sub-model. The runoff response is made of two storage zones. The upper 
zone has two outlets (Q0 and Q1), while the lower zone has only one outlet (Q2). These 
zones are coupled together by constant percolation (perc). After the water level exceeds a 
threshold limit (L) in the upper zone, runoff is rapidly triggered at the upper part of the 
upper zone (Q0). The parameters K0, K1, and K2 are used to control runoff associated with 
the response functions of the upper and lower zones [52]. The HBV model applies the 
triangular weight function (MAXBAS) which is used for routing the runoff at the outlet 
[52,53]. The HBV model’s parameters and their range are shown in Table 3. 

The model calibration was carried out using the Harmony search automatic optimi-
zation method, which was suggested by Valent et al. (2012) and implemented in MATLAB 
[54]. Maximizing NSE was used as an objective function and for quantifying the goodness-
of-fit between simulated and observed discharges [55]. 

Figure 3. The structure of the GMDH model with four input variables.

In this research, ensemble precipitation forecasts and observed precipitation were
applied as input and output variables, respectively. For each member, 70% of the dataset
was used for the training model, and the remaining 30% was applied to the testing model.
Since this model separates the information into efficient and inefficient parts to estimate
the output variable, it is more accurate than the neural network model. For this reason, the
GMDH model has been employed in the current research.

2.4. HBV Hydrological Model

The HBV hydrological model was set up to simulate ensemble reservoir inflow under
two modelling approaches involving a deterministic forecast and an ensemble forecast. A
deterministic forecast refers to a forecast based on observed precipitation data, while an
ensemble forecast denotes a forecast based on post-processed ensemble precipitation data.
The HBV model consists of three sub-models: snow accumulation and melt, soil moisture,
and runoff response (Figure 4). This model calculates runoff based on precipitation (∆P),
soil moisture (SM), field capacity (FC), and empirical coefficient (BETA) that determines
the relative contribution of runoff caused by snowmelt and precipitation (see the upper left
side of Figure 4). The runoff is converted into discharge at the basin outlet by the runoff
response sub-model. The runoff response is made of two storage zones. The upper zone
has two outlets (Q0 and Q1), while the lower zone has only one outlet (Q2). These zones are
coupled together by constant percolation (perc). After the water level exceeds a threshold
limit (L) in the upper zone, runoff is rapidly triggered at the upper part of the upper zone
(Q0). The parameters K0, K1, and K2 are used to control runoff associated with the response
functions of the upper and lower zones [52]. The HBV model applies the triangular weight
function (MAXBAS) which is used for routing the runoff at the outlet [52,53]. The HBV
model’s parameters and their range are shown in Table 3.

The model calibration was carried out using the Harmony search automatic optimiza-
tion method, which was suggested by Valent et al. (2012) and implemented in MATLAB [54].
Maximizing NSE was used as an objective function and for quantifying the goodness-of-fit
between simulated and observed discharges [55].
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Table 3. Description of the HBV model parameters along with their range.

Sub-Models Parameters Description of the Parameters Range

Snow

Tr Temperature threshold above which
precipitation is liquid [◦C] 0–2

Ts Temperature threshold below which
precipitation is solid [◦C] −2–0

Tm Temperature threshold above which
snowmelt starts [◦C] −2–2

DDF
Degree-day factor determines the

speed of the snow melting
[mm/◦C/day]

1–5

SCF Factor for correcting snow
measurements [-] 1–1.6

Soil moisture

FC Field capacity- maximum soil
moisture storage [mm] 100–250

Lp A limit for potential
evapotranspiration [-] 0.5–1

BETA
Coefficient influencing the amount

of water caused by soil moisture and
the upper reservoir [-]

0.1–2.5

Runoff response

perc Constant percolation rate from the
upper to the bottom reservoir [mm] 0.5–4

L Threshold storage state for initiating
very fast surface runoff [mm] 10–60

K0 The recession coefficients associated
with the surface (K0), sub-surface

(K1), and base flow (K2) [-]

1–5
K1 5–30
K2 30–120

Maxbas The parameter for runoff routing [-] 1–6
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2.5. Goodness-of-Fit Metrics

The goodness-of-fit metrics used in this research are presented in Table 4 [33]. They
were employed to evaluate the validity of post-processed precipitation and inflow forecasts
compared with the observed data.

