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Abstract: Landowners and natural resource agencies are seeking to better understand the bene-
fits of best management practices (BMPs) for addressing water quality issues. Using edge-of-field
and edge-of-farm runoff analysis, we compared runoff volumes and water quality between small
watersheds where BMPs (e.g., prescribed grazing, silvicultural practices) were implemented and
control watersheds managed using conventional practices (i.e., continuous grazing, natural forest
revegetation). Flow-weighted samples, collected over a 2-year period using automated samplers,
were analyzed for nitrate/nitrite nitrogen (NNN), total Kjeldahl nitrogen (TKN), total phosphorus (P),
ortho-phosphate phosphorous (OP), total suspended solids (TSS), and Escherichia coli (E. coli). Com-
parison of silvicultural planting to conventional reforestation practices showed a significant decrease
in NNN loads (p < 0.05) but no significant differences in TKN, P, OP, TSS, or E. coli. Continuously
grazed sites yielded >24% more runoff than sites that were under prescribed grazing regimes, despite
receiving less total rainfall. Likewise, NNN, TSS, and TKN loadings were significantly lower under
prescribed grazing management than on conventionally grazed sites (p < 0.05). Data suggests that
grazing BMPs can be an effective tool for rapidly improving water quality. However, silvicultural
BMPs require more time (i.e., >2 years) to establish and achieve detectable improvements.

Keywords: conservation; sediment; nutrients; E. coli; non-point source; water quality

1. Introduction

Despite decades of remediation efforts since the adoption of the Clean Water Act
in the United States (US), nonpoint source (NPS) pollution remains a substantial chal-
lenge and contributor to surface water quality impairments [1–3]. NPS runoff is a major
source of nutrient loading, leading to eutrophication and oxygen depletion in downstream
waterbodies [3–5]. NPS runoff can also transport fecal indicator bacteria and pathogens,
leading to recreational impairments [6]. Collectively, pathogens, nutrients, organic en-
richment/oxygen depletion, and sediment/turbidity account for 49% of Clean Water Act
Section 303(d) impairments in the US and 69% in the state of Texas [1,7].

Surface water quality has been shown to often be related to land use and land
cover within a watershed [8–11]. Topsoil and nutrient losses can have detrimental ef-
fects on soil productivity, agricultural performance [12,13], economic gains [14], and water
quality [15–17]. Additionally, the nonpoint source transport of fecal material and poten-
tial associated pathogens is a concern for recreational safety [18,19]. In many states like
Texas, private agricultural and silvicultural working lands make up the vast majority of
the total land area, providing for significant economic, environmental, and recreational
applications [20]. Thus, it stands to reason that farmers, ranchers, and other agricultural
producers (e.g., forestry operations) are most often looked to for conservation improvement
projects to reduce nutrient, sediment, and bacterial NPS pollutant loadings from working
lands [21].
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While the benefits of using sound management practices on working lands are gener-
ally well studied, grazing best management practice (BMP) research has primarily been
concentrated in the US Midwest and western states [22]. Of the existing research, only a
small percentage focuses on practices recommended by the Natural Resources Conservation
Service (NRCS) [23,24]. The effects of grazing management practices in the south-central US
on nearby surface water quality are similarly not well documented. Likewise, the effective-
ness of silvicultural BMP has been extensively studied in the southeastern and western US
but is lacking in the southcentral region of northeast Texas [25–27]. Furthermore, variability
among study findings frequently results from site-specific climatic, cultural, and prior land
use conditions that influence water quality [28,29].

To determine the water quality benefits of implemented BMPs, a robust water quality
monitoring regime was implemented that assessed the field and farm-level changes in
pollutant concentrations and loadings realized through the implementation of NRCS-
recommended BMPs. We hypothesized that implementing the recommended BMPs would
improve runoff water quality. Specifically, we sought to evaluate prescribed grazing and
silvicultural BMPs and assess their benefits in comparison to conventional practices—
i.e., continuous grazing and natural revegetation following timber harvest, respectively.

2. Materials and Methods
2.1. Site Description

Lake O’ the Pines, located in the Piney Woods of northeast Texas (Figure 1), was
created by the US Army Corps of Engineers in 1959 under authorization of the Flood
Control Act of 1946 to primarily provide flood mitigation for the city of Jefferson [30,31]
via the impoundment of Big Cypress Bayou. The lake also serves as a raw water supply for
local power plants and industry and as a potable drinking water source managed by the
North East Texas Municipal Water District [32]. The lake receives runoff from 2200 km2 of
largely rural and agriculturally dominated land.

