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Abstract: Although machine learning (ML) techniques are increasingly used in rainfall-runoff models,
most of them are based on one-dimensional datasets. In this study, a rainfall-runoff model with
deep learning algorithms (CNN-LSTM) was proposed to compute runoff in the watershed based on
two-dimensional rainfall radar maps directly. The model explored a convolutional neural network
(CNN) to process two-dimensional rainfall maps and long short-term memory (LSTM) to process
one-dimensional output data from the CNN and the upstream runoff in order to calculate the flow of
the downstream runoff. In addition, the Elbe River basin in Sachsen, Germany, was selected as the
study area, and the high-water periods of 2006, 2011, and 2013, and the low-water periods of 2015 and
2018 were used as the study periods. Via the fivefold validation, we found that the Nash–Sutcliffe
efficiency (NSE) and Kling–Gupta efficiency (KGE) fluctuated from 0.46 to 0.97 and from 0.47 to
0.92 for the high-water period, where the optimal fold achieved 0.97 and 0.92, respectively. For the
low-water period, the NSE and KGE ranged from 0.63 to 0.86 and from 0.68 to 0.93, where the optimal
fold achieved 0.86 and 0.93, respectively. Our results demonstrate that CNN-LSTM would be useful
for estimating water availability and flood alerts for river basin management.

Keywords: rainfall-runoff model; CNN; LSTM

1. Introduction

The rainfall-runoff model has been developed over 170 years and extensively utilized
in discharge prediction in the hydro-sciences, producing a surface runoff hydrograph in
response to a rainfall event [1,2]. Since then, modelling concepts have been developed
by embedding physical process understanding, concepts, and formulations gradually [3].
Driven by the advancements in computer technology and the availability of remote sensing
data, the rainfall-runoff model has evolved from simple parametric models (conceptual or
grey box) to complex mechanistic models (physically based or white box) or metric models
(data-based, empirical, or black box) [4].

Parametric models are constructed on the basis of the simplified systemic mathemat-
ical conceptualization ensemble with a certain number of interconnected storage points
applied to compute various components of the hydrological process through recharge and
depletion. Parametric models were developed relatively early based on a small database
of parameters and are still routinely applied for operational purposes [5–10]. With the
enhancement of machine computing power, semi-distributed and distributed mechanistic
models were proposed and studied for hydrological processes. Mechanistic models were
capable of considering the spatial and temporal variability of land use, slope, soil, and
climate by means of partial differential equations, which were solved through the finite
difference or finite computation schemes [11–14]. However, high demand with regard
to the computational costs and input data at high spatial and temporal resolution were
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essential for mechanistic models with spatially explicit representations of hydrological
processes at the catchment scale [15]. For instance, complex hydraulic facilities, various
water allocations, and the slower updating of GIS data could substantially increase these
limitations because the latest data, parameters, and coefficients to be measured for these
processes in a complex watershed are hard to survey and obtain practically. In addition,
large and complex input data and parameters to be identified are often required. However,
these datasets are not always available [16]. The excessively high computational costs
further limit their application, especially if semi-distributed or distributed models are run
within an ensemble forecasting framework simultaneously [17].

Therefore, metric models based on data-driven approaches have been developed
and explored in this context. Artificial neural networks (ANNs) have been proposed
and widely used for runoff prediction since 1958 [18–22]. However, it was limited by
greater computational burden and proneness to overfitting [23]. Support vector machines
(SVMs) were also used for runoff prediction [24–26] and to overcome the limitations of the
ANN [27]. However, SVM was more suitable for small-scale datasets compared to ANN
and sensitive to outliers and redundant data [28,29]. Random forest (RF) was applied for
runoff prediction based on the ease of use [30,31], and it applies to the large datasets and
was unaffected by outliers and redundant data [32,33].

