
Citation: Suditu, G.D.; Drăgoi, E.N.;
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Abstract: Wheat straws are a globally abundant agro-waste that may play a critical role in the
global transition from single-use plastics to green materials as an inexpensive and renewable raw
material. Vast amounts of wastewater are produced during the technological process of wheat straw-
cellulose/hemicellulose conversion. In this context, this work focuses on wastewater decolorization
via activated carbon adsorption. A set of carefully planned experiments enabled the identification
of a model that described the relationship between the system’s outputs and parameters. While
process optimization is frequently connected with identifying process parameters that improve
efficiency, this work employed a multi-objective optimization approach from both a technologi-
cal and economic aspect. Nondominated sorting genetic algorithm versions II and III—NSGA-II
and NSGA-III algorithms—were applied. As objectives, maximum efficiency and minimum cost
per experiment were followed in different scenarios using pseudoweights and trade-off metrics.
When optimizing only the efficiency, the results indicated a 95.54% decolorization yield, costing
0.1228 Euro/experiment, and when considering both the efficiency and cost, different solutions were
obtained. The lowest cost was 0.0619, with a 74.42% decolorization. These findings indicate that
incorporating an economic perspective into the optimization procedure can improve cost estimation
and facilitate managerial decision-making.

Keywords: black liquor; adsorption; multi-objective optimization; genetic algorithms

1. Introduction

With water consumption ranging from 5 to 100 m3 per ton of paper produced [1,2],
the pulp and paper industry (P & P) is recognized as one of the largest producers of
wastewater [3,4]. The main concerns about these specific industrial effluents are residual
chemical oxygen demand (COD), biochemical oxygen demand (BOD), toxicity (various
chlorinated compounds, phenols, lignin, and many others), and color [5–7]. As a result,
different effluent treatments have been proposed and developed over time in tandem with
the technological evolution of P & P [3,8–11]. Even though the effluents’ color appears
less harmful, it was discovered that color in pulping effluent is more than just an aesthetic
issue [6]. The chemicals that cause the effluent’s color absorb light, affecting photosynthesis
directly, and they also reduce visibility, reducing microorganisms’ chances of feeding
or reproducing [5,12,13]. Therefore, several strategies and methods were proposed to
decolorize and detoxify P & P effluents [14,15].

Nowadays, there is a global transition from single-use plastics to green materials,
which is not as facile as expected [16–18]. However, considerable steps in the right direction
have been made in the past decade. Scientists and various industries are making great
efforts to find solutions, develop new technologies, and discover replacements or new
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potential raw materials [19–22]. Agro-wastes are among the most promising resources, and
from this category, wheat straws (WS) have attracted much attention [23–25]. WS are highly
abundant, low-cost, generable, and extensively studied as a source of hemicelluloses [26]
that can further be used as constituents for various industrial green packaging applica-
tions [23,27,28]. According to a Data Bridge Market Research report, the wheat straw
market was valued at 643.6 million USD in 2021 and is expected to grow to 1330.24 million
USD by 2029 [29]. The main reason is that WS is a strong alternative to paper and plastic
products, and it is simple to dispose of by placing it in soil without any added toxicants to
enhance biodegradability [29]. A recent report by the Food and Agriculture Organization
of the United Nations [30] showed Asia is the region that produces the most wheat on a
global scale, accounting for 43.8% of the total amount produced between 2001 and 2021,
followed by Europe (33.3%) and the Americas (16%). China, India, the Russian Federation,
the United States, France, Canada, Germany, Pakistan, Australia, and Ukraine are the top
10 world wheat producers for the same period [30]. In the European Union, France pro-
duces the most wheat straw (23.7%), followed by Germany (14.8%). The other significant
contributors, producing 8.4%, 8.3%, and 7.2% of the EU’s wheat straw, respectively, are the
UK, Poland, and Romania [31].

