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Abstract: The effective mineralization of nitrofurazone (10–100 mg L−1) was performed in aqueous
solutions in the presence of chloride ions by electrochemical treatment. The destruction of the organic
pollutant molecules was due to their interaction with active oxygen- and chlorine-containing species
forming at the inert anode (Pt/Ti or BDD) during electrolysis. Measurements of nitrofurazone
concentration, chemical oxygen demand (COD) and total organic carbon (TOC) were used to estimate
the removal efficiency of the pollutant. Both the pollutant oxidation rate and the degree of its
mineralization were higher for the BDD anode due to the higher anode potentials on it in the course
of electrolysis, which provides a high rate of active oxidizer species generation. As a result, practically
full nitrofurazone molecule destruction (>99%) was achieved in 30 min at an anodic current density of
0.1 A cm−2, a volume current density of 1.33 A L−1 and pH 2 using BDD anodes. On the other hand,
the nitrafurazone degradation efficiency was about 95% for Pt/Ti anodes under the same conditions.
Additionally, byproducts of nitrofurazone electrooxidation were investigated by means of liquid
chromato-mass-spectrometry (LC/MS). It was found that the initial decolorization of nitrofurazone
solution, which occurs during the first 5 min of electrolysis, is due to the formation of a dichloro
derivative of nitrofurazone, which causes the destruction of the π−conjugated bond system. Further
electrolysis resulted in the almost complete destruction of the dichloro derivative within 30 min of
electrochemical treatment.

Keywords: nitrofurazone; indirect electrochemical oxidation; mineralization; wastewater treatment

1. Introduction

The degradation of surface waters is one of the key issues of the modern world, and it
has attracted attention worldwide. Population growth, an increase in industrial production,
as well as the development and implementation of new materials and technologies have led
to the complicated composition of wastewater. As a result, current wastewater treatment
methods are ineffective. For this reason, the development of innovative, highly effective
methods of wastewater treatment is relevant. Specific pollutants, the neutralization of
which is undoubtedly necessary, are active pharmaceutical ingredients (APIs). Increasing
the use of antibiotics in agriculture results in a significant increase in API emissions into
the environment and, in particular, in the hydrosphere [1–3]. The bioaccumulation of
APIs, the inhibition of vital activities of microorganisms, the formation of resistant and
highly toxic complexes, biocenoses degradation and the emergence of resistant strains
of microorganisms should be mentioned among the negative consequences of the entry
of APIs into the environment [4–7]. The contamination of domestic wastewater by APIs
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is another consequence of their use, which can lead to the complete inactivation of deep
biological wastewater treatment and, therefore, the discharge of wastewater with a high
content of nutrients into various water bodies, which causes eutrophication. According to
various sources, antibiotics and their metabolites are already found in both natural [8,9]
and domestic wastewater [10]. Solving this problem is urgent, not only for countries with
significant sources of fresh water [11], but also for countries that produce drinking water
through the desalination of sea or ocean water [12–18]. Antibiotics and their metabolites
are just the tip of the iceberg. The chemical contamination of wastewater by other forms of
APIs is, essentially, not controlled. Nonsteroidal anti-inflammatory drugs, hormonal drugs
(contraceptives), antihistamines, antibacterials (with the exception of antibiotics), antivirals
and painkillers, unlike antibiotics, are not subject to strict control in many countries. For
this reason, they are used far more often. Their entry into the environment can exceed the
volumes of antibiotics entry by an order of magnitude [19,20]. Since the health effects of
these pollutants have not yet been fully studied, they can be hazardous for both humans
and nature.

Many studies devoted to the issues of the purification of both natural waters and
wastewater from various kinds of pharmaceutical substances have been recently pub-
lished [21–26]. They describe the treatment of model or real wastewater containing less
than 1 mg L−1 APIs. Advanced oxidation processes (AOPs) are traditionally used for the
destruction of API molecules. The combination of catalytic photo-oxidation processes and
oxidation with Fenton’s reagent and ozone makes it possible to destruct microamounts of
APIs with high efficiency and the formation of a minimal amount of organic metabolites.
The high efficiency of AOPs is due to the formation of highly active oxidizers, namely, the
hydroxyl radical, hydroperoxyl radical, ozone and other species, which are significantly
superior in their oxidative power to most individual oxidative agents. Data on the redox
potentials of some oxidizers generated in AOPs are given in Table 1 [27–29].

Table 1. Standard oxidation potentials of some oxidizers in aqueous solutions.

Oxidant OH• O3 H2O2 Hydroperoxyl Radicals Cl2 O2

Standard oxidation
potential

E◦298.15/V vs. SHE
2.80 2.07 1.77 ~1.70 1.36 1.23

Despite all of the advantages described above, the use of AOPs is only reasonable for
trace amounts of APIs in waste or natural waters. The treatment of more concentrated
wastewater (c(APIs) > 10 mg L−1) becomes either insufficiently effective or too expen-
sive [30,31]. The use of supercritical water oxidation (SCWO) is relevant in these cases.
Although SCWO has demonstrated high efficiency in wastewater purification, its applica-
tion requires high energy consumption and only becomes economically feasible if there
is a significant amount of organic compounds in the treated water, which are a source of
thermal energy for the process.