Table 4. Summary of goodness-of-fit metrics used in this research.

Goodness-of-Fit
Metrics Equation Description Best Fit/Poorest

Fit

Nash-Sutcliffe
Efficiency NSE = 1− ∑(O−F)2

∑(O−O)
2

Measure of the
relative magnitude of
the residual variance
compared with the

observed data
variance

1/−∞

Kling-Gupta
Efficiency

KGE = 1−√
(1− r)2(1− β)2(1− γ)2

A function of
correlation, bias, and
variability to ensure

that the bias and
variability ratios are
not cross-correlated

1/−∞

Pearson coefficient r = ∑ (O−O)(F−F)√
(O−O)

2
√
(F−F)

2

The capability of a
linear relationship
between observed

and forecasted data

1/−1

Normalized Root
Mean Square Error NRMSE =

√
1
N ∑(O−F)2

−
O

The difference
between observed

and forecasted data
0/

Mean Absolute Error MAE = 1
N ∑|O− F|

The difference
between observed

and forecasted data
0/

Mean Absolute
Relative

Error
MARE = 1

N ∑ |O−F|
O

The difference
between observed

and forecasted data
0/

Note: O and F, respectively, represent the observed and forecasted data; O and F denote the observed mean and
forecasted mean; N is a total number of the records;β is the bias ratio (β = F/O); γ is the variability between
forecasted and observed values (γ = CVF/CVO); CV is the coefficient of variations.

Moreover, to investigate the hydrological model performance, a statistical framework
introduced by Hossain et al. [56] was employed. Similar categorization can be found in the
literature [57,58] which classifies the goodness-of-fit metrics into four distinct performance
categories as shown in Table 5.

Table 5. Model’s efficiency in terms of goodness-of-fit metrics.

Model’s Efficiency The Range of Goodness-of-Fit Criteria

Very good NSE, KGE > 0.75 MARE < 0.5
Good 0.65 < NSE, KGE < 0.75 0.5 < MARE < 0.6

Acceptable 0.5 < NSE, KGE < 0.65 0.6 < MARE < 0.7
Unsatisfactory NSE < 0.5 MARE > 0.7

In addition to the criteria listed above, the relative operating characteristic (ROC)
curve was applied to assess the discrimination power of probabilistic forecasts with respect
to categorized precipitation observations, such as precipitation greater or smaller than a cer-
tain threshold [59]. In general, if the amount of precipitation exceeds the specific threshold,
it can be said that the precipitation event has occurred. Otherwise, the precipitation event
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has not occurred. In order to produce an ROC diagram, the total number of data points (N)
can be divided into two subsets: occurrence and non-occurrence (N = O + O′). According
to Table 6, H is the number of hits whenever the event has occurred and the alarm has been
issued. FA is a false alarm, whenever the alarm has been issued, but no event has occurred.
MA is a missed alarm, which indicates the number of times an event has occurred, but no
alarm has been issued. CN is the correct no-alarm, which is the number of times that an
event has not occurred and no alarm has been issued [59]. Bearing this in mind, the hit rate
is defined as the number of occurred events that were correctly predicted (HR = H/O).
The false alarm rate implies the number of events predicted that did not occur in reality
(FAR = FA/O′). Thus, the ROC curve is obtained by plotting the hit rate values against
the false alarm rate. The greater the distance of the curve from the line 45◦, the greater
the forecast discrimination ability. In this research, the ROC diagram has been drawn for
two precipitation thresholds, including 2.5 and 10 mm, which, respectively, represent the
thresholds of light and heavy precipitation [60].