In addition, metric models based on data-driven approaches were particularly known
for their ability to mimic highly non-linear and complex systems. However, a drawback
of the aforementioned approaches for time series analysis is that any information about
the sequential order of the inputs is ignored during training. Recurrent neural networks
(RNNs) are special types of networks derived from feed-forward neural networks that were
specifically designed to exhibit temporal dynamic behavior [34]. In a comparative study of
ANNs, SVMs, RF, and RNNs conducted for rainfall-runoff modelling, RNNs performed
equally well or better than ANNs, SVMs, and RF [35–38]. Additionally, Hochreiter and
Schmidhuber [39] proposed an advanced RNN, long short-term memory (LSTM). Through
a specially designed architecture, the LSTM overcame the drawback of the traditional RNN
for learning long-term dependencies [40]. The potential of the LSTM was verified as a
regional hydrological model to predict discharge for a variety of catchments [41–43].

Recently, deep learning approaches have received more attention in hydrological mod-
elling. He et al. [44] improved the daily runoff prediction accuracy by means of a hybrid
model based on variational mode decomposition (VMD) and deep neural networks (DNN).
Barzegar et al. [45] achieved accurate lake water level (WL) forecasting models by coupling
boundary corrected (BC) maximal overlap discrete wavelet transform (MODWT) data prepro-
cessing, with a hybrid convolutional neural network 1D (CNN1D) and LSTM deep learning
model. The DNN, CNN1D, and LSTM mentioned above were all machine learning models
developed based on one-dimensional data sequences, which were capable of making down-
stream flow or water level predictions using time series with various boundary conditions,
including upstream flow and precipitation. However, the above algorithms were unable
to handle two-dimensional data such as rainfall radar data, which were often utilized in
rainfall-runoff models. Thus, CNN2D was exploited to process two-dimensional images to
recognize patterns of image features [46]. Baek et al. [47] used CNN2D combined with the
rainfall radar map to predict lake water level. However, the aforementioned research was
limited to the lake surface, ignoring the relative complexity of the watershed. This study
continued to develop the CNN-LSTM model as one type of rainfall-runoff model for flow
prediction on a watershed scale. This model combined CNN2D’s ability to process rainfall
radar maps and LSTM’s ability to process sequence, so that it quickly computes downstream
flow through radar maps and upstream flow sequence.

The principal contributions of the present research were to (i) establish a hybrid CNN-
LSTM model to process rainfall information in 2D using CNN and time information using
LSTM, and (ii) explore the capacity of the hybrid CNN-LSTM deep learning model for
one-day-after or two-days-after forecasting in a typical surface water. In summary, we
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combined CNN and LSTM approaches for rainfall-runoff models based on 2D precipitation
data and use this combined model for real world runoff prediction.

2. Materials and Methods
2.1. Study Area and Data Acquisition

The Elbe is one of Europe’s major rivers, and its total length of it from the Krkonoše
Mountains to the North Sea is about 1094 km [48]. The study area is located in the part
of the Elbe River basin within Sachsen. As shown in Figure 1A, the Elbe River flows into
Sachsen, Germany, from Schoena, and flows out of Sachsen from Torgau.
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Figure 1. Study area and precipitation radar map. (A) The Elbe River flows into Sachsen, Germany,
from Schoena, and flows out of Sachsen from Torgau. (B) An example of the precipitation radar map
in this study.

Figure 1B illustrates an example of the precipitation radar map in this study, according
to the information platform UNDINE (http://undine.bafg.de, accessed 29 November 2021),
which contains the long-term daily flow data and catchment information of Germany. To
study the applicable scope of the model, several recent extreme cases of the Elbe River were
collected: January 2011, March and April 2006, and June 2013 for high-water periods; July,
August and September 2015, and August and September 2018 for low-water periods [49].
Meanwhile, precipitation radar data of the periods for these extreme cases were extracted
from the database of the Deutscher Wetterdienst (DWD, German Meteorological Service,
https://cdc.dwd.de/portal/, accessed 30 November 2021). The Elbe River flow data of the
periods at Schoena and Torgau were obtained from the Saxon State Office for Environment,
Agriculture and Geology (https://www.umwelt.sachsen.de/umwelt/46037.htm, accessed
on 30 November 2021).

