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Abstract: The Ms 8.0 Wenchuan earthquake occurred on 12 May 2008, in the Sichuan Province of
China, and it was accompanied by a series of strong aftershocks. The mechanisms contributing
to the triggering of the Wenchuan aftershocks have attracted international attention. In this paper,
based on previous analysis of spatiotemporal distribution of aftershocks regarding pore pressure
diffusion of deep fluid, we established a three-dimensional hydraulic–mechanical coupling model
and investigated the influence of fluid migration and its mechanical effects in the Longmenshan fault
zone by using FLAC3D software. We obtained the characteristics of the pore pressure diffusion and
fault reactivation within 70 days in an area NA. The results show that the pore pressure significantly
increases up to 80 MPa during fluid intrusion into the fault plane. The pore pressure increase along
the fault dip is greater than that along the fault strike, with a maximum difference of 3.18 MPa. The
increase in pore pressure along the fault reduces the effective stress and leads to fault reactivation. The
evolution of the fault reactivation area calculated in the model is compared with the spatiotemporal
characteristics of the aftershocks. This study is meaningful for furthering the understanding of the
role of deep fluids in fault dynamics and aftershocks triggering.

Keywords: numerical simulation; pore pressure; hydraulic–mechanical coupling; spatiotemporal
distribution of aftershocks

1. Introduction

Earthquakes are often accompanied by changes in the physical properties, chemical
compositions, and other aspects of deep fluids [1–5]. The stress changes caused by a
mainshock can cause the diffusion of trapped fluids along a seismogenic fault, thereby
reducing the effective stresses and leading to further rock failure and triggering after-
shocks [6,7]. Geophysical inversions show that some earthquakes are located in areas
containing fluids or with high pore pressures, such as the 1995 Kobe earthquake [8], the
2001 Bhuj earthquake [9] and the 1938 Kutcharo earthquake [10] in Japan, and the 2009
L’Aquila earthquake in Italy [11]. Furthermore, there is much evidence to support that
the spatiotemporal distribution of some aftershocks may be driven by the migration of
fluid [12], including aftershocks of the 1992 Landers earthquake in the United States [13],
the 1995 Antofagasta aftershocks in northern Chile [14], the 1997 Umbra–Marche after-
shocks in Italy [6], the 2004 Sumatra aftershocks [15], and the aftershocks that occurred in
2014 in the West Bohemia/Vogtland region [16].

The Ms 8.0 Wenchuan earthquake is one of the largest disasters in China in recent
years. The mechanisms related to its triggering have been the focus of international at-
tention and have become an attractive field. Some scholars suggest that the occurrence of
the Wenchuan earthquake is related to the filling of the Zipingpu reservoir, e.g., [17–19].
Ge et al. [17] calculated stress changes caused by the filling of the Zipingpu reservoir at the
depth of the Wenchuan hypocenter and found that its filling could cause an earthquake to
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occur earlier than it otherwise would have. Lei et al. [18] analyzed the relationship between
reservoir-induced stress changes and seismicity near the reservoir. They found that the
filling of the Zipingpu reservoir caused Coulomb stress changes up to 0.05 MPa at 10 km
depth along the central fault of the Longmenshan fault zone, which could have contributed
to the Wenchuan earthquake. Sun et al. [19] used a three-dimensional porous elastic model
to estimate that filling the Zipingpu reservoir increased Coulomb stresses by 1 kPa at the
depth of the Wenchuan earthquake hypocenter. Although there is not yet a consensus
on whether the Wenchuan earthquake was triggered by the filling of the Zipingpu reser-
voir [20], these studies show that even small stress changes caused by fluids can lead to the
acceleration of seismicity. However, compared with surface reservoir impoundment, the
stress changes caused by deep fluid migration may be greater at the depth of the earthquake
hypocenter [21–23]. Many scholars have demonstrated the possibility that deep fluid may
exist in the Longmenshan fault zone using geophysical and geochemical methods [24–27].
Liu et al. [1] analyzed the Wenchuan aftershock spatiotemporal distributions by pore
pressure diffusion mechanics and suggest that the movement of deep fluid may trigger
aftershocks in the Longmenshan fault zone (Figure 1). However, it was mainly studied
from the point of view of hydraulic dynamics without considering the mechanical process.
It is necessary to further discuss the role of deep fluid migration in the triggering of the
Wenchuan aftershocks by considering a coupled hydraulic–mechanical model.
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In this study, based on the analysis of spatiotemporal distribution of Wenchuan af-
tershocks [1], we build a three-dimensional hydraulic–mechanical coupling model for
investigating the process of deep-fluid diffusion along the fault and calculated its mechani-
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cal effects on fault reactivation using FLAC3D software. The calculated fault reactivation
area is compared with the spatial and temporal distribution of Wenchuan aftershocks. The
results provide an insight into the role of pore pressure diffusion in triggering aftershocks
and the relationship between deep fluids and the seismogenic process.