Table 6. Contingency table for ROC curve.

Forecasted
Observed

Occurrence Non-Occurrence Total

Alarm H FA A
No-Alarm MA CN A’

Total O O’ N
Note: H, FA, MA, and CN are hit, false alarm, missed alarm, and correct no-alarm, respectively.

3. Results and Discussion

This part first presents the results of post-processing the raw output of the NWP
models using linear and nonlinear regression models. In the next step, multi-model
ensemble systems developed by GMDH and WA-WLSR models will be evaluated using
goodness-of-fit metrics. Finally, we investigate the effectiveness of the HBV model to
simulate the ensemble reservoir inflow using deterministic and probabilistic precipitation
forecasts.

3.1. Correction of Ensemble Precipitation Forecasts

Regression models were employed to correct the raw forecasts of the NWP models.
Tables 6 and 7 display the outcomes of employing linear and nonlinear regression models
to post-process the raw output of the NWP models. For each NWP model, regression
models were separately fitted between the observed precipitation and the average of all
ensemble members. The results were assessed based on Nash–Sutcliffe (NSE) and mean
absolute error (MAE) criteria in both training and testing stages. The total number of data
points is 66. The range of precipitation data for the training and testing stages is 33.92
and 14.43, respectively. According to a comparison of the goodness-of-fit metrics values in
Tables 7 and 8, the power regression models are slightly better than the linear regression
models. In general, since power regression models have smaller average errors than linear
models, they were utilized to post-process and correct all ensemble members of NWP
models in this research.
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Table 7. Linear regression models for post-processing the ensemble precipitation forecasts.

NWP Models Linear Regression Models

Goodness-of-Fit Metrics

Train Test

NSE MAE NSE MAE

NCEP PO = −0.184 + 1.191Pr 0.531 2.838 0.651 2.108

KMA PO = −0.933 + 1.205Pr 0.518 3.115 0.51 2.725
UKMO PO = 0.038 + 0.841Pr 0.473 2.704 0.462 2.671

Note: PO is the observed precipitation and Pr is the raw EPFs.

Table 8. Power regression models for post-processing the ensemble precipitation forecasts.

NWP Models Power Regression Models

Goodness-of-Fit Metrics

Train Test

NSE MAE NSE MAE

NCEP PO = 1.021Pr
1.059 0.532 2.816 0.651 2.107

KMA PO = 0.485Pr
1.35 0.53 2.972 0.5 2.658

UKMO PO = 1.032Pr
0.914 0.541 2.701 0.513 2.682

Note: PO is the observed precipitation and and Pr is the raw EPFs.

The results of the post-processed forecasts were compared with the raw forecasts in
Table 9 in order to investigate the effect of post-processing NWP models on enhancing
the forecast skills of these models using power models. Additionally, this table shows the
percentage of variations in improving the results of post-processed data in comparison
with raw data for each NWP model individually. The results revealed that post-processed
data indicated a superior forecast skill than the raw output of NWP models based on all
goodness-of-fit metrics. Considering the values of goodness-of-fit metrics, more accurate
results have been obtained using the NCEP and UKMO models, respectively. Given
that the UKMO model has the highest percentage of variations based on the majority
of goodness-of-fit metrics, it can be inferred that the improvement in results is more
perceptible for the UKMO model compared with other models. It is worth noting that since
more precise results were obtained using corrected ensemble precipitation data, the multi-
model ensemble systems were developed based on post-processed ensemble precipitation
forecasts derived from power regression models.

Table 9. Goodness-of-fit metrics for raw and corrected ensemble precipitation forecasts.