2.2. Convolutional Neural Network (CNN)

The CNN was introduced for object recognition in digital image processing [50], with
a structure composed of a convolution layer, pooling layer, and fully connected layers. The
convolution layer applies a convolution filter to input two-dimensional data to generate
a feature map. Different feature maps, generated through different filters, are eventually
combined to generate a final output. In general, the convolutional layer needs an activation
function to enhance the non-linear signal, and a rectified linear unit (ReLU) is usually
employed as the activation function [51]. After the convolution layer, the max-pooling
layer is used to extract the invariant features by eliminating the non-maximal values with
an efficient convergence rate to achieve the purpose of non-linear down sampling [52]. The
fully connected layer, linked to the max-pooling layer, connects a loss function to calculate

http://undine.bafg.de
https://cdc.dwd.de/portal/
https://www.umwelt.sachsen.de/umwelt/46037.htm


Water 2022, 14, 993 4 of 13

errors between the observed values and model outputs [53]. The mean squared error (MSE)
is used as a loss function in the present study.

2.3. Long Short-Term Memory (LSTM)

The LSTM network is a variation of the recurrent neural network (RNN), which adopts a
directed cycle structure that transfers the output of a hidden layer to the same hidden layer to
identify features and time series information through the signals of the previous time series [54].
LSTM was introduced by Hochreiter and Schmidhuber [39] to overcome gradient disappearance
issues through memory cells. The cell states could be updated by a gating regulation consisting
of the following three gates: the input gate determines which information will update the
present block state and which new datasets will be included as inputs; the forget gate controls
which information should be preserved or discarded; the output gate decides which outputs to
generate [55]. The following equations were used in LSTM:

Input gate Γi:
Γi = δ

(
Wi

[
c〈t−1〉, x〈t〉

]
+ bi

)
(1)

Forget gate Γ f :

Γ f = δ
(

W f

[
c〈t−1〉, x〈t〉

]
+ b f

)
(2)

Output gate Γo:
Γo = δ

(
Wo

[
c〈t−1〉, x〈t〉

]
+ bo

)
(3)

Cell c〈t〉:
c〈t〉 = Γi ∗ C〈t〉c + Γ f ∗ c〈t−1〉 (4)

Cc
〈t〉 = tan h

(
Wc

[
a〈t〉, x〈t〉

]
+ bc

)
(5)

Output vector a〈t〉:
a〈t〉 = Γo ∗ tan hc(t) (6)

where Cc
〈t〉 is the cell state vector, x〈t〉 is the input at current step t, δ is an element-wise non-

linear activation function, and b and W denote the bias and weight matrices, respectively.

2.4. River Flow Simulation

In this study, CNN and LSTM network were combined to predict the river flow. The
two-dimensional data consisted of rainfall radar images with dimensions of 143 × 159
(1-km resolution), while the upstream flow data were applied as additional information
and as single vectors. The upstream flow and rainfall radar time points were calculated
based on the time interval with the highest correlation between upstream and downstream
flow. The CNN model consisted of one convolutional layer, one max pooling layer, and
one flatten layer. The output from the flatten layer was fed into a LSTM model as a one-
dimensional feature vector. The outputs from the LSTM layers and the upstream flow were
concatenated and transferred to a fully connected layer, thereby generating downstream
flow. More detailed descriptions of CNN and LSTM can be found in Sections 2.2 and 2.3,
respectively. In addition, the CNN and LSTM models were implemented using a Keras
environment based on Python.3.7

2.5. Performance Evaluation

For the objective function used in hydrologic model performance evaluation, it is desirable
to include multiple metrics that could measure different aspects of model performance [56].
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One of the most popular objective functions for the performance evaluation of hydrologi-
cal modelling is the Nash–Sutcliffe efficiency (NSE) [57]. The NSE is defined as follows:

NSE = 1− ∑n
i=1(Q0i −Qsi)

2

∑n
i=1(Q0i − µo)

2 (7)

Gupta et al. [58] proposed a new objective function for performance evaluation, the
Kling–Gupta efficiency (KGE). The KGE aggregates three components (error, bias, and
relative variability of flows) that are decomposed and modified from the NSE as follows:

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (α− 1)2 (8)

where r is the Pearson correlation coefficient used to evaluate the error, β is the bias term
used to evaluate the bias, and α is a variability term used to measure the relative variability
between the flows of observation (Q0) and simulation (Qs):

r =
cov(Q0, Qs)

σ2
0 σ2

s
(9)

β =
µs

µo
(10)

α =
σs

σo
(11)

where cov is the covariance; σo and σs are the standard deviation of observation and simulation,
respectively; and µo and µs denote the mean flows of observation and simulation, respectively.