Untreated pharmaceutical industry wastewater contains relatively high (>5 mg L−1)
concentrations of nitrofurazone. The use of AOPs associated with treatment with ozone
or Fenton’s reagent is not effective in this case, since it will lead to a large consumption
of the reagents. In addition, the turbidity of real wastewater can be rather high, which
makes photochemical methods inefficient. Electrooxidation is one of the methods for
AOPs, which can be used alone or in combination with other methods for wastewater
treatment. It is suitable for the local purification of industrial wastewater containing high
concentrations of APIs. Electrooxidation can provide a high degree of mineralization of
pollutants, while the residue amounts can be further oxidized using advanced oxidative
processes [32–35]. Electrochemical treatment has recently been successfully applied to the
degradation of paracetamol [36] and tetracycline [37] in aqueous solutions. The efficiency of
electrooxidation for the decomposition of such difficult-to-oxidize compounds, such as non-
ionic surfactants based on ethers, was shown in [38]. The mechanism of electrooxidation
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is mainly divided into direct and indirect mechanisms [39]. Direct oxidation means that
the organic molecule is oxidized on the anode by direct electron transfer. The processes
of direct oxidation are very important in electroorganic synthesis; however, their role in
electrodestruction is limited. Indirect oxidation implies the generation of active species at
the anode (Table 1), which further react with pollutant molecules. The full mineralization
of organic molecules during the processes of indirect oxidation may be due to the high
oxidation power of species generated during electrolysis.

Nitrofurazone ((2E)-2-[(5-Nitro-2-furyl)methylene]hydrazine carboxamide) (Figure 1)
is antibiotically active against both Gram-positive and Gram-negative bacteria. Its chemical
formula is given below:
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Figure 1. Chemical formula of nitrofurazone.

The use of nitrofurazone in the treatment of animal diseases, in particular, in animal
husbandry, is still widespread. Moreover, it is still very popular as a topical solution for
the treatment of tonsillitis in Russia and some other countries. Therefore, the neutraliza-
tion of wastewater containing nitrofurazone is an urgent task, which should be solved
in the near future taking into account environmental management requirements [40–42].
Since synthetic pollutants are not removed by conventional wastewater treatment plants,
the costs of neutralizing them can be high [40]. The rational choice of electrode material
and electrolysis conditions is needed for cost reduction [41]. In this study, nitrofurazone
was chosen as a model active pharmaceutical substance to evaluate the possibilities and
limitations of electrochemical methods for the destruction of small API molecules. Ni-
trofurazone is a heterocyclic compound containing electron-withdrawing groups, which
hinders its oxidation. It should be noted that data on the indirect electrochemical oxidation
of nitrofurazone, the degree of its mineralization, as well as the products of its electrochem-
ical transformations, are lacking in the literature. A quite complex photoelectrochemical
method for nitrofurazone removal was proposed in [43], in which about 80% of pollutant
removal was achieved within 10 h.

Electrochemical treatment methods can be applied for the mineralization of nitrofu-
razone [44]; however, a number of issues need to be solved before using them. Firstly,
the electrochemical oxidation of organic pollutants of complex chemical nature can be
incomplete, which results in the accumulation of various metabolites in aqueous solutions
under the treatment. The incomplete oxidation products can be highly toxic, and their
accumulation in wastewater is completely unacceptable. Therefore, the identification of
metabolites is necessary for the evaluation of the possibility of using electrochemical meth-
ods. Secondly, it is necessary to determine the time for wastewater treatment, as well as to
choose the optimal solution composition and electrolysis conditions. Based on the above,
the aims of the present study were: (1) to estimate the efficiency of the use of electrochem-
ical oxidation for wastewater containing relatively high concentrations (10–100 mg L−1)
of nitrofurazone; (2) to find a degree of organic pollutant mineralization in the course of
electrochemical treatment; (3) to identify metabolites of nitrofurazone electrooxidation and,
therefore, to estimate the safety of electrochemical methods for wastewater treatment.

2. Material and Reagents

Aqueous solutions containing 10–100 mg L−1 nitrafuranzone were used for electrooxi-
dation. To prepare them, the required amount of Avexima© (Russian Federation), a drug
based on nitrofurazone, was dissolved in distilled water. According to the manufacturer,
one pill contains 20 mg nitrofurazone, 100 mg sodium chloride and excipients: tartaric
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acid, sodium bicarbonate, sodium carbonate, macrogol and medium molecular weight
povidone. The drug was crushed and ground in an agate mortar. After that, the necessary
amount of the powder (in terms of nitrofurazone) was weighed using an analytical balance
(CAS CAUW-120D, South Korea) and dissolved in 0.75 L of deionized water. The solution
was stirred using a magnetic stirrer with slight heating of the solution (t ≈ 50 ◦C). After
that, the solution was filtered from insoluble impurities using the Büchner funnel with
the Millipore membrane (0.45 µm pore size, 47 mm diameter). The resulting solution was
transparent. The concentration of nitrofurazone in the prepared solutions was determined
by its specific reaction with a 10 wt.% solution of decarbonized sodium hydroxide resulting
in the appearance of an orange color. The optical density of solutions (λ = 450 nm) was
measured on a photoelectric colorimeter DR 2800 (HACH, Ames, IA, USA).