2. Study Area

Based on focal mechanisms and distribution of hypocenters of the Wenchuan after-
shocks and the Longmenshan fault zone structure [28], there are some areas containing
similar types of seismicity along the Longmenshan fault zone. Because the focal mech-
anisms of the aftershocks are similar in such areas, it is likely that they have the same
triggering mechanisms [29], that is, the pore pressure diffusion of trapped deep fluid which
is initiated by stress changes caused by the mainshock [6], as observed in aftershocks
related to fluid migration elsewhere [11].

Pore pressure diffusion is one of the main methods of analyzing the spatiotemporal
distribution of earthquakes and extracting information on fluids involved in earthquakes,
e.g., [7,30–32]. If the first earthquake in an earthquake sequence is considered as a fluid
intrusion point, then if the distance between the first earthquake and its aftershocks (r)
gradually increases with time (t), these points will follow an envelope line in an r–t plot.
The emergence of an envelope line demonstrates that the earthquakes are triggered mainly
by the diffusion of pore pressure, which can be used to estimate hydraulic diffusivity, D [7]:

r =
√

4πDt (1)

Liu et al. [1] analyzed the spatiotemporal distribution of aftershocks for the areas with
the similar focal mechanisms and concentrated hypocenters and evaluated the hydraulic
diffusivities for such areas along the Longmenshan fault zone. An area NA is located in the
north of the Longmenshan fault zone (Figure 2a). Considering the aftershocks triggered by
pore pressure diffusion may have multiple stages [1], the aftershocks within 70 days in the
area NA are analyzed (Figure 2b). The spatiotemporal distribution of the aftershocks in the
NA area is plotted on the r–t plot (Figure 2c) and the M–t plot (Figure 2d). The aftershocks
in the area NA (Figure 2a) are more in line with an envelope shape in r–t space (Figure 2c)
than other areas and suggest that the aftershocks in the area NA were mainly triggered by
pore pressure diffusion. The hydraulic diffusivity D was estimated roughly to be 1.8 m2/s
from the envelope line, with a corresponding permeability of k = 3.7 × 10−15 m2 [14]. The
estimated value is reasonable compared to the seismogenic fault rock permeability [33].
Therefore, we select the area NA as the study area here and establish a three-dimensional
hydraulic–mechanical coupling model based on the previous work.
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3. Method

The fault rock was treated as an equivalent porous medium in the hydraulic–mechanical
coupling model. The migration of fluid in a porous medium obeys Darcy’s law [34], and the
rock stresses obey the Terzaghi effective stress principle [35]. The equations for calculating
pore pressure and stress changes are briefly described below.

3.1. The Mathematical Model

Based on Darcy’s law and mass conservation, the fluid flow in the fault and rock
matrix can be expressed by [3]:

∂(φρS)
∂t

= ∇·[ρk(∇P− ρg∇z)] + ρQ, (2)

in which φ is the porosity, ρ is the fluid density, kg/m3, S is the saturation, k is the
permeability, m2, P is the pore pressure, Pa, and Q is the source term, m3/s.

Assuming that the rock is an isotropic elastic medium in the fault, the stress state
influenced by the fluid can be represented by the Terzaghi effective stress principle:

σ′ = σ− αP, (3)

where σ′ is the effective stress, Pa, σ is the total stress, Pa, and α is the Biot coefficient.
Fault reactivation occurs when the difference between the maximum and minimum

principal stresses is sufficiently large [36]:

σ′1
σ′3

=
σ1 − αP
σ3 − αP

≤ q =

[(
µ2

s + 1
)1/2

+ µs

]2
, (4)

where σ1 and σ3 are the maximum and minimum principal stresses, respectively, σ′1 and
σ′3 are the maximum and minimum effective stresses, respectively, µs is static friction
coefficient of the rock, and q is the limiting stress difference. When the stress ratio exceeds q,
fault reactivation will occur. The mathematical model was solved with the finite difference
method by using the software FLAC3D [37]. Compared to the finite element method, the
finite difference method is computationally efficient for both meshing and solving the
numerical model.
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3.2. The Numerical Model