In addition, the K-fold test was used to verify the generalizability and plausibility
of the CNN-LSTM algorithm. K-fold is a technique widely adopted as a model selection
criterion, using (K-1) fold data as the training dataset and one-fold as the test dataset after
random assignment. It mimicked the application of training and test datasets by repeating
the CNN-LSTM algorithm K times.

3. Results
3.1. Flow Time Series

The record of the flow of the Elbe River in Sachsen was highly variable. In the last
15 years, the floods occurred in the Saxon section of the Elbe in 2006, 2011, and 2013. The
maximum recorded flows of the Schoena and Torgau in March and April 2006 reached
2720 m3/s and 2870 m3/s, respectively. After that, the flows through Schoena and Torgau
in January 2011 reached 2040 m3/s and 2260 m3/s, respectively. In addition, the maximum
recorded flows at Schoena and Torgau in June 2013 reached 3710 m3/s and 4040 m3/s,
respectively, as the largest flows recorded in recent years. According to research based
on statistical data from 1951 to 2006 [59], the high-water recurrence periods in 2006, 2011,
and 2013 were ~25, ~8, and ~200 years, respectively. Similarly, the Elbe River experienced
two periods of low flows in 2015 and 2018. In July, August, and September 2015, Schoena
and Torgau recorded minimum flows of 75.8 m3/s and 89 m3/s, respectively. Moreover,
in August and September 2018, Schoena and Torgau recorded minimum water flows of
70.6 m3/s and 90.1 m3/s, respectively.

3.2. Input Selection

The input attributes of the models were constructed based on the Pearson coefficient.
The Pearson coefficient provides information about the correlation between two separate
time series from different monitoring stations. The Pearson coefficient ranges between 1
and 0, where values nearer to 1 indicate near perfect correlation and values near to 0 suggest
complete anti-correlation. The river takes a certain amount of time to flow from upstream
(Schoena) to downstream (Torgau), so the intraday flow data of Torgau and one-day- or
two-days-ahead Schoena flow data were compared using the Pearson coefficient. As shown in
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Figure 2, the Pearson correlation between the Torgau flow data and two-days-ahead Schoena
flow data was higher at low flow levels, while the opposite was true at high flow levels. The
change in the Pearson coefficient indicated that the velocity of water flow was slower during
low-water periods, while the velocity of water flow was faster during periods of high water.
For the Elbe River flow in this study, the value of the variation in the Pearson coefficient was
209 m3/s. Therefore, the following training situation was divided into high-water period
prediction and low-water prediction based on the flow of Schoena (209 m3/s).

Water 2022, 14, x FOR PEER REVIEW 6 of 14 
 

 
August and September 2018, Schoena and Torgau recorded minimum water flows of 70.6 
m3/s and 90.1 m3/s, respectively. 

3.2. Input Selection 
The input attributes of the models were constructed based on the Pearson coefficient. 

The Pearson coefficient provides information about the correlation between two separate 
time series from different monitoring stations. The Pearson coefficient ranges between 1 
and 0, where values nearer to 1 indicate near perfect correlation and values near to 0 sug-
gest complete anti-correlation. The river takes a certain amount of time to flow from up-
stream (Schoena) to downstream (Torgau), so the intraday flow data of Torgau and one-
day- or two-days-ahead Schoena flow data were compared using the Pearson coefficient. 
As shown in Figure 2, the Pearson correlation between the Torgau flow data and two-
days-ahead Schoena flow data was higher at low flow levels, while the opposite was true 
at high flow levels. The change in the Pearson coefficient indicated that the velocity of 
water flow was slower during low-water periods, while the velocity of water flow was 
faster during periods of high water. For the Elbe River flow in this study, the value of the 
variation in the Pearson coefficient was 209 m3/s. Therefore, the following training situa-
tion was divided into high-water period prediction and low-water prediction based on 
the flow of Schoena (209 m3/s). 

 
Figure 2. The Pearson correlation between downstream (Torgau) flow data and one-day or two-
days-ahead upstream (Schoena) flow data. 