Cellulose paper is an environmentally friendly alternative to some single-use plas-
tics [18,28,32,33]. It is biodegradable, recyclable, and less toxic than plastic [28,34]. Cellulose
can be obtained from lignocellulosic biomass using various methods such as Kraft and sul-
fite pulping processes, alkali, organosolv, ammonia treatment, alkaline hydrogen peroxide
bleaching, and others [25,35,36]. This interest in cellulose produced from biomass leads
to a rejuvenation of P & P and brings effluent treatment issues to reality, including decol-
orization. As expected, the use of new raw materials generates new problems. Existing
treatments require technological adjustments and optimization to fulfill the modifications
in effluent composition and the increasingly restrictive legislation.

Adsorption on activated carbon is one of the most common methods for decolorizing
industrial effluents [37,38]. Adsorption has many advantages over other treatment methods
(such as [39,40]): it is a straightforward process, it is cost-effective due to the low price of
the materials used, it is flexible because it can be combined with other methods, and it is
environmentally friendly since it does not produce harmful byproducts and the materials
used are typically derived from natural materials or waste.

The current trend is to find low-cost adsorbents prepared from lignocellulosic bio-
mass [41–46]. Despite the excellent results in terms of decolorization yields reported by
various authors [47–50], the economic aspects are often overlooked. Even though the
starting material is indeed inexpensive (e.g., beet pulp [48], pumpkin peels [49], grape
wood [50], potato peel [51], fruit peel [52], hard shells (almonds, hazelnut, walnut) [53]), the
journey from there to activated carbon is long [45,54,55] and many steps have to be taken:
collecting, transporting, processing (chemical activation, thermal activation), characteriza-
tion, and each stage has its own cost. Several factors, such as seasonal availability, weather
conditions, transportation, storage conditions, origin of the pre-cursors, chemical treat-
ments, thermal treatments, etc., determine the final product’s quantity and quality [56,57].
As a result, commercial activated carbon, which appears to be rather expensive, has several
advantages: it is ready to use, has been characterized to some extent, and has a consistent
physicochemical composition [58].

A variety of process parameters govern adsorption-based treatment procedures, in-
cluding adsorbent amount, pollutant concentration, contact time, temperature, pH value,
chemical additions (flocculants, coagulants), and stirring intensity (mechanical stirring, ul-
trasound stirring) [59,60]. Modern optimization techniques enable the identification of criti-
cal process parameters and their individual or collective influence on process yields [61–63].
However, few papers deal with techno-economical optimization [64,65], and even fewer
deal with multiple scenario techno-economical optimization [66]. In this context, multiob-
jective optimization is justified by the fact that the significance of particular parameters
varies depending on the context, thus influencing their economic impact.
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For instance, at the laboratory scale, the contact time appears to be the least expensive
and, thus, less limiting. In real-life situations, time is crucial because any pollutant must be
removed as quickly as possible. Temperature is an essential parameter significantly affect-
ing process yields (adsorption/desorption rate, kinetics, etc.) at the laboratory scale. For
some industrial effluents with known flow rates (and compositions), the temperature can
be controlled; however, the temperature is an uncontrollable factor for large-scale events in
real life. In actual situations, the cost of adjusting the temperature is frequently prohibitive
because it requires energy and specialized equipment. pH adjustment and control typically
necessitate the addition of chemicals (e.g., acids, bases, buffer solutions), which requires
additional treatments and significantly raises operating costs. In some circumstances, pH
adjustment may be necessary; it is relatively simple to perform on a laboratory or industrial
scale but more challenging in unplanned real-life situations. Economic arguments are
always put on hold when severe and immediate environmental consequences are involved
(e.g., ecological disaster). However, under normal circumstances, the best-case scenario for
a business that generates wastewater is to maximize treatment efficacy while reducing costs.

Following this analysis, four variables—pollutant concentration, adsorbent quantity,
contact time, and stirring intensity—were considered as inputs for the experimental in-
vestigations and optimization. Two responses (outputs) were considered for the system
under study: decolorization effectiveness and financial costs. This multiple-parameter
(multiple input) optimization problem yields two interconnected solutions (outputs), one of
which should be maximized (decolorization efficacy), and the other should be minimized
(costs). Additionally, different scenarios were examined during optimization (for example,
considering time as a critical variable or adsorbent amount as a vital variable), but always
to maximize the decolorization efficacy and minimize economic costs. To the author’s
knowledge, such an approach was never reported for black liquor decolorization with
activated carbon. It is essential to emphasize the highly interdisciplinary nature of this par-
ticular study, which incorporates expertise in pulp and paper, chemical and environmental
engineering, optimization, and computing.