Goodness-
of-Fit

Metrics

NCEP KMA UKMO

Raw Corrected-
PRM

The
Percentage of

Variations
Raw Corrected-

PRM

The
Percentage of

Variations
Raw Corrected-

PRM

The
Percentage of

Variations

NSE 0.53 0.55 +4 0.51 0.52 +2 0.51 0.54 +6

KGE 0.54 0.65 +20 0.53 0.65 +23 0.56 0.58 +4

Pearson
correlation 0.74 0.74 0 0.72 0.72 0 0.72 0.75 +4

NRMSE 0.82 0.8 −2 0.85 0.83 −2.3 0.81 0.71 −12

MAE 2.57 2.18 −15 2.85 2.62 −8 2.78 2.21 −20

3.2. Multi-Model Ensemble Forecasts

In this research, in order to address the uncertainty caused by initial conditions and
model structure, the output of the NWP models has been integrated [4,61,62]. Accordingly,
a single forecast is produced based on the set of NWP models used in this research, and
a multi-model ensemble system is created [61,63]. In the current research, the GMDH
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and WA-WLSR models were developed to combine ensemble precipitation forecasts. The
results of multi-model ensemble forecasts for the GMDH model and WA-WLSR approach
are presented in Table 10.

Table 10. The results of multi-model ensemble systems using the GMDH and WA-WLSR models.

Goodness-of-Fit
Metrics

GMDH
WA-WLSR

Train Data Test Data All Data

NSE 0.68 0.65 0.68 0.76
KGE 0.75 0.68 0.73 0.73

Pearson
correlation 0.82 0.83 0.82 0.88

NRMSE 0.63 0.64 0.65 0.58
MAE 2.15 2.18 2.11 2.02

The results presented in Table 8 illustrate that the application of the GMDH and
WA-WLSR models considerably enhances the ability of NWP models to forecast observed
precipitation. According to Tables 7 and 8, the forecast skill of NWP models has been
significantly improved using multi-model ensemble systems rather than post-processing
each individual model. For instance, in comparison with the power regression model, the
values of the NSE and NRMSE metrics were improved on average for the GMDH model by
27% and 16%, and for the WA-WLSR model by 41% and 25%, respectively. These results
are consistent with the results of previous studies [29,61,64,65]. Therefore, more accurate
results derived from the proposed multi-model ensemble systems represent their efficiency
in forecasting observed precipitation.

Figure 5 shows the percentage of variations in improving the forecast skill of the
NWP models based on different approaches to post-processing raw outputs of ensemble
forecasts using the NSE and NRMSE measures. This figure shows that the percentage of
improvement in the forecasting ability of meteorological models for the power regression
model is negligible compared with the multi-model approach. On the other hand, although
both the WA-WLSR and GMDH models have a great impact on improving the forecasting
skill of meteorological models, the WA-WLSR model is more efficient. As a result, adding
a weak model can be effective in improving multiple models’ forecast skill and reducing
their average error to the point where a single model cannot provide the same efficiency as
the multi-model. Therefore, it can be expected that multi-model ensemble systems act as a
reliable alternative for individual models.
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Figure 5. The percentage of variations in improving the forecast skill of the NWP models based on
post-processing approaches.
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The ROC diagram was employed to assess the discrimination capability of the NWP
models. As it was mentioned, the ROC diagram depicts the hit rate versus the false alarm
rate. Figure 6 shows the ROC diagram for the raw output of individual NWP models
and multi-model ensemble systems. These curves have been drawn for two precipitation
thresholds, 2.5 mm and 10 mm, which, respectively, represent the light precipitation
threshold and heavy precipitation threshold. According to this figure, the ROC diagram
corresponding to the multi-model ensemble system created by the WA-WLSR model
(MME_WA-WLSR) is superior to that of other models based on evaluated precipitation
thresholds. This implies that the discrimination ability of the WA-WLSR model is greater
than that of individual NWP models for light and heavy precipitation thresholds. In
general, the application of multi-model ensemble forecasts is beneficial for identifying both
light and heavy precipitation.

The ROC Skill Score (RSS) index was utilized in order to assess the performance of
ensemble precipitation forecasts based on the area under the ROC curve [66]. The RSS is
calculated based on Equation (9).