During the low-water period, the downstream flow data at Trogau on a particular 
day was adopted as the CNN-LSTM model output corresponding to the training input 
data, including the radar maps of the previous 48 h of hourly rainfall and the upstream 
flow data for Schoena from two days prior. Similarly, the downstream flows corre-
sponded to training data, consisting of the radar maps of the previous 24 h of hourly rain-
fall and upstream data from a day earlier during the high-water period. 

Figure 2. The Pearson correlation between downstream (Torgau) flow data and one-day or two-days-
ahead upstream (Schoena) flow data.

During the low-water period, the downstream flow data at Trogau on a particular day
was adopted as the CNN-LSTM model output corresponding to the training input data,
including the radar maps of the previous 48 h of hourly rainfall and the upstream flow data
for Schoena from two days prior. Similarly, the downstream flows corresponded to training
data, consisting of the radar maps of the previous 24 h of hourly rainfall and upstream data
from a day earlier during the high-water period.

3.3. Flow Simulation

The performance of all the CNN-LSTM models in terms of river flow prediction during
model validation phases were evaluated by several statistical indices, including NSE, KGE,
r, α, and β. According to the guidelines of the hydrological model performance evaluation
proposed by Moriasi [60], the performance of a hydrological model was regarded as very
good if the NSE was more than 0.75. Moreover, a refined version of the KGE was adopted
to enable further decomposition of the NSE, which facilitated the analysis of the relative
importance of its different components (r, α, and β) in the context of the rainfall-runoff model.
The performance of the CNN-LSTM model was also evaluated through an inspection of
graphical representations of the comparisons. Line and scatter plots also enabled us to gain a
better understanding of the fit between the measured and forecasting data.
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K-fold cross-validated (k = 5) curves were generated from a comparison of the mea-
sured and predicted values after the datasets were randomly disrupted according to
high-water and low-water periods. According to the high-water period validation shown
in Table 1, it was suggested that k3 and k4 have high NSE and KGE values (NSE ≥ 0.9,
KGE ≥ 0.9) with a, b, and r close to 1, showing the highest fitting accuracy. The NSE values
of k1 and k5 were 0.96 and 0.90, respectively, but the KGE values of the same phases were
0.87 and 0.75, respectively, and their r values were 0.99 and 0.97. The b values were 1.01
and 1.04 which were closer to 1 than those of k3 and k4, but the values were only 0.87 and
0.75, indicating that their fitted fluctuations were slightly inferior to those of K3 and K4.
The worst performer, k2, had NSE, KGE, a, b, and c values of 0.46, 0.47, 0.75, 0.58, and
0.80, respectively, all of which were the worst values obtained among all the test results.
Collectively, k6 was the combined result of the fivefold test with NSE and KGE values of
0.78, and 0.75, respectively. As shown in Figure 3, the line plot intuitively shows the fitting
deviation of the predicted values and the measured values. Figure 3b(1) indicates that the
comparison shows an obvious deviation of the prediction effect and almost all the extreme
predicted flow values are far lower than the measured values. The scatter plot over the
validation phase shows that almost all the points are aligned along the diagonal line of the
plots, except the k2 validation phase in the high-water period. However, the magnitude
of the coefficient of determination is distinctly sharply worse for k2 validation phase over
the whole testing phase—that is, it affected the R2 of the whole testing phase (K6) to 0.79.
While k2 attained an R2 of 0.56, the other phases attained an R2 of more than 0.95.

Table 1. Evaluation of high-water period.

R2 NSE KGE r α β

k1 0.96 0.96 0.87 0.99 0.87 1.01
k2 0.46 0.46 0.47 0.75 0.58 0.80
k3 0.92 0.92 0.92 0.97 0.95 1.05
k4 0.97 0.97 0.92 0.99 0.96 1.06
k5 0.90 0.90 0.75 0.97 0.76 1.05
k6 0.78 0.78 0.75 0.89 0.78 0.98