In the early 2000s, water quality monitoring data began to reveal depressed dissolved
oxygen concentrations [33]. Simulation modeling of the watershed suggested that nutri-
ent loading from point and nonpoint sources was responsible for the dissolved oxygen
decline [33]. The Texas Commission on Environmental Quality subsequently developed
a Total Maximum Daily Load (TMDL) as well as a TMDL implementation plan (I-Plan)
for the watershed [33,34]. As a result, the Lake ‘O the Pines watershed was recommended
and approved for participation in the NRCS National Water Quality Initiative (NWQI).
Through the NWQI, the NRCS offered financial and technical assistance to farmers, ranch-
ers, and forest landowners interested in improving water quality and aquatic habitats in
priority watersheds. Qualifying producers received assistance for installing conservation
practices aimed at reducing nutrient, sediment, and manure runoff from private working
lands [35,36].

Historically, agriculture and silviculture have been mainstays in the watershed. The
mixture of hardwood and pine forests common in the area provided timber resources
for early settlers who began clearing land for crops and pastures. Commercial forestry
remains prevalent today, with numerous pine plantations covering the countryside. Cotton
production that was common in the late 1800s gave way to cattle production, dairies, and
poultry production. Dairies have largely left the watershed, leaving poultry and cattle
production as the primary agricultural enterprises. The watershed was once home to
the poultry producer Pilgrim’s Pride Corporation until 2011. Poultry production remains
prominent in the watershed and is a considerable source of land-applied nutrient amend-
ments, especially phosphorus. The over-application of poultry litter to meet nitrogen needs
is considered the primary source of excess phosphorus now present in Lake O’ the Pines.
Application practices have been revised to now meet crop phosphorus needs and prevent
overapplication, but excess phosphorus remains in the soil in many locations [33,34].
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Forest planting (#381), prescribed grazing 

(#528), nutrient management (#590) 
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Figure 1. Lake O’ the Pines watershed study area in northeast Texas, USA. Due to confidentiality
agreements with landowners, the red circles with site numbers (Table 1) show approximate locations
of edge-of-field and edge-of-farm sites with 30-year average rainfall (mm).

Table 1. Study sites, location, management practices, area (hectares), collection dates, and total
number of runoff events. USDA Natural Resources Conservation Service conservation practice
numbers are listed in parentheses.

Site Type Management Practices ha Slope (%) Data Collection Period No. of Events

1A Field Cover crop (#340), prescribed grazing (#528),
nutrient management (#590), waste application 0.4 3.03 February 2016–January 2018 18

2A Field Forest planting (#381), prescribed grazing
(#528), nutrient management (#590) 0.88 5.13 February 2016–January 2018 5

3A Field Control: natural forest revegetation only 0.33 4.92 February 2016–January 2018 12

4A Field Forest planting (#381), forest stand
improvement (#666) 0.23 4.41 February 2016–January 2018 8

1B Farm Cover crop (#340), prescribed grazing (#528),
nutrient management (#590), waste application 1.85 2.76 February 2016–January 2018 18

2B Farm Cover crop (#340), prescribed grazing
management (#528) 3.78 2.53 February 2016–January 2018 12

3B Farm Cover crop (#340), prescribed grazing
management (#528) 1.87 3.50 February 2016–January 2018 21

4B Farm Control: continuous grazing, periodic fertilizer
application 1.18 6.71 February 2016–January 2018 24
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The monitoring program for this study was established on multiple private properties
practicing BMP implementation recommendations through the NRCS NWQI program in
the Lake O’ the Pines watershed (Figure 1). The mean annual precipitation for the area
varies on a gradient from west (1134 mm) to east (1360 mm) (Figure 1) and is largely well
dispersed throughout the year [37–39]. Summers are typically hot and humid, and winters
are mild and cool [39]. Watershed elevation varies from 61 m to 187 m above the mean
sea level [39,40]. Soils are derived from the Sabine Uplift and are predominantly sandy in
nature, with more than 90% of the total area consisting of sandy or sandy loam soils [39–42].