RSS = 2× (AUC− 0.5) (9)

where in this equation AUC is the area under the ROC curve.
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Figure 6. ROC diagrams for raw and post-processed ensemble precipitation forecasts: (a) 2.5 mm
(b) 10 mm.

The numerical value of this index is between zero and one. The greater the area under
the ROC curve, the closer the value of RSS index is to one, and the greater the forecast
discrimination ability. The values of this index are presented in Figure 7 for before and
after post-processing precipitation at the thresholds of 2.5 mm and 10 mm. The significant
point demonstrated by Figure 7 is the fact that the identification skill of light and heavy
precipitation events is increased using multi-model ensemble systems. Between the two
proposed approaches for multi-model ensemble systems, the WA-WLSR model has a higher
capacity than the GMDH model to identify light and heavy precipitation events. These
results are compatible with those reported by Javanshiri et al. 2021. They improved the
quality of WRF ensemble forecasts using the ensemble model output statistics (EMOS)
and BMA approaches. The results of their research revealed that post-processing the WRF
ensemble forecasts is effective in increasing the value of the RSS index and, consequently,
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improving the recognition skill of precipitation events, especially heavy precipitation
events [67]. Therefore, the results clarified that combining the NWP models’ outputs using
the WA-WLSR model provides robust results for recognizing precipitation events.
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Figure 7. Comparison of RSS index for raw and post-processed ensemble precipitation forecasts.

Figure 8 illustrates the scatter plots of raw and post-processed ensemble precipitation
forecasts versus observed precipitation. The post-processed ensemble precipitation fore-
casts have a more appropriate dispersion around the 45◦ line than raw forecasts. It reveals
that post-processed ensemble precipitation forecasts made by the GMDH and WA-WLSR
models have superior quality. In addition, all used models overestimate light precipitation
and underestimate heavy precipitation, whereas multi-model ensemble systems have lower
overestimations and underestimations. Consequently, post-processed forecasts, especially
in the case of the WA-WLSR model, closely match that of the observed precipitation.
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Figure 8. Scatter plots for raw and post-processed ensemble precipitation forecasts.
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3.3. Ensemble Reservoir Inflow Forecasting

Ensemble hydrographs of the reservoir inflow were produced using post-processed
ensemble precipitation forecasts derived from the WA-WLSR. Figure 9 indicates the re-
sults of the HBV model’s performance to simulate the ensemble reservoir inflow for the
calibration stage. In this figure, hydrographs show observed inflow (black curve), the
deterministic forecast simulated by observed precipitation (blue curve), ensemble forecasts
including all ensemble members (grey curve), and the ensemble-mean of 20 members (red
curve). The purpose of this visual examination of hydrographs is to highlight the fact that
the HBV model performance is improved using hydrographs derived from post-processed
ensemble precipitation forecasts. As it can be seen, there is a good agreement between
the variations in pattern of observed inflow and simulated ensemble reservoir inflow in
terms of rising limb, falling limb, and peak flow. In the majority of cases, the peak flows
were underestimated using ensemble forecasts for different flood events. The comparison
of ensemble inflow forecasts and deterministic inflow forecasts shows that deterministic
inflow forecasts cannot reflect and quantify the uncertainty of the reservoir inflow, while
it is crucial for reservoir operation in flood conditions to have knowledge concerning the
range of reservoir inflow uncertainty before a flood occurrence. Generally, results revealed
that ensemble reservoir inflow, in addition to addressing the uncertainty of the inflow
forecasts, has a positive effect on the efficiency of the hydrological models.
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Figure 9. Ensemble reservoir inflow during flood events for the calibration stage. Black lines:
observed inflow hydrograph; blue lines: the deterministic inflow forecast based on observed pre-
cipitation; grey lines: ensemble inflow forecasts simulated by post-processed EPFs containing all
ensemble members; red lines: ensemble-mean of all members.
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Table 11 illustrates the goodness-of-fit metrics of the HBV model to simulate reser-
voir inflow hydrographs at the calibration stage for each flood event. The HBV model
efficiency for a deterministic forecast and ensemble forecast (all ensemble members and
ensemble-mean) was compared in this table. A deterministic forecast was simulated using
observed precipitation derived from rain gauges, and an ensemble forecast was obtained
by post-processed ensemble precipitation forecasts. The evaluation of model performance
based on the NSE index revealed that the model efficiency for ensemble members and
ensemble-mean was improved on average by 3% and 8%, respectively, in comparison
with deterministic forecast for all flood events. Moreover, the values of the error index
for ensemble members and ensemble-mean were decreased on average by 21% and 35%,
respectively, compared with the deterministic forecast. Similar results were reported by
Ye et al. [68]. They predicted flood events using a coupled atmospheric–hydrological mod-
eling system based on ensemble forecasts and indicated that ensemble flood forecasting
is a promising method due to its ability to provide more important information and risk
probabilities than deterministic forecasting [68]. In another study, Ahmed [69] carried
out a comparative analysis between ensemble inflow forecasts and deterministic forecasts.
Results indicated that ensemble forecasts significantly enhance the hydrological model’s
performance [69]. These results are in agreement with the results of previous research on
ensemble streamflow/flood forecasting [35,36,39,70–72]. Therefore, the results indicate
that post-processed ensemble precipitation forecasts has outperformed the HBV model
effectiveness to simulate the reservoir inflow hydrograph.