The concentration of chloride ions in solutions under electrochemical treatment varied
within 0.001–0.010 M, which was five times higher than the concentration of nitrofurazone
and corresponded to the level of chloride ions in natural waters. The oxidation of chloride
ions on the inert anode, followed by the interaction of oxidation products with water
molecules, leads to the formation of highly-active chlorine-containing species, e.g., HClO,
OCl• in the solution under electrochemical treatment. Since an activation barrier of re-
dox reactions involving them is low, this facilitates the destruction of organic pollutant
molecules. However, the interaction of chlorine-containing species with organic molecules
can lead to the formation of toxic chlorine derivatives. Therefore, it is necessary to control
their formation and avoid their accumulation in treated aqueous solutions.

Preliminary experiments on the electrochemical oxidation of nitrofurazone were car-
ried out in cells with both separated and undivided cathode and anode compartments. As
was later shown, the effective oxidation of nitrofurazone is only possible in cells with sepa-
rated spaces (see below); it occurs in the anolyte. A cation exchange membrane (Nafion®)
was used (Figure 2) in the experiments on nitrofurazone electrooxidation. It allows for
stabilizing the acidity of the anolite. Since the hydronium ions transfer number is large
enough, H+-ions form during electrolysis at the anode transfer through the membrane
without causing excessive acidification of the solution in the anode compartment of the
electrochemical cell.
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Figure 2. Electrochemical reactor. 1-DC source, 2-anode, 3-cathode, 4-anodic compartment
(V = 150 mL), 5-cathodic compartment (V = 50 mL), 6-cation exchange membrane.

The volume of the anolyte was 150 mL. Sulfuric acid was added to the solution under
electrochemical treatment in such a way that its concentration was ~0.01 M in order to
increase its electrical conductivity and facilitate the oxidation of the organic pollutant.
The cathodic compartment of the electrolyzer (V = 50 mL) was filled with 0.01 M H2SO4
(pH ≈ 2.0).
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The electrooxidation of nitrafurazone was carried out on platinized titanium or boron-
doped diamond (BDD) anodes with Sgeom = 2 cm2. A counter electrode was a mesh of
platinized titanium. Electrolysis was performed in galvanostatic mode using a DC source
DAZHENG PS-305D (China). The solution was stirred with a magnetic stirrer. In the course
of the preliminary experiments, it was found that the rapid decoloration of the solution
under electrochemical treatment, and, hence, the oxidation of nitrofurazone, occurs when
the current passing through the cell is more than 0.15 A. For this reason, I = 0.2 A was
chosen for the electrochemical destruction of a pollutant. This value corresponds to the
anodic current density of 0.1 A cm−2 and the volume current density per the volume of the
anolyte of 1.33 A L−1.

The efficiency of the nitrofurazone removal was calculated using the formula:

Removal efficiency (%) =
C0 − Ci

C0
·100%,

where C0 (g L−1) is the initial concentration of the pollutant, Ci (g L−1) is the concentration
of the pollutant after electrochemical treatment.

The rate of pollutant degradation can be expressed by the formula [42]:

–
dC
dt

= k·Cα·C(Ox)β,

where C (g L−1) is the concentration of the pollutant, t (min) is the treatment time, k
is the Arrhenius constant in the relevant units, C(Ox) (mol L−1) is the concentration of
active oxidizing species in the solution, which is approximately constant in steady state
electrolysis. Under conditions of constant C(Ox), one can write:

−dC
dt

= k′·Cα

If the reaction obeys a first order equation (α = 1):

−dC
dt

= k′·C, and

C = C0·e−k′t

where k′ is the rate constant (min−1). Therefore, the dependence of ln C vs. t is a straight
line in the case of the first-order equation, which makes it possible to determine the
rate constant.

A digital potentiostat IPC-Pro MF (Volta, Russian Federation) was used for voltam-
metric measurements. The potential of the working electrode was set and measured versus
the Ag/AgCl reference electrode in saturated KCl solution. In the present paper, all elec-
trode potentials are given against this electrode unless otherwise stated. The processing of
experimental data was performed using Origin 8® software (Cheshire, CT, USA).

To estimate the degree of organic pollutant destruction, the chemical oxygen demand
(COD), total organic carbon content (TOC) and the open-circuit potential of Pt/Pt electrode
(ORP) were measured. In addition, since formaldehyde and monobasic carboxylic acids
can potentially be formed during electrooxidation, it is also necessary to determine their
concentrations in the solution under electrochemical treatment. The color reaction with
phenylhydrazine and potassium ferricyanide in an alkaline medium was used for the
determination of formaldehyde, and the reaction with ammonium metavanadate was used
for carboxylic acid detection.