This work aims to demonstrate that through the use of bio-inspired optimizers, multi-
objective optimization focusing on both efficiency and reducing costs can be achieved.
The selected process is the decolorization of residual black liquor produced from wheat
straws via hot alkaline extraction using commercial activated carbon as an adsorbent.
Four parameters were considered for optimization: black liquor concentration, amount
of activated carbon, stirrer rotation speed, and contact time. The proposed methodology
consists of a series of steps that include: (i) the response Surface Method (RSM) and Design
of Experiments (DOE) were used to plan the experiments and model the process; (ii) two
multi-objective evolutionary algorithms (nondominated sorting genetic algorithm versions
II and III—NSGA-II and NSGA-III) were applied to perform the decolorization process’s
simultaneous technological and economical optimization.

The combination of outputs and approaches gives this work its novelty. Optimal
combinations of process parameters and operation costs were identified, considering
multiple scenarios for the same process.

2. Materials and Methods
2.1. Chemicals

The black liquor used in this study was obtained from a laboratory-scale cellulose
production system based on wheat straw (WS) pulping. Local farmers near Drăgus, eni
village, Suceava county, Romania, donated the wheat straws. Preliminary processing of
the WS includes removing foreign materials, chopping, grinding, and sieving through a
1 mm sieve. Hot alkali extraction was used to extract the hemicelluloses, using the same
equipment and following the same procedure elsewhere described [26]. In brief, 1 mm
sieved material was treated with sodium hydroxide solution (NaOH, Merck, Rahway, NJ,
USA) in sealed reaction vessels at a solid-to-liquid ratio of 1:30. The resulting liquor has the
typical darkish-brown color and the following characteristics: density = 1011.48 kg/m3;
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conductivity = 3.27 S/m; the total dry solids content is 4.891 × 10−2 kg/L of which
2.174 × 10−2 kg/L is inorganic and 2.717 × 10−2 kg/L is organic; acid-insoluble lignin
content = 5.3 × 10−3 kg/L; soluble xylan content = 5.4 × 10−3 kg/L.

Commercial activated carbon cylinders were provided by Buzău Romcarbon Company
(Buzău, Romania). The cylindrical AC were ground and sieved into irregularly shaped car-
bon particles with average diameters ranging from 2.5 to 3.15 × 10−3 m, with the following
characteristics: specific microporous volume 0.48 × 10−3 m3/kg, total microporous volume
0.66 × 10−3 m3/kg, mean pore size 1.62 × 10−9 m, BET surface 1.403 m2/kg, external
surface 3.8 × 10−2 m2/kg, and total surface 0.631 m2/kg [67]. The SEM analysis of the
adsorbent can be found in [68].

2.2. Equipment

The UV-VIS spectra and the absorbance values were recorded using a U5100 HITACHI
spectrophotometer. The chemical oxygen demand (COD) g O2 per L was measured using a
standard Hach-Lange kit LCK 114. A digital overhead DLS Stirrer (Velp Scientifica, Deer
Park, NY, USA) was used to control the stirring intensity.

2.3. Batch Experiments

Batch adsorption experiments were performed at room temperature in 0.5 L Berzelius
beakers, under continuous stirring, following the experimental design. All experiments
were conducted without pH adjustments to the BL solutions to keep the processes as
environmentally friendly as possible (no supplementary chemicals were added).

The decolorization was checked by measuring the absorbance of the solution given by
the lignin content at 280 nm (LA). The efficacy of BL decolorization was calculated using
the following equation:

η (%) =
[LA]i − [LA] f

[LA]i
× 100, (1)

where [LA]i and [LA]f denote the initial and final lignin absorbance, respectively.
The correlation between COD and absorbance was determined at various dilution

ratios to establish a calibration curve that validates the accuracy of decolorization efficiency
calculations. The dependence relation between the absorbance (y) and the COD (x) is
y = 0.0057x, with a linear correlation of 0.9935.

2.4. Experimental Design and Operating Cost

Table 1 shows the variation ranges of the designated variables: reaction time, stirrer
rotation speed, BL dilution, and activated carbon concentration.

