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Abstract: There are few studies on microplastic (MP) contamination in Colombia, and little is known
about its impacts on continental aquatic ecosystems. This study evaluated, for the first time, the
identification, abundance, and distribution of MP particles in the surface water of Luruaco Lake, in
the low basin of the Magdalena River, Colombia, included in national programs in marine sciences
and hydrobiological resources. Six stations and four samplings were established in the dry and
rainy seasons. A total of 72 water samples were collected for microplastic extraction using hydrogen
peroxide (H2O2) digestion, density separation with sodium chloride solution (NaCl), and filtration.
The abundance of MPs ranged from 0 to 3.83 MPs·L−1, with an average of 1.90 MPs·L−1 in the rainy
season and 0.25 MPs·L−1 in the dry season. According to the calculated coefficient of microplastics
impact, the contamination in the surface water of Luruaco Lake is “maximum” to “extreme” for fibers
with an average length of 2.05 mm and “minimum” to “average” for fragments that are 0.35 mm in
size on average. Polyester (PES, 57.9%), polystyrene (PS, 47.0%), and polyethylene terephthalate (PET,
35.3%) polymers were more abundant in surface water. The temporal variation of the MPs indicates
contamination related to the discharges of the tributary streams to the lake in the rainy season.

Keywords: freshwater; lake; microplastics; plastics pollution; surface water

1. Introduction

In the development of societies, a substantial number of synthetic materials have been
created. The introduction of these materials into nature causes aggressive impacts, and
their residues have become, in recent years, most abundant, as well as most dangerous. In
this context, as society develops, science tries to follow these advances to understand how
anthropogenic activities impact environments. A clear example is the growing pollution
by plastics. The versatility, durability, low-cost production, and resistance of plastics
make them materials with infinite applications, increasing their use in agriculture, building,
health, industry, sports, and products for personal and daily use [1,2]. A huge portion of the

Water 2023, 15, 344. https://doi.org/10.3390/w15020344 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15020344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-0990-7808
https://orcid.org/0000-0002-8527-0661
https://orcid.org/0000-0001-5181-1135
https://orcid.org/0000-0002-4516-213X
https://doi.org/10.3390/w15020344
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15020344?type=check_update&version=2


Water 2023, 15, 344 2 of 14

plastics produced annually around the world are disposed of incorrectly in inappropriate
places, generating pollution problems, whose impact on the environment is not completely
measured [3,4]. When plastic debris is exposed to physical, chemical, and biological
processes in the environment, many plastic particles, known as microplastics (MPs), are
generated. MPs are composed of several types of polymers and chemical additives, with
sizes ranging from 1 µm to 5 mm of varied shapes and colors. They are classified as primary
and secondary according to their origin. Primary MPs are produced industrially, while
secondary MPs are formed by fragmentation of macroplastics [5]. According to scientific
studies, water bodies are the main repository for microplastics, which is the main reason
why increasing research is needed to identify, characterize, and quantify these contaminants
and their associated risks. The majority of publications on this situation in Colombia have
examined the presence of microplastics in coastal systems, with limited information on
continental waters. With the aim of expanding studies on MP pollution in continental
waters, for the first time, a scientific study is carried out on the presence, abundance, and
distribution of microplastics in Luruaco Lake, Colombian Caribbean wetland system.

Luruaco Lake, which is a part of the Atlántico department complex of wetlands and
floodplains, plays a crucial role in terms of subsistence for the riverside population of this
municipality, by its provision of ecosystem services. The municipality of Luruaco (founded
in 1533) has a population of approximately 27,000 people, with a tradition in craft trades
that comes from the Mokaná–Caribbean, African, and Indigenous heritage in the area, and
which is part of the national programs in marine sciences and hydrobiological resources [6].

The high concentration of MPs found is a warning sign of the potential impact on the
biodiversity of this continental system, exposing the urgent need to expand studies and
research that provide scientific information, as well as ecotoxicological data, to evaluate
potential risks and strategic management of microplastic contaminants in lakes from the
low basin of the Magdalena River, Colombia [5,7–9].