The identification of organic metabolites that can potentially accumulate in aqueous
solutions of nitrofurazone in the course of electrochemical treatment was performed using
the HPLC-MS technique. The analysis was carried out on a hybrid mass-spectrometer
for tandem mass spectrometry QTrap 3200 AB Sciex (Canada). The device was equipped
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with two ion sources: Turbo Spraytm (electrospray ionization) and Heated Nebulizertm
(chemical ionization at atmospheric pressure). The separation of organic substances was
performed using Acclaim RSLC. The sample was loaded in solvent A (0.5% aqueous
solution of formic acid) followed by gradient elution with solvent B (acetonitrile) over
39 min according to the following program: 0.00–2 min—20% B, 2–31 min—20–100% B,
31–35 min—100% B, 35.1–39 min—20% B. A full survey mass scan was performed in the
interval of an m/z range of 50–1070.

The use of the HPLC-MS technique was due to the complex chemical nature of the
mixtures of species formed during electrolysis. Intermediates formed in the course of
electrochemical treatment have similar chemical structures, and it is necessary to separate
them before, for instance, NMR analysis. This was beyond the scope of this study.

3. Results and Discussion
3.1. Electrochemical Behavior of Nitrofurazone

According to the literature data, nitrofurazone is electrochemically active in aque-
ous solutions [45,46] due to easily reduced nitro groups in its molecule. Nitrofurazone
reduction waves were used for its quantitative determination by means of electrochemical
sensors [46]. The mechanism of nitrafurazone electroreduction is quite complex, includes
several electrochemical stages and finally leads to the formation of a hydroxylamine (RN-
HOH) derivative. The route of nitrofurazone electrochemical reduction depends on both
the electrode material and the pH of the solution, and can generally be represented as
follows [46]:

R–NO2 + e � R–NO2
•−

R–NO2
•− + 2 H+ + e→ R–NO + H2O

R–NO + 2 H+ + 2e→ R–NHOH.

Nitro radicals forming at the first stage of nitrafurazone electroreduction react with
oxygen molecules under aerobic conditions, resulting in the formation of suboxide rad-
icals, which can later be transformed into hydrogen peroxide. It is very likely that the
antimicrobial activity of nitrofurazone solutions is due to these reactions.

Voltammetric measurements showed two reduction waves of nitrofurazone in acidic
solution at the Pt/Ti electrode (Figure 3). The redox transitions are irreversible because
both the electrode potentials and the electrical charges corresponding to them depend on
the scan rate.

There were no responses associated with the electrochemical transformation of nutro-
furazone in the anodic region of potentials. The destruction of nitrofurazone molecules
at high anodic potentials is due to their interaction with highly reactive oxygen- (O2

•−,
HO2

•−, etc.) or chlorine- (ClO•, HClO) containing species generated at the anode [47].
From a practical point of view, anodic oxidation is preferable for wastewater treatment
since it can lead to the complete destruction of organic molecules, which avoids the ac-
cumulation of toxic metabolites in wastewater. The cathodic and anodic compartments
of the electrochemical cell should be separated to prevent the useless consumption of
the electrical charge in the reduction of nitrofurazone at the cathode and the subsequent
oxidation-formed products at the anode. In addition, the interaction between reactive
intermediates of the cathode and anode reaction results in the formation of unpredictable
products during the electrochemical treatment, the potential danger of which is unknown.
The separation of the cathode and anode compartments of the electrolytic cell avoids the
mixing of cathodic and anodic reaction products.
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Figure 3. Cyclic voltammograms in solution of nitrafurazone (26.7 mg L−1) obtained by dissolving
Avexima® in 0.01 M H2SO4. Numbers I and II correspond to the redox transitions of nitrafurazone
in the cathodic region of potentials (cat—redox transitons on the cathodic scans of CVs, an—redox
transitions on the anodic scans of CVs). See comments in the text.

The use of a cation-exchange membrane prevents the acidification of anolytes due to
the transport of hydronium ions formed during water molecule oxidation through them
toward the cathode. The solution containing nitrofurazone should be placed into the anodic
compartment of the electrolyzer (see above). All subsequent experiments were performed
under such conditions.

3.2. Electrooxidation of Nitrafurazone

According to the optical density of solutions measurements (λ = 450 nm), nitrafura-
zone is effectively oxidized at a platinized titanium anode (Figure 4a). Decoloration of
the solution occurs in the first 10 min of electrolysis. The color of nitrofurazone is due
to the π–π* electron transition in the π-conjugated system of the molecule. Electrooxida-
tion leads to the destruction of the system of π-conjugated bonds, which results in the
disappearance of the absorption maximum at 320–400 nm in the UV-Visible spectrum
(Supplementary Figure S1).
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The degree of nitrafurazone destruction reaches ca. 95% for 30 min of electrolysis. The
values of chemical oxygen demand (COD) and total organic carbon (TOC) characterizing
water quality symbatically diminish with a decrease in the concentration of nitrafurazone
(Figure 4b).

The rate of nitrofuranone oxidation slows down 10–15 min after the start of electrolysis
using Pt/Ti anodes (Figure 4a,b). It is rather difficult to exactly explain this effect at
this stage of the study. It can be assumed that various intermediates formed during
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nitrofurazone oxidation are adsorbed on the Pt surface, affecting the kinetics of oxygen
evolution. As a result, the concentration of active species in the bulk of the solution
decreases, causing a decrease in the nitrofurazone oxidation rate. The COD is rather high
after 10–15 min of electrolysis. Later, the rate of nitrofurazone oxidation increases again
(Figure 4a). This is probably due to the oxidation of inhibing species on the electrode surface.
A decrease in COD to ~60 mg O2 L−1 occurs after 30 min of electrochemical treatment. In
addition, monocarboxylic acids are not detected in the solution after electrolysis. These
results might be considered satisfactory.