Table 1. Designated variables and variation range.

Independent
Variables

Notation
Measure

Units

Range

Coded Uncoded

From To From To

Reaction time X1 min. −1 1 10 40
Stirrer rotation speed X2 r.p.m. −1 1 200 500
Black liquor dilution X3 ratio −1 1 1:500 1:1500

Activated carbon concentration X4 g/L −1 1 5 15

To determine the process yield (Y1), 26 experiments (including center point replica-
tions) were carried out, as presented in Table 2. Each experiment’s operating cost (Y2)
is determined using Equation (2) based on the following expenses: electrical energy and
chemical consumption. The coefficients a = 64 × 10−4 and b = 4.4 × 10−6 represent the
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activated carbon price in Euro/g and the average electrical energy price in Euro/W in
Romania in February 2022.

Y2 = a × mAC + b × EC × t, (2)

where mAC stands for the amount of activated carbon, [g]; EC signifies the energy con-
sumption, (W/min); and t represents the processing time, (min).

Table 2. Experimental planning and results.

N X1 X2 X3 X4 Y1, % Y2

1 40 500 1:1500 15 83.42 0.99
2 10 500 1:1500 15 76.05 0.97
3 40 200 1:1500 15 82.23 0.98
4 10 200 1:1500 15 71.42 0.96
5 40 500 1:500 15 68.08 0.99
6 10 500 1:500 15 53.40 0.97
7 40 200 1:500 15 64.41 0.98
8 10 200 1:500 15 50.14 0.96
9 40 500 1:1500 5 55.20 0.35

10 10 500 1:1500 5 46.39 0.37
11 40 200 1:1500 5 53.03 0.38
12 10 200 1:1500 5 39.18 0.32
13 40 500 1:500 5 32.53 0.35
14 10 500 1:500 5 22.53 0.37
15 40 200 1:500 5 31.21 0.38
16 10 200 1:500 5 15.43 0.32
17 46.21 350 1:1000 10 62.29 0.66
18 3.79 350 1:1000 10 35.82 0.64
19 25 562.1 1:1000 10 62.96 0.66
20 25 137.9 1:1000 10 57.55 0.64
21 25 350 1:1707 10 70.55 0.65
22 25 350 1:293 10 71.24 0.65
23 25 350 1:1000 17.07 73.58 1.10
24 25 350 1:1000 2.93 29.77 0.197
25 25 350 1:1000 10 58.95 0.65
26 25 350 1:1000 10 60.27 0.65

2.5. Multi-Objective Optimization

For the considered process, there are two objectives, Y1 and Y2. The former requires
maximization, while the latter requires minimization. The problems where multiple objec-
tives are sought are called multi-objective problems (MOP). A MOP can be defined as a
vector of objective functions [69]:

Minimize F(x) = (f 1(x),f 2(x),...,fn(x))
Subject to x ∈ Φ,

(3)

where Φ is the decision variable space (the range defined in Table 1), n is the number of
objectives, and x = (x1, x2, ..., xm), with m the number of parameters. For the black liquor
decolorization process, n = 2 and m = 4.

In this case, multiple solutions are found, yet the goal is to identify the subset of
interest (the solutions where a relationship of dominance exists) and the best tradeoff
that can be achieved [70,71]. For two solutions u = (u1, . . ., um) and v = (v1, . . ., vm), u
dominates v if ui < vi ∀i = (1,m)−. In this context, a solution x* is referred to as Pareto
optimal if there is no solution x ∈ Φ such that F(x) dominates F(x*). All optimal Pareto
solutions form a Pareto set, and the corresponding objective vectors are referred to as the
Pareto front [72].
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Not all optimization algorithms can deal with MOP, and in this work, two variants
of Genetic Algorithms (namely, NSGA-II [73] and NSGA-III [74]) were used to solve the
problem. These approaches were selected based on their popularity and efficiency in
various synthetic and real-life situations, providing proper solutions [75,76].