The risk of exposure to, and contact with, fauna is directly proportional to the quantity
and permanence of microplastics in freshwater ecosystems [10]. MPs have direct effects
on aquatic organisms; for example, they make it difficult to ingest natural prey due to the
obstruction of the digestive tract and the reduction in swimming speed [11–14]. Studies
related to plastic debris indicate that its abundance in aquatic systems comes from the
surrounding terrestrial environment, demonstrating the close connection of aquatic and
terrestrial systems [15,16]. In Luruaco Lake (Colombia), anthropogenic interferences on
water body shores, as a result of activities such as livestock farming, overfishing, agri-
culture, and use of water resources for residential tasks, as well as the mouth of streams
with a high load of organic and inorganic matter, affect the environmental quality of this
ecosystem, impacting ecological, economic, and social aspects. Luruaco Lake, according to
its geological and hydrographic history, was one of the mouths of the Magdalena River,
the most important river in Colombia and one of the world’s largest (1612 km long with a
discharge volume of 7100 m3·s−1) tropical rivers [17,18].

Within the system of wetlands and floodplains of the Atlántico department, Colombia,
Luruaco Lake is a key zone for water and food supply, and there is currently no environ-
mental information that allows for the evaluation of microplastic contamination in this
ecosystem. To contribute with research that shows the presence of this contaminant in
Luruaco Lake, we quantified MPs in the surface water in different temporal variations
associated with rainy and dry periods for 2 years (2021–2022), as a result of the initial
investigation of flood-prone areas in the lower basin of the Magdalena River, Colombia.

2. Material and Methods
2.1. Field Sampling and Data Collection

Luruaco Lake is located to the southwest of the Atlántico department (Figure 1), at
25 m above sea level, with an area of 420 ha, enclosed by the Luruaco mountain range, which
is part of a mountain system with heights less than 500 m above sea level. Luruaco Lake is
an isolated body of water, without direct contact with the Magdalena River, although it is
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part of its lower basin [17,18]. Its main tributaries are the Mateo, Negro, and Limón streams
and a channel that connects it with Tocagua Lake; however, the latter was interrupted by
the construction of the Troncal del Caribe highway that connects the cities of Barranquilla-
Atlántico with Cartagena de Indias-Bolívar [19,20].
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Figure 1. Geographical location of Luruaco Lake, Colombia. Monitoring stations and the mouths of
the Limón, Mateo, and Negro streams.

Six stations and four monitoring events were established to cover the lake area and
different temporal variations associated with rainy (September–November 2021) and dry
(March–May 2022) periods. Surface water samples were collected at a depth of 30 cm,
before filtering with a 23 µm net and a 250 mL capacity collection container, and then
transferring into glass jars within 15 mL of a formaldehyde solution 10% in H2O. This
procedure was carried out until completion of a volume of 20 L of surface water/station,
taking three repetitions of 20 L of sample and storing them. The glass jars were previously
washed three times with 90% ethanol.

Lake water was monitored in situ, and measurements of temperature, pH, dissolved
oxygen, and conductivity were taken using a multiparameter (YSI ProPlus, YSI Inc., Yellow
Springs, OH, USA). Water samples were collected, preserved, and stored for ex situ mea-
surements of hardness and alkalinity, using commercially purchased physicochemical kits
(Hanna Instruments, Vöhringen, Germany).
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2.2. Laboratory Processing

Methods reported in the literature were used for the treatment of water samples and
MP extraction [21–23]. The water samples were treated with 40 mL of H2O2 (30% w/v) and
stirred (Heidolph Incubator 1000 and Heidolph Unimax 1010, Heidolph Instruments GmbH
& Co. KG, Schwabach, Germany) for 6 h at 60 ◦C to remove organic matter. Then, 100 mL of
saturated NaCl solution was added to the samples and stirred for 5 min. The samples were
left undisturbed for 24 h. The supernatant was filtered with glass microfiber filters (grade
GF/C, 1.2 µm, Whatman) and stored in petri dishes. Under a stereomicroscope (Leika
S8 Apo), a visual analysis was performed on the MPs isolated and collected on the filters
to quantify the particles and record their physical characteristics. The tpsDig and tpsUtil
programs for digitizing landmarks and outlines for geometric morphometric analyses were
used. The small plastic particles were categorized as fibers, films, pellets, fragments, and
foam. Pellets (or spheres) are manufactured for a specific purpose, primarily in the personal
care industry. The fragmentation of plastics results in small plastic particles with irregular
shapes. Compared to fragments, films are flat, flexible particles with typically smooth
edges. Foams are associated with expanded polystyrene, although there are other types,
and they are particles with a granular appearance that can deform under pressure and
have some elasticity. Fibers are defined as particles that have the same thickness along their
entire length, which must be greater than their width, and they are usually associated with
detachment from textiles and fishing nets [24,25].