As presented in Table 2, the results of fitting and validation based on the model during
the low-water period show that k3 has the highest NSE and KGE values (NSE = 0.86 and
KGE = 0.93) with a, b, and r close to 1, showing the highest fitting accuracy. k1 and k2 had
higher NSE values than KGE values, while k4 and k5 had higher KGE values than NSE
values. It could be seen from r that k4 and k5 had a higher fit while their a-values were only
0.74 and 0.69, indicating the poor performance of the fit with regard to their fluctuations.
In all the tests, the b-values were close to 1, indicating that the model for low-water periods
was better simulated for the mean value. On balance, k6 was the combined result of the
fivefold test, with its NSE and KGE values of 0.81 and 0.76, respectively. As shown in
Figure 4, the deviation of the prediction results in the low-water periods is much smaller
compared with the high-water periods as the flow during low-water periods is much
smaller. The line diagram in Figure 4e(1) shows that the model suggested a large error in
predicting the large flow value in the low-water period. The scatter plots show that the
magnitude of the coefficients of determination ranged from 0.68 to 0.9.
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the scatter plots of the predicted and measured values for k1 to k5 folds, respectively, and f(2) is the
scatter plot for all validation sets from k1 to k5.

Table 2. Evaluation of low-water period.

R2 NSE KGE r α β

k1 0.63 0.63 0.82 0.82 1.03 1.00
k2 0.76 0.76 0.86 0.89 0.93 1.02
k3 0.86 0.86 0.93 0.95 0.96 0.98
k4 0.81 0.81 0.73 0.92 0.74 0.99
k5 0.82 0.82 0.68 0.95 0.69 0.97
k6 0.81 0.81 0.76 0.91 0.77 0.99
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4. Discussion

In this study, we proposed a method that used CNN to process information on rainfall
and LSTM to combine the flow data from the upstream point and time series of the CNN
results as inputs into the model. The model computed the spatial relationship between
rainfall and runoff through CNN and the temporal connection through LSTM. In this
study, the model efficiency (in terms of NSE) was found to be 0.46–0.97 and 0.63–0.86 for
high-water and low-water periods, respectively. In a previous study by Sahraei et al. [61],
different parametric models (HEC-HMS, HBV-EC, HSPF, WATFLOOD, and Model Wrap-
per) employed in the Canadian prairies for discharge prediction achieved model NSE of
between −0.39 and 0.76. Moreover, the SWAT, XAJ, MLR, BP, and LSTM models were
compared by Xu et al. [62] for runoff prediction in the Hun River basins and were found to
produce NSE values between 0.35 and 0.79. In a study by Bhagwat and Maity [63], ANN
and LS-SVR were employed for one-day-ahead runoff prediction in upper Narmada River
basin and achieved a model efficiency (NSE) of between 0.58 and 0.68. In summary, the NSE
values achieved in the above studies are less than or equivalent to those obtained using the
CNN-LSTM model proposed in this study. If the training data are properly selected, the
NSE value of the model could reach more than 0.85 for runoff simulation during high-water
or low-water periods (Tables 1 and 2).

Compared to the parametric model, the advantage of this model was to avoid the com-
plex data collection required by other rainfall-runoff models. For instance, the Hydrological
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Simulation Program—Fortran (HSPF), an open-source rainfall-runoff model developed by
EPA, required rainfall, barometric pressure, air temperature, relative humidity, evaporation,
insolation, topographic and land-use data, and the upstream runoff of the study area as the
minimum major boundary conditions to run the model [64]. HSPF combined meteorologi-
cal and geographic data to derive the contribution of rainfall to runoff through physical
equations. On the other hand, the CNN-LSTM model required only radar data regarding
rainfall and upstream flow data for the study area. The model processed the contribution of
rainfall to runoff at the minimum spatial and temporal resolution within each study scale
through CNN and LSTM. Although the CNN-LSTM could not show the huge variety of
intermediate values in the internal operations, the algorithm continuously adjusted these
intermediate values to achieve the best fit, which was equivalent to the calibration phase of
the HSPF model that requires human intervention.