According to the location of the area NA and its fault structure [28,38], we established
a 30 km × 30 km × 10 km geological model (Figure 3a). The model includes a fault with
a dip of approximately 60◦ and a thickness of approximately 100 m, corresponding to
the high-angle reverse fault of Longmenshan fault zone [25]. Considering that nearly
90% of the aftershocks are distributed shallower than 10 km depth in the area NA, it is
assumed that the middle point of the fault in the Y-direction at 10 km depth is the fluid
intrusion point (Figure 3b). We should note that the location of the “intrusion point” is
chosen based on the mechanism of fluid-induced aftershocks (Liu et al., 2014) and the
temporal–spatial distribution of aftershocks in the area NA. From the point of view of
the triggering mechanism, it is assumed that there were many areas with trapped fluid
along the Longmenshan fault zone before the Wenchuan earthquake, and when the main
shock occurred, the changed crustal stress causes the trapped fluid in such zones to diffuse
upward. Accordingly, the main shock provides the geomechanical condition of the first
occurrence of aftershocks, whereas the zone of the trapped fluid, i.e., the existence of
fluid, determines the location of the “intrusion point” of the area. For the studied area
NA, considering the seep characteristic of deep fluid, we infer that the “intrusion point”
is the middle point in the Y-direction at 10 km depth. We should note that due to the
heterogeneity of the subsurface rocks, the inferred “intrusion point” may not be rigorously
in the bottom middle of the area, whereas it is a proper one, regarding the above mechanism
and the limited data about the geological aspect of this area. Thus, the model includes a
three-dimensional rock matrix (impermeable) and fault (permeable). From the point of
view of engineering geology, the rock matrix and large fractures (fault) constitute the rock
mass. Properties of the rock matrix and fault for the model are presented in Table 1 [33,36].
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Table 1. Parameters for the rock matrix, fault, and fluid for the numerical model.

Properties Rock Matrix Fault

Bulk modulus (Pa) 4.667 × 1010 2.800 × 1010

Shear modulus (Pa) 2.890 × 1010 1.646 × 1010

Rock density (kg/m3) 2600 2600
Fluid density (kg/m3) N/A 1000

Static friction coefficient N/A 0.6
Fluid modulus (Pa) N/A 2.2 × 1010

Permeability (m2) N/A 3.7 × 10−15

Biot coefficient N/A 1.00
Porosity N/A 0.05



Water 2022, 14, 952 6 of 14

3.3. Initial and Boundary Conditions

As Longmenshan fault zone belongs to a reverse fault, which is the result of horizontal
compression, the maximum principal stress is in a direction perpendicular to the fault
strike in the model. Stress measurements at some places along the Longmenshan fault zone
prior to the Wenchuan earthquake show that the horizontal stress (σH) was greater than the
vertical stress (σv) and that σH = 1.35 ∼ 2.1σv [39]. We set the initial stress conditions for
the model based on the measured stresses and the stress characteristics for reverse faulting
and assume hydrostatic pressure for the fluid. The stress and hydrostatic pressure increase
linearly with depth.

The maximum principal stress is perpendicular to the fault strike in the horizontal
plane, and it is also the maximum horizontal stress σHmax, MPa, which can be expressed
by [39]:

σHmax = 6.5 + 0.0494H (5)

The intermediate principal stress is in the strike direction of the fault, i.e., the minimum
horizontal stress σHmin, MPa, can be expressed by the following [39]:

σHmin = 4.9 + 0.039H (6)

The minimum principal stress is vertical stress σv, MPa, which can be expressed
by [39]:

σv = ρrgH × 10−6, (7)

and the pore pressure, MPa, is assumed as hydrostatic initially [3]:

P = 0.01H, (8)

where H is the depth, m, ρr is the rock density, kg/m3 and g is the gravitational acceleration
of 10 m/s2.

Considering that stress accumulates relatively slowly compared to stress changes due
to pore pressure diffusion, it is assumed that the stress changes caused by tectonic activity
were unchanged during the study period. Therefore, the stress boundary conditions are
consistent with the initial conditions. The stresses along boundaries perpendicular to the
fault were represented by Equation (5), the stresses along boundaries parallel to the fault
were represented by Equation (6), and the stresses at the upper and lower boundaries were
0 MPa and 260 MPa, respectively.

Determining the source term of deep fluid and pore pressure in the fault is difficult in
the study of fluid dynamics in seismic processes. Although some scholars have studied fluid
migration and pore pressure in the Longmenshan fault zone [24], there is little knowledge
of the physical parameters of fluids in the fault zone during the Wenchuan earthquake. For
the fluid diffusion model in Equation (2), the source term should be specified, whereas, to
the best of our knowledge, it is hard to measure at the depth of 10 km. The source term, Q,
was 0.15 m3/s for the Matsushiro earthquake swarm [40], but the magnitude of Wenchuan
earthquake was much higher than those of the Matsushiro earthquakes. Hence, the source
term is assumed as 1.5 m3/s in our model.