2.3. µ FTIR Analysis

To identify the type of polymer, representative samples of microplastics were selected.
The suspected MPs on filters were identified using a micro-attenuated total reflectance
Fourier–transform infrared spectroscope (ATR–FTIR microscope, LUMOS II, Bruker Optics
GmbH & Co. KG, Ettlingen, Germany) equipped with a thermoelectrically cooled mercury
cadmium telluride (TE–MCT) detector and automated ATR probe (Ge crystal). Analysis
was performed with a spectral wavenumber range of 4000 and 670 cm−1, with a resolution
of 4 cm−1 and 64 scans. The obtained spectra were compared with the database for
verification (ATR-Polymer library complete (Vol. 1–4), KIMW ATR–IR Polymer libraries)
and a matching degree >75% between the sample and standard spectra was considered
acceptable [26,27].

2.4. Prevention and Control of Contamination

To minimize contamination with airborne MPs during sample collection and labora-
tory processes, inert materials and instruments such as stainless steel, glass, and aluminum
were used. All solutions were prepared with ultrapure water and later filtered. During
the sampling and laboratory stage, control experiments were carried out by placing wet
filters with distilled water (n = 3 for each set of samples) [28]. Filters from control experi-
ments were examined by the visual method under a stereomicroscope, and no MP particles
were found.

2.5. Data Analysis

The number of microplastics is expressed as a function of density by dividing the
total number of particles found in the volume of water analyzed from each station and
sampling event (MPs·L−1). The physicochemical variables of the water, as well as the shape
and color of the MPs, were analyzed using descriptive statistics. The data distribution of
physicochemical parameters and MP densities at each station and sampling event were
evaluated using the Shapiro–Wilk normality test. The Kruskal–Wallis and Friedman tests
allowed the evaluation of spatial and/or temporal changes of the physicochemical data
because the data did not follow a normal distribution. Similarly, for data with a normal
distribution, a one-way ANOVA was applied to identify the variations in MP density
between stations and sampling events. Additionally, a post hoc test (Tukey’s pairwise) was
used to estimate the statistical differences in MP density during the dry and rainy seasons.
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A generalized additive model (GAM) was used for the evaluation of the effects of
water temperature (◦C), depth (m), distance of the stations in relation to the tributary
streams of the lake (Mateo, Negro, and Limón streams in km), and precipitation (mm), with
respect to MP density (MPs·L−1). The distance between monitoring stations and streams
was determined using Google Earth Pro; precipitation was obtained from measurements
made by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM)
in the municipality of Luruaco during the months of monitoring. The CMPI proposed by
Rangel-Buitrago and collaborators was used to evaluate the impacts of microplastic shapes
on ecosystems (Table 1). This coefficient is the relationship between the total amount of
a specific form of MP (i.e., fibers and fragments) and the total number of MPs found in a
sampling unit [29].

Table 1. This coefficient evaluates the impact of different categories of microplastics in surface water
of Luruaco Lake [29].

Coefficient of Microplastics Impact (CMPI)

CMPI = Speci f ic MPs′ Shape
Total MPs′

0.0001 to 0.1: Minimum

0.11 to 0.5: Average

0.51 to 0.8: Maximum

0.81 to 1: Extreme

3. Results
3.1. Physicochemical Characterization of the Habitat

The surface temperature of the water presented an average value of 30.1 ◦C (27.1–31.9 ◦C)
during the samplings associated with the rainy period and 31.3 ◦C (29.9–35.1 ◦C) during
those associated with the dry period. The conductivity registered high values of 1224 µs/cm
(1056–1390 µs/cm) in the rainy period and 1258 µs/cm (1154–1302 µs/cm) in the dry period;
alkalinity in general was high, with an average of 313 mg/L CaCO3 (240–360 mg/L) and
297 mg/L (240–390 mg/L) in the rainy and dry periods, respectively.