Compared to other metric models, the CNN-LSTM could be trained directly on two-
dimensional rainfall radar maps and output the predicted flow downstream. In the early
1990s, artificial neural network (ANN) approaches were introduced for rainfall-runoff
modeling [65]. In the context of runoff prediction, ANNs employed flexible data-driven
techniques to reflect the complicated non-linear connections between input driving factors
(precipitation, upstream flow, etc.) and runoff that were difficult to discover using tradi-
tional rainfall-runoff modeling approaches. The adjustment of weights and biases in the
ANN model corresponded to the contribution of land use, meteorological conditions, and
other boundary conditions to the rainfall-runoff process. Limited by the ANN structure
itself, the first step in using ANNs for two-dimensional image problems was to convert the
two-dimensional images to one-dimensional vectors before training the model. This had
two drawbacks: (1) With an increasing image size, the number of trainable parameters and
the demand for computer hardware power increased dramatically; (2) ANNs could not
capture the sequence information that is required to process sequence data from the input
data. Therefore, 2D rainfall radar maps were processed by CNN, and sequence information
was processed by LSTM to overcome these two drawbacks in this study.

In addition, the use of models was restricted and their prediction effectiveness for
data other than training data is greatly reduced by machine learning [66]. For model
prediction of runoff, the accuracy with regard to extreme values was sharply reduced if
the trained dataset excludes data obtained under these extreme conditions [67]. Among all
the recorded data for flow in Trogau, there were four recorded moments over 3000 m3/s.
However, three of them (including two maximum cases) were included in the k2 validation
set. Therefore, the training data of k2 were not assigned to most of the extreme values,
resulting in poor learning during the training process and a lack of training for high-water
value output. In summary, a lack of full scope coverage in the training data could result in
low prediction values for some high-water periods during the validation phase, leading to
poor prediction results. Therefore, the CNN-LSTM model is particularly important for the
selection of input data scope coverage.

In the future, the occurrence of extremes should, on the one hand, be recorded in time
and the model should be updated for training. On the other hand, as computer power
increases, the use of machine learning models for predicting larger study areas with more
rainfall data could be attempted.

5. Conclusions

In this study, the CNN-LSTM model was proposed for river downstream flow pre-
diction. The Elbe River basin in Sachsen, Germany, was selected as the study area, and
three high-water cases and two low-water cases were selected as the study period. The
performance of models was assessed by KGE and NSE through fivefold validation. The
rainfall radar map of the area and the upstream flow were utilized as inputs to the mod-
els. The CNN-LSTM model achieved good results in discharge prediction for high-water
periods (KGE = 0.75, NSE = 0.78) and low-water periods (KGE = 0.76, NSE = 0.81) with
the integrated evaluation of all fold validation sets. However, the CNN-LSTM model
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underestimated the extreme flows when the one-fold training dataset missed these ex-
treme values (KGE = 0.47, NSE = 0.46), while the other folds performed well (KGE > 0.75,
NSE > 0.90) for the high-water period. Therefore, we found that the CNN-LSTM model
needs optimized input datasets to achieve better prediction performance. In summary, this
study demonstrated the successful application of the CNN-LSTM model in predicting river
flow based on two-dimensional rainfall data. This approach could be applied to other river
basins with historical rainfall radar data and recorded river flow data. This model will be
useful for estimating water availability and flood alerts for river basin management.

Author Contributions: P.L.: Data Curation, Software, Writing; J.Z.: Writing; P.K.: Conceptualization.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Scholarship Council (CSC) grant number [201908080087].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Numerical results reported in this paper maybe shared by the interested
parties if requested. Please contact the author.

Acknowledgments: The authors would like to gratefully thank the Information platform UNDINE,
the Deutscher Wetterdienst (DWD, German Meteorological Service) for providing the data and the
Saxon State Office for Environment, Agriculture and Geology for measuring the data. This work was
jointly supported by the state-sponsored scholarship program provided by the China Scholarship
Council (CSC) (No. 201908080087).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sitterson, J.; Knightes, C.; Parmar, R.; Wolfe, K.; Avant, B. An Overview of Rainfall-Runoff Model Types. 2018, p. 41. Available

online: https://scholarsarchive.byu.edu/iemssconference/2018/Stream-C/41/ (accessed on 5 December 2021).
2. Mulvaney, T.J. On the Use of Self-Registering Rain and Flood Gauges in Making Observations of the Relations of Rainfall and

Flood Discharges in a given Catchment. Proc. Inst. Civ. Eng. Ireland. 1851, 4, 19–31.
3. Freeze, R.A.; Harlan, R.L. Blueprint for a Physically-Based, Digitally-Simulated Hydrologic Response Model. J. Hydrol. 1969,

9, 237–258. [CrossRef]
4. Dzubakova, K. Rainfall-Runoff Modelling: Its Development, Classification and Possible Applications. Acta Geogr. Univ.