2.2. Site Preparation

BMP implementation in this study followed NRCS Field Office Technical Guide [43]
specifications and included the following: prescribed grazing (NRCS conservation practice
#528); nutrient management (#590); cover crops (#340); silvopasture (#381); and forest
stand improvement (#666). Treatments were based upon the management objectives of the
landowner and recommendations from the NRCS. All treatments have the shared goals
of reducing runoff and erosion and improving water quality [43]. Prescribed grazing is
designed to improve or maintain vegetative cover and species compositions supportive of
grazing, protect riparian areas, improve connectivity of wildlife habitats, and manage fine
fuel loads for wildfire control [43]. Prescribed grazing therefore allows for the controlled
harvest of vegetation while allowing the landowner to meet additional management objec-
tives. Nutrient management involves the development of a management plan to control the
application and runoff of nitrogen, potassium, and phosphorous on landscapes. Nutrient
management plans include soil testing to prevent over-application of nutrients, timing of
application to maximize absorption, and encouraging conservation practices that minimize
runoff (e.g., vegetated filter strips) [43]. Cover cropping involves the planting of grasses,
forbs, or leguminous species to provide seasonal vegetative cover for grazing, protection of
the soil surface, and suppression of weedy species [43]. Finally, silvopasture involves the
establishment of trees or shrubs and grazeable forage species on the same site, while forest
stand improvement is the manipulation or maintenance of species composition through
the selective control of unwanted species [43]. Control sites included continuous grazing
(i.e., the status quo) and natural forest revegetation. In total, four edge-of-field and four
edge-of-farm monitoring stations were established (Figures 1 and 2, Table 1).

Grazing BMPs required the landowners to implement grazing and nutrient man-
agement plans. Several grazed pastures also had winter cover crops planted to support
winter grazing. Nutrient management included conducting soil testing to prevent the
over-application of fertilizers and reducing runoff by practicing the Four R’s of nutrient
stewardship: “applying the right nutrient at the right rate, at the right time, in the right
place” [43]. Nutrient application rates were developed for each property based on the
individual producer’s forage production goals.

Prior to the implementation of silvicultural treatments, each property (control and
BMPs) was clear-cut and subject to the standard forest site preparation practices of root
plowing and stacking debris in windrows. In the treatment plots, pine plantations were
established via machine planting, and competing vegetation was chemically treated to
minimize competition with planted trees during the first growing season.
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Figure 2. Autosampler deployment used in this study. Berm construction (A) and maintenance
(B) on a farm-scale site; autosampler maintenance (C) on a continuous grazing site; and field-scale
silvopasture planting (D) with seedlings planted in rows.

2.3. Sample Collection

Monitoring methods consisted of edge-of-field (single drainage) and edge-of-farm
(multiple drainage) sampling implemented to quantify BMP influence on NPS pollutant
loading. Earthen berms were constructed along the downslope edges of sites to route
overland flow through 0.3 and 0.61 m H flumes on the field and farm plots, respectively
(Figure 2). H flumes were equipped with Teledyne ISCO 730 bubbler flow modules to pro-
vide a stage-discharge relationship for flow rate measurement. Teledyne ISCO Avalanche
refrigerated samplers were installed to automatically collect composite water quality sam-
ples and to measure and store flow rate at each site. An automated tipping bucket rain
gauge was connected to an avalanche sampler on each property to measure precipitation.

Runoff volume and flow-weighted water quality samples were collected from natural
storm events at each edge-of-field and farm site. Automated samplers were programmed
according to the manufacturer’s specifications to initiate sample collection once water
levels were ≥1.194 mm above zero. Once enabled, the sampler rinsed the sampling tubing
with ambient water prior to sample collection. Defined, pre-programmed flow intervals
developed to collect each 1.32 mm of runoff over the plot area defined the sampling
intervals. At each sampling interval, 200 mL of samples were composited into 20 L bottles,
cooled to 3◦ ± 1◦ C, and held at that temperature until retrieval. Sampling continued at
the defined volumetric interval until the water level in the H-flume dropped below the
1.194 mm threshold. Samples were retrieved and delivered to the laboratory within 24 h of
sample initiation.
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2.4. Sample Handling and Lab Analysis

After automated sample collection, samples were prepared in the field by capping
20 L sampling bottles, shaking them vigorously to resuspend water constituents, and then
pouring out subsamples into appropriately preserved sterile plastic sample bottles pro-
vided by a National Environmental Laboratory Accreditation Program (NELAP)-certified
laboratory (Table 2).

Table 2. Sample storage, preservation, and handling requirements for monitored parameters. Holding
time begins when the automated sampler takes the first sample.