Regarding the average value of dissolved oxygen, it was low at 5.64 ± 1.46 mg/L; the
lake presented moderately hard water with hardness values that ranged between 45 and
150 mg/L, with an average of 116.33 ± 9.47 mg/L. The pH of the water tended toward
acidity in the four samplings carried out and obtained higher values in S4 and S5, with an
average of 6.15 (4.0–9.5) and 5.50 (2.6–9.6), revealing maximum values in the rainy period
and minimum values in the dry period, with respect to the average of the other monitoring
stations (S1: 3.73, S2: 4.23, S3: 3.35, and S6: 4.03). There were no statistically significant
differences in the variables between samplings (F: 7.1143, p-value: 0.0683) and stations
(H: 0.1785, p-value: 0.9993).

3.2. Abundance and Distribution of Microplastics

Microplastic particles were found in surface water from the monitoring stations in
Luruaco Lake (Figure 2A), with an average range of 0.73 to 1.47 MPs·L−1. MPs density
varied spatially, with maximum average values of 1.47 and 1.39 MPs·L−1 in S5 and S4,
respectively. On the other hand, the minimum average value was 0.73 MPs·L−1 in the first
station (Figure 2A), without statistically significant differences (F: 0.2274, p-value: 0.9402),
demonstrating the importance of the dynamics of the lake water flow, where the main
movements occurred in an east–west direction, directing the residual waters of the Limón,
Negro, and Mateo streams towards the location of the S4 and S5 (Figure 2B).
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(Colombia). (B) Measured depth and constant flow of water from Luruaco Lake. Taken and modified
from Saita et al., [19].

During the season associated with rain, the density of microplastics ranged from 0.62
to 3.83 MPs·L−1, with an average of 1.41 and 2.38 MPs·L−1 in the first and second sampling,
respectively (Figure 3A,B). In contrast, the MP density in the dry season ranged from 0
to 0.63 MPs·L−1 (S3: no MP particles were found in the third sampling), with an average
value of 0.17 MPs·L−1 in the third sampling and 0.32 MPs·L−1 in the fourth sampling
(Figure 3C,D); there were statistically significant differences between the samplings in the
rainy season compared to the dry season (F: 35.59, p-value: 0.0001), supported by Tukey’s
pairwise analysis (sampling 1 and 2, p–value: <0.05; sampling 3 and 4, p-value: >0.05).

The variables analyzed in the GAM model reflected that the greatest effect on MP den-
sity was related to the rainy season, with statistically significant differences (p-value < 0.05),
together with the water temperature, which depended on this same factor (p-value < 0.1)
(Figure 4); similarly, contamination by MPs in the monitoring stations was affected by prox-
imity to the mouth of the Mateo stream, but without significant differences (Table 2), which
shows a great abundance of these particles when the rains formed streams that washed
soils and dragged waste material into the lake, mainly in the riparian areas associated with
agriculture and livestock farming.
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Table 2. Effects estimated by the Generalized Additive Model of the density of microplastics in
surface water in the Luruaco Lake, p-value: *** (<0.01), ** (<0.05), * (<0.1).

Parametric Coefficients Estimate Standard Error p-Value

Intercept 118.52 23.81 0.0075 ***

Effects df F p-value

Precipitation 1 7.91 0.01 **
Water surface temperature 1 4.29 0.05 *

Distance from Mateo Stream 1 0.52 0.48
Distance from Limon Stream 1 0.44 0.52
Distance from Negro Stream 1 0.02 0.89

Water depth 1 1.81 0.19
Total deviance explained 35.4%
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Figure 4. Relationship between the density of microplastics (MPs·L−1): (A) precipitation (mm),
(B) surface temperature of the water, (C) distance from the Mateo stream (km), (D) from the Limón
stream (km), (E) from the Negro stream (km), and (F) depth of the water (m), through a generalized
additive analysis (p-value see Table 2). Shaded areas indicate 95% confidence intervals, and black
dots represent observed data.