The basis function of NSGA-II is similar to that of every evolutionary algorithm: an
initial population of solutions is evolved until a stop criterion is reached. Evolution is
based on mutation, crossover, and selection. However, in NSGA-II, the principle of non-
dominant level is applied to select the next population. For example, at t generation, from
the population Pt (having individuals), the offspring population Qt is created (having
individuals). From the combined Pt and Qt populations, the best individuals are selected
by employing the non-domination principle combined with a niche-preservation operator
based on the crowding distance. More details about NSGA-II can be found in [73].

NSGA-III is similar to NSGA-II. However, there are significant differences between the
selection operator and the strategy for diversity maintenance. In NSGA-III, the crowding
distance used in NSGA II is replaced with a new procedure that uses: (i) a determination of
reference points on a hyper-plane based on the Das and Dennis approach; (ii) an adaptive
normalization of individuals; (iii) an association operator that links each individual with
a reference point; and (iv) a niche preservation operation that determines the crowding
distance based on an objective-wise normalization distance [74].

After the solutions forming the Pareto front were identified by the NSGA-based ap-
proaches, the next step consisted of retrieving the best value, a stage referred to as Decision-
Making (DM). In this work, DM is carried out using the pseudo-weights approach [77]
and the trade-off metric [78]. The pseudo-weights approach is the most commonly used
strategy and relies on scalarizing a set of objectives into a single objective. Thus, the solution
becomes a function of the ratio of the considered weights [77].

The described methodology was applied using Python and the pymoo framework [79].
All simulations were performed on a computer with an Intel I9 processor, 16 GB of RAM,
an NVIDIA Quadro P2000 video card, a 512 GB PCIe NVMe hard disk, and the Windows
11 Pro operating system. A schema of the workflow performed in this work is presented in
Figure 1.
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3. Results and Discussions
3.1. Modeling

Based on the experimental plan from Table 2, the decolorization yield was determined
experimentally, and the economic cost was computed. Based on this data and using Minitab,
the Forward Selection (FS) algorithm was applied to select the best-suited statistical model
able to predict the yield efficiently. In this case, the starting point is the most significant
invariant model. Furthermore, all the independent variables not included are evaluated,
and the most significant ones are added until no one is left [80].

The resulting regression model had an R2 of 94.6%, an adjusted R2 of 92.06%, and
a predicted R2 of 82.55%, as described by Equation (4). The analysis of variance for this
regression model is presented in Table 3, where it can be observed that the most influential
parameter on the model is the adsorbent amount (57.99%).

Y1(%) = −28.7 + 1.908 × X1 + 0.01273 × X2 − 0.0151 × X3 + 7.76·X4 − 0.02928
× X1 × X1 + 0.000018 × X3×X3 − 0.2111 × X4 × X4 − 0.000378 × X3 × X4.

(4)

Table 3. Analysis of variance.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Regression 8 8125.52 94.60% 8125.52 1015.69 37.24 0
X1 1 884.5 10.30% 605.21 605.21 22.19 0
X2 1 72.93 0.85% 72.93 72.93 2.67 0.12
X3 1 1413.76 16.46% 25.68 25.68 0.94 0.345
X4 1 4980.43 57.99% 690.33 690.33 25.31 0

X1 × X1 1 380.33 4.43% 370.26 370.26 13.58 0.002
X3 × X3 1 141.91 1.65% 167.2 167.2 6.13 0.024
X4 × X4 1 237.56 2.77% 237.56 237.56 8.71 0.009
X3 × X4 1 14.1 0.16% 14.1 14.1 0.52 0.482

Error 17 463.62 5.40% 463.62 27.27
Lack-of-Fit 16 462.74 5.39% 462.74 28.92 33.05 0.136
Pure error 1 0.88 0.01% 0.88 0.88

Total 25 8589.14 100.00%

Three-dimensional plots (surface plots) are drawn by fixing two parameters to the
values in the middle of the designated variation interval, as shown in Figures 2–7. The
effect of the chosen parameters on the decolorization efficiency is highlighted, and the
optimal values are readily identifiable.
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The interactive effect of activated carbon concentration and stirring intensity on the
process yield is illustrated in Figure 2a,b. It is generally acknowledged that the mechanism
for pollutants retention by adsorption involves several steps: bulk diffusion, film diffusion,
pore diffusion or intra-particle diffusion, and chemical adsorption/reaction [81]. Increasing
the AC concentration corresponds to increasing surface area and the number of active sites,
whereas increasing the stirring intensity favors bulk and film diffusion. As a result, the
individual effect of AC increases leads to a more significant increase in efficiency compared
with the individual impact of stirring.