However, the residual COD of about 60 mg O2 L−1 after 30 min of electrolysis can
be considered as being high enough. Similarly, in solutions containing 13.3 mg L−1 of
nitrofurazone, TOC reduces from 4.85 mg L−1 to 3.17 mg L−1 in 15 min of electrochemical
treatment (Table 2). Further electrolysis leads to a decrease in TOC value, though only to
2.48 mg L−1.

Table 2. The TOC values after electrolysis using Pt/Ti and BDD anodes. The initial concentration of
nitrofurazone is 13.3 mg L−1.

Time of Electrolysis, min
TOC, mg L−1

Pt/Ti BDD

0 4.85 4.85

15 3.17 1.87

30 2.48 0.85

Therefore, the mineralization of nitrofurazone is not quite complete after electro-
chemical treatment using Pt/Ti anodes. In addition, formaldehyde is formed during
electrochemical treatment (Figure 4c). This result can be considered as unfavorable due to
the high toxicity of formaldehyde.

A more complete destruction of nitrofurazone after electrochemical treatment is highly
desirable. This issue can be solved using the anode with a higher positive electrode potential
during electrolysis. A more positive value of electrode potential promotes the formation
of highly active oxygen- and chlorine-containing species, which will then destroy organic
pollutants molecules. Boron-doped diamond (BDD) is an appropriate electrode material
for this purpose since its oxygen evolution potential is 2.06 V (j = 0.1 A cm−2). This value is
210 mV more positive than that of the Pt/Ti anode (1.85 V, Figure 5).

The difference in electrode potentials at which oxygen evolution occurs on Pt/Ti
and BDD anodes is due to the different mechanisms of this reaction in catalytic and
non-catalytic electrodes. The evolution of oxygen on platinum proceeds through various
oxygen-containing species (Pt–OHads and others) adsorbed on the electrode surface. In
contrast, outer sphere electron transfer takes place in the case of the BDD anode. However,
as voltammetric experiments have shown, nitrofurazone does not participate in electro-
chemical reactions in the anodic potential region. The oxidation of nitrofurazone molecules
is due to its interaction with active oxygen- and chorine-containing species accumulated
in the solution in the vicinity of the anode. The difference in both the concentration and
chemical nature of these species should lead to different routes of nitrofurazone oxidation.
It is highly likely that the difference in oxidation rates is explained this way.

Experiments on the electrochemical oxidation of nitrofurazone have shown that the
efficiency of the BDD anode is much higher compared to the Pt/Ti anode. The concentration
of nitrofurazone dropped to zero in the first half an hour of electrolysis; therefore, the
degree of its destruction was about 100% (Figure 6a). This conclusion was confirmed by
the residual COD (18.0 mg O2 L−1) and TOC (<1 mg L−1) values (Tables 2 and 3).
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Table 3. The changes in COD and formaldehyde concentration during electrolysis with BDD anodes.
The initial concentration of nitrofurazone is 13.3 mg L−1

.
Time of Electrolysis, min COD, mg O2 L−1 Formaldehyde Concentration, mg L−1

0 140 <0.1

15 45 <0.1

30 18 <0.1

It is notable that formaldehyde is not formed in the solution during electrolysis,
which makes the purification process safer than in the case of using Pt/Ti anodes (Table 3).
Reducing the concentration of nitrofurazone to practically zero occurred for the investigated
initial concentration in the interval 10–100 mg L−1 during 30 min of electrolysis. The optimal
concentration of chloride ions should be considered in the range of 0.002–0.005 mol L−1,
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obtained after dissolving the Avexima tablet in distilled water and corresponding to its
concentration in tap water. The rate of nitrofurazone mineralization slows down when the
concentration of chloride ions in the solution is less than 0.002 mol L−1. On the other hand,
chlorine-worsening working conditions occur when the concentration of chloride ions is
more than 0.005 mol L−1.

The value of the redox potential (ORP) of nitrofurazone solution is equal to 0.435 V
(versus standard hydrogen electrode, s.h.e, pH 2.0) before electrochemical treatment. It
increases to 0.90 V (s.h.e, pH 2.0) after 30 min of electrolysis. The highly positive value of
ORP indicates that the solution is well oxidized.

It should be noted that, as shown by the ICP-MS analysis of solutions after electrolysis,
no degradation of electrode materials (c(Pt) < 0.1 ppb, c(Ti) < 0.5 ppb) was detected.