Parameter Preservation Sample Volume Holding Time

Total Phosphorus H2SO4 at 4 ◦C 150 mL 28 days
Nitrate/Nitrite Nitrogen H2SO4 at 4 ◦C 150 mL 28 days
Total Kjeldahl Nitrogen H2SO4 at 4 ◦C 200 mL 28 days

Escherichia coli <6 ◦C 100 mL 24 h
Ortho-Phosphate 4 ◦C 150 mL 28 days

Total Suspended Solids 4 ◦C 250 mL 7 days

Bottles were labeled with event information, filled, sealed, and transported in ice to
the laboratory for analysis. Constituents of concern included: total phosphorous (TP);
orthophosphate (OP); nitrate/nitrite nitrogen (NNN); total Kjeldahl nitrogen (TKN); total
suspended solids (TSS); and Escherichia coli (E. coli). If runoff volume for a particular
runoff event was insufficient to fill all sample bottles, a pre-determined hierarchy of OP,
NNN, TKN, TP, E. coli, and TSS was used. Samples were processed according to US
Environmental Protection Agency (EPA) and Standard Methods (SM) protocols as follows:
OP (EPA 365.3); NNN (EPA 300.0); TKN (EPA 351.2); TP (SM 4500-P); E. coli (SM 9223B);
and TSS (SM 2540) [44,45].

2.5. Data Analysis

Due to NRCS program implementation timelines, pretreatment data were not attain-
able; therefore, a multiple watershed approach was used, where separate treatment and
control catchments are measured simultaneously [46]. Data were first tested for normality
using a Kolmogorov–Smirnov test [47,48]. All data were then log-transformed due to
non-normal distributions. General simple linear regressions were used to evaluate rela-
tionships between runoff treatments and water quality parameters [49–51]. All statistical
analyses were performed in the R Environment for Statistical Computing [52]. Compar-
isons included natural forest revegetation (control) versus forest planting (treatment) and
continuous grazing (control) versus prescribed grazing (treatment). Log-transformed loads
were modeled as a function of streamflow and treatment; separate models were fit for
each parameter and comparisons (silviculture and grazing treatments). Differences in
constituent loadings were considered significant at the 0.05 level.

3. Results
3.1. Sampling Variability

Constituent concentrations and load distributions varied greatly between sampled
events and sites (Table S1). Loading variations occurred sporadically throughout the
monitoring period and varied randomly by season across watersheds, largely due to
antecedent moisture conditions. Recorded 24 h rain events that generated runoff ranged
from 5.08 mm to 148.08 mm. Though most rain events produced no measurable runoff,
there were several high-loading events that generated large runoff volumes and constituent
concentrations. Compared to the 30-year average, drier-than-normal conditions persisted
throughout the monitoring period. Long, dry periods between large rainfall events limited
the number of runoff events generated. In 2016 and 2017, there was 1031.55 mm and
996.12 mm of rainfall, respectively, while the final two months of sampling in early 2018
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received 320.5 mm, which is well below the 30-year average rainfall (1227 mm) for the
region [53].

3.2. Effects of Grazing and Management

Prescribed grazing treatments resulted in statistically significant decreases (p < 0.05)
in loads (kg ha−1) over continuous grazing for TSS, NNN, and TKN (Figure 3) (Table S2).
Although not statistically significant (p = 0.062), E. coli loading decreased as well with
BMP implementation over all runoff events (Figure 3). Prescribed grazing treatments did
not produce significant decreases in OP or P loading from continuous grazing (Figure S1)
(Table S2).
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Runoff volume was a significant predictor (p ≤ 0.03) of loads of E. coli, NNN, TKN,
OP, and P, but not for TSS (Table S2). Furthermore, TSS values in the continuous grazing
treatment increased more rapidly with increased runoff than TSS values in prescribed
grazing treatments (Figure 3). E. coli loading followed a pattern similar to TSS, while
NNN, TKN, and OP loadings trended toward convergence with the control at high runoff
volumes. This occurrence can likely be attributed to BMP treatment capacity exceedance
during high runoff.