The combined effect of AC concentration and black liquor dilution on the process
yield is depicted in Figure 3a,b. It can be observed that the percentage of adsorbed BL
increases with the increase in adsorbent dosage, specifically at higher dilution ratios. This
indicates that a relatively small number of adsorbate molecules can access a large adsorption
surface area.

The evolution of the process yield as a function of the contact time and black liquor
dilution is presented in Figure 4a,b. Concerning black liquor, the dilution ratio increase
leads to an efficiency increase. At higher black liquor concentrations, the decolorization
yield begins to decrease as adsorption becomes competitive with respect to the number of
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active sites. The number of competitive adsorbate molecules decreases as the dilution ratio
increases, and the decolorization yield reaches higher values.

As previously mentioned, stirring intensity affects bulk and film diffusion. This
favors the adsorption efficiency for diluted and concentrated BL solutions (as depicted
in Figure 5a,b), with a slight advantage for the latter due to less pronounced competitive
adsorption.

The collective effect of contact time and stirring intensity on decolorization efficacy
is shown in Figure 6a,b. The movement of adsorbent particles into the BL-contaminated
wastewater positively affects the process output at the start of the adsorption process.
As the number of active adsorption centers reaches a maximum occupancy level, the
decolorization yield tends to decrease due to the competitive adsorption and the washing
effect generated by the increase in the stirring intensity.

The combined effect of AC concentration and contact time on the process yield
(Figure 7a,b) suggests that a maximum level of adsorbed molecules can be attained af-
ter a certain time. Following that, there is a slight decrease in decolorization efficiency,
most likely due to a decline in available active adsorption sites and competitive adsorption
among the black liquor components.

3.2. Optimization

After the statistical regression model of the process was determined (as described in
Equation (2)), the process was optimized using: (i) Minitab software; (ii) multi-objective
optimization based on NSGA-II and NSGA III. The single-objective optimization focusing
on the decolorization yield is presented in Table 4. The corresponding economic cost (Y2),
also shown in Table 4, was computed using Equation (2).

Table 4. Optimization of decolorization yield using Minitab software.

Sol No. X1 X2 X3 X4 Yield (Y1, %) Economic Cost
(Y2, Euro)

1 32.49 562.1 1:1694.92 16.78 95.54 0.1228
2 46.21 137.9 1:1694.92 17.07 84.68 0.1162
3 12.22 562.1 1:1694.92 17.07 83.41 0.1150

For the second optimization approach, the two NSGA versions considered were
applied to identify the optimal economic conditions of the process. To run the two GA-
based algorithms, the parameters were set as follows: population size = 100, number of
offspring = 20, and generation number = 30. The type of crossover used is Simulated Binary
Crossover (SBX), the mutation is Polynomial Mutation (PM) [82], and the stop criteria is
the number of generations reaching the predefined value. Whereas the Minitab software
approach was focused on maximizing the decolorization yield, in this case, the objective
was to find the best tradeoff between efficiency and cost. In this case, the tradeoff is defined
as the net gain from the improvement of some objectives accompanied by the deterioration
of other objectives resulting from substituting one objective vector with another [78].

Figure 8 presents the Pareto solutions obtained with the two algorithms where no
constraints are imposed on the process parameters.

Figure 8 depicts the results of the multi-objective evaluation, which included objec-
tives 1/Y1 and Y2. Within the Pymoo framework, all goals must be either minimized or
maximized. As a result, the decolorization yield was inverted to its minimum value. A
comparison between the solutions indicates that the same interval was determined by
the two algorithms applied. However, NSGA-II identified more solutions than NSGA-III
(70 vs. 8). These differences can be explained by the distinct mechanisms used for diversity
maintenance.
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Moreover, by analyzing the values of the intervals for the 1/Y1 and Y2 axes, it can be
observed that they are not in the same interval. Thus, Y2 tends to dominate any distance
calculation in the objective space due to its more extensive scale. Therefore, a normalization
procedure was applied before using the DM procedures, considering the minimum and
maximum points in the objective space. The type of normalization carried out in this work
is Min-Max [83], and the target interval considered is [0, 1].