The kinetics of nitrofurazone electrooxidation using the BDD anode can be described
by the first-order equation (R2 = 0.94, Figure 6b). The rate constant is determined to be
0.16 min−1 for BDD. The data for the Pt/Ti anode do not linearize well in the coordinates
of the first-order equation (R2 = 0.76). Apparently, this is due to the complicated kinetics
of nitrofurazone oxidation during electrolysis using this anode. Nevertheless, the rate
of nitrofurazone oxidation is 2–2.5 times higher for the BDD anode. Therefore, one can
conclude that BDD is a more preferable anode material both in terms of efficiency and
oxidation rate. Energy consuption for the complete neutralization of nitrofurazone is
estimated to be equal to 70 W·h mg−1 (BDD anode).

The better efficiency of the BDD anode compared to the Pt/Ti anode is due to the
different mechanisms of oxygen evolution on them (see above). High positive electrode
potentials at the BDD anode during oxygen evolution promote the formation of highly
active oxygen-containing species in the volume of the treated solution. This results in the
effective destruction of organic molecules.

The removal rate of nitrofurazone by electrolysis was higher compared to a water-
splitting bio-photoelectrochemical cell, where about 80% of NFZ removal was achieved
within 10 h of treatment [43]. An enhanced coupling photocatalysis and biodegradation
method for nitrofurazone removal was proposed in [48]. In a cited article, the concentration
of nitrofurazone decreased from 5 to 1 mg L−1 in 30 min of treatment; i.e., 80% removal of
the pollutant was achieved. From this point of view, the results obtained for electrolysis
with the BDD anode can be considered promising.

3.3. Identification of Products

The identification of metabolites of organic pollutants oxidation is necessary as they
may be potentially hazardous. In the present study, this was carried out using Liquid
Chromatography Tandem Mass Spectrometry (LC-MS-MS). Mass spectra were recorded
in both positive and negative ions. As shown by mass spectrometry experiments, the
nature and composition of intermediates formed at Pt/Ti and BDD anodes in the course of
nitrofurazone oxidation are practically the same. The difference between these two anodes
lies in the rate of accumulation and the consumption of intermediates.

Since nitrofurazone is an electron acceptor, the spectrum of nitrofurazone was observed
in negative ions at a retention time of 0.3–0.5 min (Figure 7a,b).

The line at m/z = 198 corresponds to the ions formed upon ionization of a nitrofu-
razone molecule. In addition, associates with higher molecular weight are present in the
mass spectra. Lines at m/z 269–272 can be assigned to ions formed upon the ionization of
associates of nitrofurazone molecules with semicarbazide. It is known that semicarbazide
is accumulated in the solutions of nitrafurazone as a product of its spontaneous decomposi-
tion [49]. Associates between nitrofurazone and semicarbazide molecules are formed due
to hydrogen bonds between nitro and amino groups. The peaks with long retention times
(5.2 min, 5.6 min, 8.6 min) seem to be associated with more complex associates, since they
correspond to large m/z values in the mass spectrum.
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electrochemical treatment for 30 min, BDD anode.

Lines of nitrofurazone disappeared in the mass spectrum after 30 min of electrolysis
using BDD anodes (Figure 7c), which corresponds to the results of its concentration deter-
mination. The mass spectrum of the solution after electrolysis only contained residual lines
of low intensity.

The nature of the intermediates formed during electrochemical treatment is better seen
in the mass spectra recorded in positive ions.

The peak at tR = 3.9 min present in the chromatogram was recorded in positive ions
already in the initial solution of nitrofurazone (Figure 8). Its intensity increased during
the first minutes of electrochemical treatment, reaching a maximum after ca. 5 min (Pt/Ti
anode) and after ca. 2 min (BDD anode) after the start of electrolysis. After that, the intensity
of this peak decreased and finally became negligible after 30 min of current passing.
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The ion with m/z = 349 dominates in the mass spectrum of the peak with tR = 3.9–4.0 min;
there are also ions with m/z = 351 and 353. A difference in m/z value by two units indicates
the presence of chlorine atoms in the molecule. The mass of the ion corresponds to the
protonated form of 5-nitro-2-furaldehyde azine [M–H]+ with two chlorine atoms. The
structure of the discussed molecule and the pathway of its formation can be represented as
follows (Figure 9):

Water 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 

 
Figure 9. Chemical formula of the product of the addition of chlorine to the azine structure and the 
route of its formation. See comments in the text. 

According to [50], 5-nitro-2-furaldehyde azine is formed upon the chlorination of 
aqueous solutions of nitrofurazone. The initial decoloration of nitrofurazone solution is 
probably due to the destruction of the system of conjugated π-bonds in its molecule. The 
chlorination of azines can occur by the type 1-4 addition in the azine fragment [51]. The 
mass spectrum also contains ions with m/z = 365, 367, and 369, which differs from the 
previous three by 16. It is possible that this is the product of the addition of water and the 
elimination of two hydrogen atoms. 

The discussed intermediates accumulate in the first minutes of electrochemical treat-
ment; however, they are destroyed by further electrolysis. 

The chromatogram of the solution after 5 min of electrooxidation (Figure 8) also con-
tains peaks (tR = 4.8, 5.7, 6.1 min) corresponding to other intermediates formed during 
nitrofurazone electrooxidation. There are no lines different by 2 units of m/z in their mass 
spectra; therefore, their molecules do not contain chlorine atoms. The proposed structures 
of oxidation products are given in Table 4. 