3.3. Effects of Silvicultural Management

Implementing silvicultural practices produced mixed results. Treatment was a sig-
nificant factor in observed loads for NNN, TKN, and OP (p < 0.05), but not for TSS, E.
coli, or P (p ≥ 0.09) (Table S2). Of these, only NNN loads were lower for treatment plots.
Interestingly, TKN and OP loads from the control were lower than from the treatment.
Runoff volume was a significant predictor of TSS, TKN, OP, and P (p < 0.01), but not for
NNN or E. coli (p ≥ 0.09) (Figure 4, Figures S1 and S2).
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4. Discussion
4.1. Grazing Management

Nutrient, sediment, and E. coli loads are essential indicators of BMP effectiveness.
Grazing management affects available grass cover and is known to influence offsite water
quality by affecting runoff generation [54]. Continuous (high-intensity) grazing routinely
results in limited ground cover and compacted soils [55,56]. This can increase runoff and,
in many cases, pollutant transport. Our results corroborate this finding, as total rainfall
required to generate runoff tended to be higher in prescribed than continuous grazing treat-
ments, and prescribed grazing treatments tended to generate less runoff than continuous
grazing during higher rainfall events (Figure 5). Continuously grazed land yielded on
average 24% more runoff than land under prescribed grazing management, despite receiv-
ing less total rainfall over the course of this study. Differences in soils and slope (Table 1)
may have contributed somewhat to this disparity, though the soils throughout the study
region are predominantly sandy and have higher infiltration rates. Conversely, prescribed
grazing management results in less soil compaction from enhanced grass growth and root
development, and increasing ground cover leads to less runoff and more onsite sediment
capture [54]. Combined, these effects generally produce lower constituent loadings from
properly managed grazing lands. Results from this study support these statements, as
prescribed grazing plots yielded less runoff and lower constituent loads.

Poultry litter fertilizer applications may partially explain the absence of an effect
on phosphorous concentrations. However, poultry litter is also high in nitrogen [57,58],
which was significantly reduced in the treatments. Our findings are similar to those of
Brannan et al. [59], wherein they recorded reductions in N and P but not in OP. This may
be attributed to the fact that nitrogen is more likely to be volatilized than phosphorous
during the storage of manure [59]. Similarly, Harmel et al. [60] found that even though
poultry litter contained more nitrogen than phosphorous, phosphorous concentrations
in runoff were higher, except where supplemental inorganic nitrogen fertilizer was also
applied. BMPs complementary to poultry litter application to promote greater infiltration
(e.g., mechanical aeration of soils) can aid in trapping nutrients and reducing runoff [61].



Water 2023, 15, 3537 9 of 13Water 2023, 15, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 5. Natural forest revegetation (control) versus silvicultural BMP and prescribed versus con-
tinuous grazing runoff volume (m3 ha−1) and event total rainfall (cm). The data displayed is the av-
eraged data for all two years of the study. The grey shading represents the 95% confidence interval. 

The lack of a statistically significant reduction in E. coli loads in pastures implement-
ing prescribed grazing could be attributed to additional inputs from wildlife [62–64] and 
naturalized soil-borne E. coli strains [63,65,66] as well as the survivability of E. coli in feces. 
Sinton et al. [67], recognized that E. coli concentrations in cattle feces can increase by orders 
of magnitude for 1–3 weeks following deposition when moisture content remains above 
80%. Therefore, even under rotational grazing, a viable E. coli source may remain onsite 
for some time. As a result, effective ways to reduce E. coli loading from cowpats may be 
to increase the distance of deposition from sources of water [68] or by adjusting grazing 
timing near waterways to avoid rainy seasons [69]. Lewis et al. [70] showed a marked 
decrease in E. coli concentrations over a period of 19 years following the implementation 
of grazing BMPs in California. In their study, E. coli concentrations were quite variable for 
the initial 8 years and then remained greatly diminished thereafter [70]. Another issue 
with E. coli concentration analysis is that loading values typically have high variance, 
which substantially reduces statistical detection power [71]. Initial results from grazing 
plots in our study strongly support the use of prescribed grazing as a BMP; however, pro-
ject time constraints justify the need for longer-term BMP implementation assessment 
studies to confirm extended performance. 

4.2. Silvicultural Management 
Chemical treatment of understory vegetation in the silvicultural plantings minimized 

herbaceous ground cover and allowed planted trees to reach 1–1.5 m heights during the 
study period. The minimization of ground cover in the treatment via herbicide likely con-
tributed to the lack of a significant positive response from the silvicultural BMPs. In the 
natural revegetation, or control site, vegetation (herbaceous and woody) was allowed to 
regrow uninhibited following root plowing and debris stacking. A mixture of densely 
packed hardwood tree species rapidly colonized this area and reached heights greater 
than 2 m during the study period. Due to more consistent ground and foliar cover in the 
control, runoff, though greater overall (Figure 5), was filtered somewhat, producing sim-
ilar to better results than the silvicultural treatments. 