After that, the DM procedure was applied to determine the best solutions that fit the
objectives of the current problem. The results are presented in Table 5.

Table 5. The best solutions for economic optimization when no constraints are considered.

Reaction
Time, Min.

Stirrer Rotation
Speed, r.p.m.

Dilution,
Ratio

Activated Carbon
Concentration, g/L Y1, % Y2, Euro

NSGA-II

Pseudoweights 25.85 371.10 1:1705.25 13.48 89.93 0.0978

High Tradeoff
32.35 379.92 1:1703.91 13.51 91.36 0.1016
31.90 392.12 1:1706.56 13.81 92.01 0.1041
30.33 377.36 1:1704.81 12.13 89.22 0.0928

NSGA-III
Pseudoweights 33.01 366.88 1:1694.85 11.28 86.61 0.0867
High Tradeoff 30.26 378.62 1:1703.44 10.12 83.95 0.0788

As shown in Table 5, the identified best solutions from the Y2 output are higher for
the NSGA-II approach compared with NSGA-III. Nevertheless, the decolorization yield
(Y1) is slightly lower. This indicates a direct correlation between Y1 and Y2, with the
rise in efficiency leading to a higher process cost. The results from Table 5 represent the
best equilibrium between the two objectives from the multitude of solutions identified by
the two algorithms. The positions of these solutions relative to the entire Pareto for the
NSGA-II algorithm are presented in Figure 9.

As can be observed from Figure 9, for the Pseudo-weight variant, a single solution is
identified using weight vectors that provide relative importance to each objective in the
solution [77]. On the other hand, multiple solutions are provided for the high-tradeoff
strategy.
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The analysis of variance for the process decolorization efficiency shows that the
activated carbon concentration has the highest contribution to the model (as presented in
Table 3). Moreover, this parameter highly influences the economic cost. Thus, the multi-
objective procedure was also applied when constraining the concentration of the activated
carbon to the interval [2.73, 10] g/L. The results obtained after applying the DM strategies
are presented in Table 6. As can be observed, the limitation of the considered parameter
leads to a mild reduction in efficiency and, at the same time, a cost reduction.

Table 6. The best solutions for economic optimization when the concentration of the activated carbon
is set to a maximum of 10 g/L.

Reaction
Time, Min.

Stirrer Rotation
Speed, r.p.m.

Dilution,
Ratio

Activated Carbon
Concentration, g/L Y1, % Y2, Euro

NSGA-II
Pseudoweights 32.02 375.41 1:1697.17 7.38 74.42 0.0619

High Tradeoff 25.41 352.71 1:1703.38 6.52 69.28 0.0522
30.09 549.34 1:1699.72 9.4 83.79 0.0874

NSGA-III
Pseudoweights 25.70 360.58 1:1690.29 8.89 78.14 0.0679
High Tradeoff 31.76 352.54 1:1705.42 8.79 79.69 0.0694

For decolorization efficiency, the analysis of variance shows that the stirrer rotation
speed has a minor contribution to the model (as presented in Table 3). However, this
parameter might significantly influence the process cost as it can vary substantially in
accordance with the energy markets. Thus, the multi-objective procedure was also applied
when constraining the stirrer rotation to half of the experimental interval: [137.9, 350] r.p.m.
The results obtained after applying the DM strategies are presented in Table 7.

Table 7. The best solutions for economical optimization when the stirrer rotation speed is set to a
maximum of 350 rpm.

Reaction
Time, Min.

Stirrer Rotation
Speed, r.p.m.

Dilution,
Ratio

Activated Carbon
Concentration, g/L Y1, % Y2, Euro

NSGA-II
Pseudoweights 25.84 307.84 1:1706.45 12 87.85 0.0897
High Tradeoff 30.16 276.61 1:1706.78 16.61 92.33 0.1151

NSGA-III Pseudoweights
High Tradeoff 28.41 305.62 1:1699.75 10.91 84.65 0.0794
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According to Table 7, the values for Y1 and Y2 are comparable to the experimental
interval-based optimization (Table 5). This indicates that even when supplementary re-
strictions are considered, the optimization strategy can identify reasonable solutions that
represent a compromise between efficiency and cost.