Comenianae. 2010, 54, 173–181.
5. O’connell, P.E.; Nash, J.E.; Farrell, J.P. River Flow Forecasting through Conceptual Models Part II-The Brosna Catchment at

Ferbane. J. Hydrol. 1970, 10, 317–329. [CrossRef]
6. Porter, J.W.; McMahon, T.A. Application of a Catchment Model in Southeastern Australia. J. Hydrol. 1975, 24, 121–134. [CrossRef]
7. Burnash, R.J.C.; Ferral, R.L.; McGuire, R.A. A Generalized Streamflow Simulation System: Conceptual Modeling for Digital Computers;

US Department of Commerce: Washington, DC, USA; National Weather Service: Silver Spring, MD, USA; State of California,
Department of Water Resources: Sacramento, CA, USA, 1973.

8. Chiew, F.H.S.; McMahon, T.A. Improved modelling of the groundwater processes in MODHYDROLOG. In Proceedings of the
Hydrology and Water Resources Symposium, Perth, Australia, 2–4 October 1991; pp. 492–497.

9. Zhao, R.J.; Liu, X.R. The Xinanjiang Model. In Computer Models of Watershed Hydrology; Water Resources Publication: Littleton,
CO, USA, 1995; pp. 215–232.

10. Chiew, F.H.S.; Peel, M.C.; Western, A.W. Application and Testing of the Simple Rainfall-Runoff Model SIMHYD. In Mathematical
Models of Small Watershed Hydrology and Applications; Water Resources Publication: Littleton, CO, USA, 2002; pp. 335–367.

11. Refshaard, J.C.; Storm, B. MIKE SHE. In Computer Models of Watershed Hydrology; Water Resources Publication: Littleton, CO,
USA, 1995; pp. 809–846.

12. Donigian, A.S., Jr.; Bicknell, B.R.; Imhoff, J.C. Hydrological Simulation Program-Fortran (HSPF). Comput. Models Watershed Hydrol.
1995, 395–442.

13. Brunner, G.W. HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0.; Hydrologic Engineering Center: Davis,
CA, USA, 1995.

14. Beven, K.; Lamb, R.; Quinn, P.; Romanowicz, R.; Freer, J. TOPMODEL. Computer Models of Watershed Hydrology; Singh, V.P., Ed.;
Water Resources Publication: Littleton, CO, USA, 1995; pp. 627–668.

15. Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.
Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth’s Terrestrial Water. Water
Resour. Research. 2011, 47, W05301. [CrossRef]

https://scholarsarchive.byu.edu/iemssconference/2018/Stream-C/41/
http://doi.org/10.1016/0022-1694(69)90020-1
http://doi.org/10.1016/0022-1694(70)90221-0
http://doi.org/10.1016/0022-1694(75)90146-8
http://doi.org/10.1029/2010WR010090


Water 2022, 14, 993 12 of 13

16. Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine Learning
Methods for Better Water Quality Prediction. J. Hydrol. 2019, 578, 124084. [CrossRef]

17. Clark, M.P.; Bierkens, M.F.P.; Samaniego, L.; Woods, R.A.; Uijlenhoet, R.; Bennett, K.E.; Pauwels, V.; Cai, X.; Wood, A.W.;
Peters-Lidard, C.D. The Evolution of Process-Based Hydrologic Models: Historical Challenges and the Collective Quest for
Physical Realism. Hydrol. Earth Syst. Sci. 2017, 21, 3427–3440. [CrossRef]

18. Aziz, K.; Rahman, A.; Fang, G.; Shrestha, S. Application of Artificial Neural Networks in Regional Flood Frequency Analysis: A
Case Study for Australia. Stoch. Environ. Res. Risk Assess. 2014, 28, 541–554. [CrossRef]
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