According to the statistical framework proposed by Hossain et al. [56], the model’s
performance level for the first three flood events can be considered “very good” in terms of
the NSE, KGE, and MARE scores based on both modeling approaches (deterministic and
ensemble forecasts). For the case of event 4, the model efficiency is at a “good” level in terms
of the NSE and KGE scores (NSE, KGE > 0.65). Furthermore, the model’s performance is
“acceptable” according to the MARE score. Generally, it can be said that the HBV model
has a good ability to simulate ensemble reservoir inflow during the calibration period.

Table 11. The goodness-of-fit metrics used for the HBV model to simulate ensemble reservoir inflow
in the calibration stage.

Goodness-of-Fit
Metrics

Modeling Approach
Flood Events

Event 1 Event 2 Event 3 Event 4

NSE
Ensemble members 0.93 0.82 0.92 0.79

Ensemble-mean 0.97 0.88 0.97 0.81
Deterministic forecasts 0.9 0.81 0.86 0.79

KGE
Ensemble members 0.92 0.83 0.88 0.7

Ensemble-mean 0.97 0.89 0.94 0.71
Deterministic forecasts 0.89 0.7 0.83 0.68

MARE
Ensemble members 0.14 0.12 0.14 0.65

Ensemble-mean 0.11 0.09 0.08 0.63
Deterministic forecasts 0.17 0.11 0.24 0.78

The validity of the HBV model was investigated using two flood events. Figure 10
shows the result of the HBV model to simulate ensemble reservoir inflow in the validation
stage. As it can be seen, the variations’ trend of the observed hydrographs is approximately
consistent with the forecasted hydrographs for both the ensemble forecast and deterministic
forecast, while the spread of ensemble members increases to forecast peak discharge. The
greater the dispersion of the ensemble members, the more uncertain the flow forecast. In
other words, the HBV model’s error has been increased to forecast peak discharge at the
validation stage. According to the results of the previous studies, precipitation, as one of
the key climate variables, has a substantial impact on the flow forecast [73,74]. As a result,
it can be found that the error caused by the NWP models in forecasting precipitation has
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affected the performance of the HBV hydrological model. In general, visual inspection of
the HBV model at the validation stage revealed an approximate consistency between the
forecasted and observed inflow hydrographs.
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Figure 10. Ensemble reservoir inflow during flood events at the validation stage.