As previously mentioned, no techno-economic studies have studied black liquor
decolorization by adsorption on activated carbon. However, several papers deal with
techno-economic studies on wastewater decolorization/remediation using various tech-
niques (see Table 8). It is crucial to note that in the majority of these studies, cost estimations
are conducted after technological optimization (Table 7) and are centered on determining
the production cost of key ingredients (e. g., cassava peel starch [84], orange peel extract
biosynthesized zinc oxide nanoparticles [85], or chickpea powder and chickpea-based
biochar [86]).

Table 8. Comparison with other techno-economic studies on wastewater decolorization/remediation.

Wastewater
Source Method Process

Parameters
Optimization
Methodology

Multi-
Objective Scale Year, Ref.

synthetic electrocoagulation

current intensity,
electrode type,

electrolyte type,
pH, and time

Plackett-Burman
design and

Box-Behnken
design

yes cost per m3 2020, [87]

institutional flocculation/
coagulation

pH, coagulant
dosage, and
settling time

RSM no annual
operation cost 2021, [84]

textile photocatalysis

ZnO nanoparticle
loading, pH, and

Congo Red
concentration

RSM no annual
operation cost 2021, [85]

textile
electrocoagulation Voltage and time Standard Least

Squares Model no 15-yeartime
frame

2022, [88]electrocoagulation
+ membrane

carwash
bio-coagulation pH and coagulant

dosage

RSM and
Feed-forward

ANN
no 30 m3 of

wastewa-
ter/day

2022, [86]

adsorption bed heights, flow
rates no

black liquor adsorption

Contact time,
dilution, active

carbon
concentration, and
stirring intensity

RSM,
NSGA—II, and

NSGA—III
yes cost per each

experiment this work

4. Limitations and Future Work

This study showed that using a bio-inspired metaheuristic, a multi-objective opti-
mization of the decolorization of black liquor from wheat straw focusing on improved
efficiency and low economic costs can be achieved. Since the characteristics of the black
liquor can differ from batch to batch and from source to source, one of the current study’s
limitations is related to the somewhat restricted area of applying the optimization results.
Thus, although the selected methodology (combining DOE, RSM, and NSGA) is flexible
and can be applied in multiple cases to broaden the optimization data’s applicability area,
more use cases (black liquor from different sources) can be combined and simultaneously
optimized. Similarly, different types of activated carbon obtained from various sources can
be tested to assess the importance of the absorbent characteristics on the overall process
performance. In this case, RSM might not be the best-suited modeling strategy, and since
additional datasets would be available (including both different black liquor sources and
different types of active carbon), Artificial Neural Networks applied simply or combined
into stacks could offer enhanced performance.
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5. Conclusions

In this work, the decolorization of black liquor obtained from wheat straw was studied
using standard commercial activated carbon. The influence of four parameters: reaction
time, stirrer rotation speed, black liquor dilution ratio, and activated carbon concentration,
was evaluated from a technological and economic perspective. Based on the experimental
results, a model describing the relationship between the outputs of the system and its
parameters was determined using RSM. According to this model, the highest influence
was attributed to activated carbon concentration (57.99%), black liquor dilution (16.46%),
contact time (10.3%), and stirrer rotation speed (0.85%).

The resulting regression statistical model was then used for process optimization. Two
solutions were tested: (i) classical Minitab and (ii) multi-objective optimization based on
NSGA-II and NSGA-III algorithms. In addition, the GA-based optimizers were tested
considering: (i) the entire experimental domain; (ii) limiting the activated carbon to a
maximum of 10 g/L; and (iii) limiting the stirrer rotation speed to a maximum of 350 r.p.m.
The objective was to show that although the tendency is to go towards the highest removal
efficiency from economic considerations, this is not always viable, and a tradeoff between
efficiency and cost must be followed. The results obtained indicated that a relatively high
efficiency (~92%) could be achieved even when restrictive conditions are considered (e.g.,
limiting the reaction time) with good economic performance (~0.11 Euro/experiment).
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