In the control and treatment plots, stacked debris impeded runoff from moving 
offsite, causing increased water infiltration into the soil; however, the treated plot had no-
ticeably more bare ground. Previous research has shown that clear-cut sites can exhibit 
increased constituent loads for multiple years post-treatment [72,73]. The results from the 
silvicultural BMP treatment and control plots suggest that the herbicide spraying compo-
nent of the treatment should be reconsidered and perhaps eliminated, or at least limited 

Figure 5. Natural forest revegetation (control) versus silvicultural BMP and prescribed versus
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The lack of a statistically significant reduction in E. coli loads in pastures implementing
prescribed grazing could be attributed to additional inputs from wildlife [62–64] and
naturalized soil-borne E. coli strains [63,65,66] as well as the survivability of E. coli in feces.
Sinton et al. [67], recognized that E. coli concentrations in cattle feces can increase by orders
of magnitude for 1–3 weeks following deposition when moisture content remains above
80%. Therefore, even under rotational grazing, a viable E. coli source may remain onsite
for some time. As a result, effective ways to reduce E. coli loading from cowpats may be
to increase the distance of deposition from sources of water [68] or by adjusting grazing
timing near waterways to avoid rainy seasons [69]. Lewis et al. [70] showed a marked
decrease in E. coli concentrations over a period of 19 years following the implementation of
grazing BMPs in California. In their study, E. coli concentrations were quite variable for the
initial 8 years and then remained greatly diminished thereafter [70]. Another issue with
E. coli concentration analysis is that loading values typically have high variance, which
substantially reduces statistical detection power [71]. Initial results from grazing plots in
our study strongly support the use of prescribed grazing as a BMP; however, project time
constraints justify the need for longer-term BMP implementation assessment studies to
confirm extended performance.

4.2. Silvicultural Management

Chemical treatment of understory vegetation in the silvicultural plantings minimized
herbaceous ground cover and allowed planted trees to reach 1–1.5 m heights during the
study period. The minimization of ground cover in the treatment via herbicide likely
contributed to the lack of a significant positive response from the silvicultural BMPs. In
the natural revegetation, or control site, vegetation (herbaceous and woody) was allowed
to regrow uninhibited following root plowing and debris stacking. A mixture of densely
packed hardwood tree species rapidly colonized this area and reached heights greater than
2 m during the study period. Due to more consistent ground and foliar cover in the control,
runoff, though greater overall (Figure 5), was filtered somewhat, producing similar to better
results than the silvicultural treatments.

In the control and treatment plots, stacked debris impeded runoff from moving offsite,
causing increased water infiltration into the soil; however, the treated plot had noticeably
more bare ground. Previous research has shown that clear-cut sites can exhibit increased
constituent loads for multiple years post-treatment [72,73]. The results from the silvicultural
BMP treatment and control plots suggest that the herbicide spraying component of the
treatment should be reconsidered and perhaps eliminated, or at least limited to targeted
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applications. Finally, due to the timeframe for forest establishment, we suggest longer-term
(5–10 years) studies for quantifying the water quality benefits of silvicultural BMPs [74–76].

5. Conclusions

This study evaluated the water quality benefits of grazing and silvicultural BMPs.
Our 2-year study showed significant reductions in nitrogen and sediment loads following
the implementation of prescribed grazing, suggesting this practice has the potential to
rapidly improve surface water quality. Further, although not statistically significant, E. coli
loads and runoff volume were reduced in prescribed grazing plots when compared to
continuously grazed plots. Our findings suggest that prescribed grazing positively impacts
water quality compared to continuous grazing. Conversely, the use of silvicultural BMPs
did not produce rapid water quality improvements observable during our 2-year study.
Only NNN loads were reduced, whereas other parameters were equal or elevated compared
to the control plot. More time is needed to fully evaluate silvicultural BMPs due to
the timeframe for forest reestablishment. However, our findings suggest some potential
negative short-term impacts related to herbicide applications associated with NRCS forest
establishment protocols. We suggest that herbicide applications as a component of NRCS
forest management protocols be reassessed and applied only to targeted areas as necessary
for successful timber establishment. This would support both establishment and improved
water quality by retaining critical understory vegetation to filter runoff.
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Figure S2: Results from a general linear model of natural revegetation (control) versus silvicultural
treatments for nutrients.
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