3.3. Typology and Color of Microplastics

Four different forms were recorded within the typology of microplastics; fibers pre-
dominated with 78.9%, followed by fragments (20.8%), foams (0.2%), and pellets (0.1%).
Furthermore, 12 colors were determined in the macroscopic analysis of the four shapes
(Figure 5). Colors such as gold (67.9%), black (17.1%), and white (11.2%) predominated
in the fragments; the colors that were most abundant in fibers were black (49.5%) and
blue (34.6%). Lastly, regarding the pellets and the foam, the predominant color was white
(Figure 5).

The fibers had an average length of 2.05 mm (0.74–4.55 mm), fragments had an
average length of 0.35 mm (0.08–1.01 mm), and pellets had an average diameter of 0.22 mm
(0.19–0.24 mm) (Figure 6).
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3.4. Polymer Type

A representative group of fibers and fragments was selected for µFTIR analysis of
particles collected at six stations and four monitoring events. The analysis confirmed that
85.2% of the particles were plastics; the remaining 14.8% corresponded to non-synthetic
materials (cotton and flax), which were removed from the dataset and excluded from
calculations. For the fibers, polyester (PES) was the most common polymer type (57.9%),
followed by polyamide (PA, nylon) with 21.0%, polypropylene (PP) with 15.8%, and
polyvinyl chloride (PVC) with 5.3%. For fragments, polystyrene (PS) and polyethylene
terephthalate (PET) were the polymers with the highest proportion, with 47.0% and 35.3%,
respectively, followed by polypropylene (11.8%) and PVC (5.9%). There was no great
variability in the compositions of MP polymers in the surface waters at the different
monitoring events.

3.5. Microplastic Contamination Status

In order to include an assessment of the impact of microplastic shapes and compare the
information with the few existing studies of microplastic concentrations in natural matrices,
the Coefficient of Microplastic Impact (CMPI) was used as an indicator (Table 3). The CMPI
recorded a “maximum” (0.79) fiber pollution impact and an “average” (0.21) fragment
impact for Luruaco Lake. Moreover, 67% of the stations obtained an “extreme” impact due
to contamination with fibers, while the same percentage was recorded for an “average”
impact due to contamination with fragments. S1 and S6 exhibited “minimal” impact
considering the fragments, but “extreme” impact using the fibers as part of the CMPI.

Table 3. Pollution status by MPs of the monitoring stations using the Microplastic Impact Coefficient
(CMPI) in fibers (F) and fragments (Fr).

Stations CMPI-F CMPI-F Mean CMPI-Fr CMPI-Fr Mean

1 0.93 Extreme 0.07 Minimum
2 0.82 Extreme 0.17 Average
3 0.66 Maximum 0.33 Average
4 0.64 Maximum 0.35 Average
5 0.84 Extreme 0.16 Average
6 0.93 Extreme 0.07 Minimum

4. Discussion

The baseline was established with respect to the study of the characterization and
evaluation of the impacts of MPs in freshwater ecosystems in the Atlántico department
and the Caribbean region, complementing the research reported in marine and coastal
environments [29–31]. In addition, there is limited information about the distribution
and abundance of MPs in freshwater ecosystems both in Colombia and in the rest of
South America [22]. Pollution by MPs in Luruaco Lake presented temporal variation
associated with the rainfall regime: 1.90 MPs·L−1 in the rainy season and 0.25 MPs·L−1

in the dry season, values higher than those recorded in Ciénaga Grande de Santa Marta,
Colombia [32].

The stations with the highest MP density were those close to the rural area, to the
southwest of the municipality (S4 and S5), as well as those with the highest agricultural
and livestock development, according to the spatial pattern of accumulation of MPs in the
surface water from Luruaco Lake. In addition, they were close to the mouths of the Negro
and Mateo streams. On the other hand, the stations near the mouth of the Limón stream
and the municipal heat of Luruaco (S1 and S6) registered lower density. There is no solid
waste management in the crop and livestock areas; accordingly, the soils are washed by
the rains and flow into the Mateo and Negro streams, before finally entering into the lake.
A similar trend was reported in investigations with other contamination indicators [19].
Similarly, the impact increases with the flow of water from the east (mouth of the Limón
stream and municipal heat) to the west.
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As the concentration of microplastics was higher in stations near the rural area com-
pared to those near the municipality, more than it being associated with the activities carried
out in each zone, it may have been influenced by the flow of the water mass. Watkins et al.
(2019) demonstrated that this MP–water flow relationship is direct [33]. This scientific study
indicated that, in areas with low water movement, the density of microplastics was higher
than in areas with higher flow, indicating that areas of low water flow are appropriate to
increase the dispersion and mobility of microparticles in surface water. This relationship is
also evident in our results, in which we found a lower density of microplastics in surface
waters of Luruaco Lake in areas close to the municipality and stream mouth, but a higher
density in areas where artisan agricultural activities are concentrated.