Table 4. The proposed products of nitrofurazone oxidation (BDD anode, 5 min). 

Retention Time, 
tR, min Dominant Peak, m/z Proposed Structure 

3.9 351, 353 

 

4.8 265 

 

N
+ O

N

O
-

O
N

+O

N

O
-

O

Cl Cl

ON
+

O

O
– N

O N
+

O

O
–

N

ON
+

O

O
– N NH

O

NH2

Cl2

O
N

+
O

O
– N

O
N

+

O

O
–

N

Cl

Cl

Anodic oxidation

2Cl
- -2e

( III )

N
+ O

N

O
-

O
N

+O

N

O
-

O

Cl Cl

N
+ O

N

O
-

O
NH

O

N OH

Figure 9. Chemical formula of the product of the addition of chlorine to the azine structure and the
route of its formation. See comments in the text.

According to [50], 5-nitro-2-furaldehyde azine is formed upon the chlorination of
aqueous solutions of nitrofurazone. The initial decoloration of nitrofurazone solution is
probably due to the destruction of the system of conjugated π-bonds in its molecule. The
chlorination of azines can occur by the type 1–4 addition in the azine fragment [51]. The
mass spectrum also contains ions with m/z = 365, 367, and 369, which differs from the
previous three by 16. It is possible that this is the product of the addition of water and the
elimination of two hydrogen atoms.

The discussed intermediates accumulate in the first minutes of electrochemical treat-
ment; however, they are destroyed by further electrolysis.

The chromatogram of the solution after 5 min of electrooxidation (Figure 8) also
contains peaks (tR = 4.8, 5.7, 6.1 min) corresponding to other intermediates formed during
nitrofurazone electrooxidation. There are no lines different by 2 units of m/z in their mass
spectra; therefore, their molecules do not contain chlorine atoms. The proposed structures
of oxidation products are given in Table 4.

Oxidative polycondensation reactions are responsible for the formation of oxygen-
containing intermediates of nitrofurazone. One of the possible reaction paths is given in
Figure 10.

The potential toxicity of the resulting nitrofurazone oxidation intermediates was
previously not known. It seems that it is advisable to apply an approach based on the use
of neural networks and that published in [52] in order to evaluate it. Nevertheless, it is
very important that these intermediates undergo further oxidation during electrolysis with
BDD anodes, which leads to the complete mineralization of organic pollutants.
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Figure 10. One of the possible reaction paths of nitrofurazone oxidative polycondensation.

Table 4. The proposed products of nitrofurazone oxidation (BDD anode, 5 min).

Retention Time, tR, min Dominant Peak, m/z Proposed Structure

3.9 351, 353

Water 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 

 
Figure 9. Chemical formula of the product of the addition of chlorine to the azine structure and the 
route of its formation. See comments in the text. 

According to [50], 5-nitro-2-furaldehyde azine is formed upon the chlorination of 
aqueous solutions of nitrofurazone. The initial decoloration of nitrofurazone solution is 
probably due to the destruction of the system of conjugated π-bonds in its molecule. The 
chlorination of azines can occur by the type 1-4 addition in the azine fragment [51]. The 
mass spectrum also contains ions with m/z = 365, 367, and 369, which differs from the 
previous three by 16. It is possible that this is the product of the addition of water and the 
elimination of two hydrogen atoms. 

The discussed intermediates accumulate in the first minutes of electrochemical treat-
ment; however, they are destroyed by further electrolysis. 

The chromatogram of the solution after 5 min of electrooxidation (Figure 8) also con-
tains peaks (tR = 4.8, 5.7, 6.1 min) corresponding to other intermediates formed during 
nitrofurazone electrooxidation. There are no lines different by 2 units of m/z in their mass 
spectra; therefore, their molecules do not contain chlorine atoms. The proposed structures 
of oxidation products are given in Table 4. 

Table 4. The proposed products of nitrofurazone oxidation (BDD anode, 5 min). 

Retention Time, 
tR, min Dominant Peak, m/z Proposed Structure 

3.9 351, 353 

 

4.8 265 

 

N
+ O

N

O
-

O
N

+O

N

O
-

O

Cl Cl

ON
+

O

O
– N

O N
+

O

O
–

N

ON
+

O

O
– N NH

O

NH2

Cl2

O
N

+
O

O
– N

O
N

+

O

O
–

N

Cl

Cl

Anodic oxidation

2Cl
- -2e

( III )

N
+ O

N

O
-

O
N

+O

N

O
-

O

Cl Cl

N
+ O

N

O
-

O
NH

O

N OH
4.8 265

Water 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 

 
Figure 9. Chemical formula of the product of the addition of chlorine to the azine structure and the 
route of its formation. See comments in the text. 

According to [50], 5-nitro-2-furaldehyde azine is formed upon the chlorination of 
aqueous solutions of nitrofurazone. The initial decoloration of nitrofurazone solution is 
probably due to the destruction of the system of conjugated π-bonds in its molecule. The 
chlorination of azines can occur by the type 1-4 addition in the azine fragment [51]. The 
mass spectrum also contains ions with m/z = 365, 367, and 369, which differs from the 
previous three by 16. It is possible that this is the product of the addition of water and the 
elimination of two hydrogen atoms. 