Table 12 indicates the goodness-of-fit metrics for the HBV model at the validation
stage. The results demonstrate that when post-processed ensemble precipitation forecasts
are employed for reservoir inflow simulation by the HBV model, the NSE values are
enhanced for all ensemble members and the ensemble-mean by an average of 5% and 16%,
respectively, compared with the deterministic forecasts. In addition, the average values of
MARE for all ensemble members and the ensemble-mean are decreased by 2% and 12%,
respectively, in comparison with deterministic forecasts. Therefore, it can be asserted that
the use of post-processed ensemble precipitation forecasts is effective in increasing the HBV
model’s efficiency for reservoir inflow forecasts based on all goodness-of-fit metrics.

Table 12. The goodness-of-fit metrics used for the HBV model to simulate ensemble reservoir inflow
in the validation stage.

Goodness-of-Fit
Metrics

Modeling Approach
Flood Events

Event 5 Event 6

NSE
Ensemble members 0.65 0.74

Ensemble-mean 0.74 0.79
Deterministic

forecasts 0.6 0.73

KGE
Ensemble members 0.78 0.71

Ensemble-mean 0.87 0.73
Deterministic

forecasts 0.75 0.63

MARE
Ensemble members 0.35 0.53

Ensemble-mean 0.3 0.47
Deterministic

forecasts 0.34 0.54
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Based on the statistical framework used in this research, since the values of goodness-
of-fit metrics at the validation stage vary from one member to another, allocating one grade
(good or satisfactory) to all members based on an average score may be ambiguous. Hence,
it was decided to evaluate the model’s performance distribution over the members. For
instance, Figure 11 indicates the NSE and MARE metrics for events 5 and 6, respectively. It
is obviously observed from Figure 11a that while the model’s performance in terms of the
NSE score was satisfactory for over 55% of the members in event 5, it gave a good level of
performance for over 50% of the members in event 6. Based on Figure 11b, it is clear that
the model performance is at a top level due to maintaining a “very good” grade for over
90% of members in event 5 and a “good” grade for over 70% of members in event 6.
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Figure 11. Model’s performance distribution over the members of ensemble reservoir inflow at the
validation stage based on (a) NSE and (b) MARE criteria.

4. Conclusions

Quantifying the uncertainty of precipitation forecasts using ensemble approaches is
becoming increasingly important for flood forecasts and other practical purposes. The
research’s main contribution is focused on evaluating the potential of post-processed
ensemble precipitation forecasts to provide skillful ensemble reservoir inflow. In this
regard, the raw forecasts of three NWP models were corrected through power regression
models. Then, multi-model ensemble systems were developed using the GMDH and
WA-WLSR models. Thereupon, post-processed ensemble precipitation is fed into the HBV
hydrological model to produce as ensemble reservoir inflow forecast.

The findings of this research revealed that the accuracy of the precipitation forecast
is somewhat improved by the initial correction of the raw forecasts of each NWP model
using the power regression models, but the amount of improvement in the forecasting skill
of these models was more perceptible with the construction of the multi-model ensemble
systems. For instance, compared with the power regression model, the average values of
the NSE and NRMSE measures were improved by 27% and 16% for the GMDH model
and by 41% and 25% for the WA-WLSR model, respectively. The results of simulating
ensemble reservoir inflow using the HBV model indicated that the average percentage
of error for the cases of all ensemble members and the ensemble-mean was decreased
by 2% and 12%, respectively, compared with the deterministic forecasts at the validation
stage. It represented that post-processed ensemble precipitation forecasts had a remarkable
impact on the quality of the forecast using the HBV model. The improvement of results for
ensemble forecasts was also revealed by a visual investigation of scatter plots, hydrographs
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of ensemble members and the ensemble-mean. Based on the statistical framework used in
this research for investigating the hydrological model’s performance, the results revealed
that the model’s performance is at a “good” level for the majority of flood events.

The results of this research emphasize the advantage of post-processing ensemble
precipitation forecasts before their application as input to the hydrological models for flood
forecasting and warning, reservoir inflow, river flow, and water resources management.
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