Regarding the typology or morphology of the MPs, the fibers recorded a value above
60% and the percentage of fragments was close to 20%, which is consistent with most
studies in freshwater systems [22]. The high number of fibers and their wide range of
colors may be related to the discharge of wastewater associated with washing clothes
in the municipal heat or on the shores of the lake [34], or to the fragmentation of the
synthetic material from the fishing nets used by the fishermen in the area. Fragment
contamination results from improper solid waste disposal, with some waste thrown from
the main highway “Troncal del Caribe” by people, or by riverside settlements directly into
the lake, which also includes runoff in the rainy season of macroplastics located in the
sediment around the ecosystem (Figure 7) [35].
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The contamination status of Luruaco Lake exhibited a tendency from high to very high
MP density, with an extreme impact of fibers and the use of different fishing nets increasing
their occurrence and abundance. These results agree with the environmental overview
of the Atlántico department, whereby what is observed in the coastal zone is reflected
in continental ecosystems; in rainy periods, the problem is magnified by the dragging of
plastic of different sizes from urban areas to the environment [29].

Scientific studies on microplastic pollution in Colombia are few and comparing our
results with other published studies can be difficult due to differences in sampling method-
ologies, monitoring and identification techniques, and microplastic concentration units.
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Additionally, factors such as human activity, population density, meteorological condi-
tions, and hydrological processes that affect the distribution, quantity, and movement
of microplastics must be considered. However, there are recent reports in the literature
using similar methodologies to determine the abundance and distribution of microplastics
in surface water of small rural lakes [36]. One study was carried out on 14 small rural
lakes in the Muskoka–Haliburton region in southcentral Ontario, Canada. The concen-
tration of microplastics in the study lakes ranged from 1.02 to 2.39 MPs·L−1, with an
average concentration of 1.78 MPs·L−1. According to our results, the determined mi-
croplastic densities were similar, values were in the range 0–3.83 MPs·L−1, with an average
of 1.07 MPs·L−1. Both studies also agreed that fibers and fragments were the dominant
microparticle shapes identified.

Regarding the MP composition found in Luruaco Lake, µFTIR analysis indicated
four types of polymers detected for fibers (polyester, polyamide, polypropylene, and
polyvinyl chloride) and two for fragments (polystyrene and polyethylene terephthalate).
Polyester (PES, 57.9%), polystyrene (PS, 47.0%), and polyethylene terephthalate (PET, 35.3%)
polymers were more abundant in surface water.

5. Conclusions

These results are part of a scientific investigation that evaluates, for the first time,
the abundance and distribution of microplastics in the Colombian Caribbean wetland
complex. Four different forms of microplastics (fibers, fragments, foams, and pellets) were
found in all surface water samples collected, with fiber and fragment forms predominating,
with average sizes of 2.05 mm and 0.35 mm, respectively. Six types of polymers (PES, PA,
PP, PVC, PS, and PET) were detected in the composition of plastic microparticles. Most
MPs detected in surface water were of fiber or fragment form, of gold and black color,
and composed of polyester, polystyrene, and polyethylene terephthalate. The density of
secondary microplastics in surface water of Luruaco Lake is higher in the rainy season and
in areas with low water flow. Given that artisanal fishing is the main activity, and that
the fibers are widely distributed, it is likely that this activity contributes to microplastics
pollution. Basic information is needed to estimate the impact and risk of exposure to these
particles, along with the development of education and environmental policies to reduce,
regulate, and mitigate the effects of MP contaminants in aquatic ecosystems, mainly in
flood seasons, in order to preserve the water quality, biodiversity, and attractiveness of
the ecosystem.
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