The discussed intermediates accumulate in the first minutes of electrochemical treat-
ment; however, they are destroyed by further electrolysis. 

The chromatogram of the solution after 5 min of electrooxidation (Figure 8) also con-
tains peaks (tR = 4.8, 5.7, 6.1 min) corresponding to other intermediates formed during 
nitrofurazone electrooxidation. There are no lines different by 2 units of m/z in their mass 
spectra; therefore, their molecules do not contain chlorine atoms. The proposed structures 
of oxidation products are given in Table 4. 

Table 4. The proposed products of nitrofurazone oxidation (BDD anode, 5 min). 

Retention Time, 
tR, min Dominant Peak, m/z Proposed Structure 

3.9 351, 353 

 

4.8 265 

 

N
+ O

N

O
-

O
N

+O

N

O
-

O

Cl Cl

ON
+

O

O
– N

O N
+

O

O
–

N

ON
+

O

O
– N NH

O

NH2

Cl2

O
N

+
O

O
– N

O
N

+

O

O
–

N

Cl

Cl

Anodic oxidation

2Cl
- -2e

( III )

N
+ O

N

O
-

O
N

+O

N

O
-

O

Cl Cl

N
+ O

N

O
-

O
NH

O

N OH

5.7 413

Water 2023, 15, x FOR PEER REVIEW 14 of 17 
 

 

5.7 413 

 

6.1 569 

 

Oxidative polycondensation reactions are responsible for the formation of oxygen-
containing intermediates of nitrofurazone. One of the possible reaction paths is given in 
Figure 10. 

 
Figure 10. One of the possible reaction paths of nitrofurazone oxidative polycondensation. 

The potential toxicity of the resulting nitrofurazone oxidation intermediates was pre-
viously not known. It seems that it is advisable to apply an approach based on the use of 
neural networks and that published in [52] in order to evaluate it. Nevertheless, it is very 

O
N

+

O

O
–

N
N

+

O

NH2 O

O

N
+

O

O
–

OH

O
OH

O

N
+

O
O

–

O

OH

O
–

O
N

+
O

O
–

N
N

O

NH2

O N
+

O

O
–

NHN

O

NH2

OH

O
N

+
O

O
–

N
NH

O

NH22

O
N

+
O

O
–

N
N

O

NH2

O
N

+

O

O
–

NH
NH

O

NH2

m /z 412.27



Water 2023, 15, 3370 14 of 17

Table 4. Cont.

Retention Time, tR, min Dominant Peak, m/z Proposed Structure

6.1 569

Water 2023, 15, x FOR PEER REVIEW 14 of 17 
 

 

5.7 413 

 

6.1 569 

 

Oxidative polycondensation reactions are responsible for the formation of oxygen-
containing intermediates of nitrofurazone. One of the possible reaction paths is given in 
Figure 10. 

 
Figure 10. One of the possible reaction paths of nitrofurazone oxidative polycondensation. 

The potential toxicity of the resulting nitrofurazone oxidation intermediates was pre-
viously not known. It seems that it is advisable to apply an approach based on the use of 
neural networks and that published in [52] in order to evaluate it. Nevertheless, it is very 

O
N

+

O

O
–

N
N

+

O

NH2 O

O

N
+

O

O
–

OH

O
OH

O

N
+

O
O

–

O

OH

O
–

O
N

+
O

O
–

N
N

O

NH2

O N
+

O

O
–

NHN

O

NH2

OH

O
N

+
O

O
–

N
NH

O

NH22

O
N

+
O

O
–

N
N

O

NH2

O
N

+

O

O
–

NH
NH

O

NH2

m /z 412.27

4. Conclusions

The electrochemical oxidative degradation of nitrofurazone in aqueous solutions in
the presence of chloride ions was performed. Solutions under the electrochemical treatment
contained 10–100 mg L−1 of nitrofurazone. Electrolysis was carried out under galvanostatic
conditions at an anodic current density of 0.1 A cm−2 and a volume current density of
1.33 A L−1 for 30 min.

Since nitrofurazone reduces in the cathodic region of potentials, cathodic and anodic
compartments of the electrochemical cell should be separated in order to exclude the cost
of electricity on the reduction of nitrofurazone at the cathode and the subsequent oxidation
of formed products at the anode. The separation of cathode and anode compartments also
prevents the accumulation of nitrofurazone reduction products of various chemical natures
in the solution under electrochemical treatment.

In principle, the electrochemical destruction of nitrofurazone is possible on both Pt/Ti
and BDD anodes; however, the process is more efficient and safe when using BDD anodes.
The preference for using BDD anodes is due to their higher electrode potential during
electrolysis, which leads to a higher rate of active species generation.

The addition of the products of chlorine to 5-nitro-2-furaldehyde azine was formed
in the solution under electrochemical treatment in the first minutes (0–15 min) of electrol-
ysis. Almost complete mineralization of organic pollutants occurred after ca. 30 min of
electrolysis using BDD anodes. Therefore, electrochemical treatment for 30 min can be
recommended for the mineralization of nitrofurazone.
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