4. Results

The intrusion of the fluid increases the pore pressure in the fault plane, which reduces
the effective stress in a rock and causes failure when it is sufficiently large. Here, we first
calculate the increased pore pressure in the fault plane within 70 days. Then the reduced
effective stress due to the pore pressure diffusion is analyzed. Last, we estimate the fault
reactivation area based on the calculated effective stress state.

4.1. Pore Pressure Increases Caused by the Fluid Intrusion

The fluid flow Equation (1) is solved numerically for investigating the characteristics
of pore pressure diffusion within the fault. The gradual increase in pore pressure in the
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fault plane due to fluid intrusion is shown in Figure 4. The area of elevated pore pressure
expands gradually along the fault dip and strike directions. The pore pressure in the fault
plane increases up to 80 MPa during the fluid intrusion.
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The increases in pore pressures ∆P along the strike (the red dashed line in Figure 3b)
and dip (the green dashed line in Figure 3b) differ from each other (Figure 5). It shows
that the increase in pore pressure along the dip is greater than along the strike, and the
difference increases with distance from the intrusion point and over time, reaching a
maximum of 3.18 MPa at 70 days. ∆P decays from the intrusion point over 70 days with an
averaged decay gradient of 0.8 MPa/km and 1.1 MPa/km along the dip and strike direction,
respectively. This suggests that the range of the increased pore pressure along the dip is
bigger than along the strike regarding the fluid intrusion point in this model. According to
the Terzaghi effective stress principle, the difference in the increase in pore pressure in the
two directions causes stress changes correspondingly. Therefore, it is necessary to further
calculate the crustal stress changes caused by the fluid intrusion.
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4.2. Changes in Maximum Horizontal Stress and Vertical Stress Caused by Fluid Intrusion

The reduction of the effective stress caused by the increase in pore pressure along
the fault zone is one of the main mechanisms to explain earthquake triggering [3]. The
failure of rock is related to the difference between the maximum and minimum principal
stresses, as shown in Equation (4) [41]. For a reverse fault, the maximum and the minimum
principal stresses correspond to the maximum horizontal stress σHmax and the vertical
stress σv (Figure 3a), respectively. Therefore, we calculated the effective stress in the X-
and Z-directions, σ′Hmax and σ′v, considering the increased pore pressure (∆P) using
Equation (3). The effective stresses in the X- and Z-directions during fluid intrusion are
shown in Figure 6a,b, respectively. It shows that the effective stress gradually decreases
over time in both directions.
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4.3. Fault Reactivation Caused by Fluid Intrusion

Fault reactivation occurs after rock failure, and it is then followed by earthquakes [40,41].
Calculating the fault reactivation area caused by fluid intrusion is helpful in analyzing the
spatiotemporal distribution of aftershocks triggered by pore pressure diffusion. Based on the ef-
fective stresses calculated above, we can estimate the fault reactivation area using Equation (4).

Fault reactivation will occur when the ratio of the effective stresses in the X- and Z-
directions exceed the limiting stress difference q shown in Equation (4), which is influenced
by the static friction coefficient µs. For the Longmenshan fault zone, q is 3.13 when µs is
assumed to be 0.6 [39]. The ratio of the effective stress in the X- and Z-directions at 10 days,
25 days, and 70 days are shown in Figure 7, where the red area indicates where the fault
may reactivate. It suggests that fault reactivation area expands gradually over time in both
the X- and Z-directions.

The locations of aftershocks in the area NA for 70 days are plotted in Figure 8a. The
spatiotemporal distribution of aftershocks in the area NA shows that most aftershocks
locate in the central area initially (red circles) and they expand gradually with time to some
extent (blue circles). We should note that computer-aided algorithms would be helpful
for a comprehensive analysis of such area/volume in further study. Furthermore, based
on the fault reactivation area calculated above (the red area in Figure 7), we delineate the
contour of fault reactivation area calculated numerically (Figure 8b). Such comparison of
Figure 8a,b provides insights into the correlation between the spatiotemporal distribution
of aftershocks and the fault reactivation area.
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5. Discussion
5.1. Aftershock Triggering Mechanisms and Pore Pressure Diffusion

Based on the results of this study, we suggest that the aftershocks in the area NA are
mainly triggered by pore pressure diffusion along the fault. The Longmenshan fault has
been very tectonically active since the Cenozoic. It has been under compression due to
the collision between the Indian and Eurasian Plates, and the maximum horizontal stress
has been increasing until the Wenchuan earthquake, which led to a release of stress. At
the same time, there are some studies indicating that deep fluids were likely to exist in the
Longmenshan fault zone prior to and during the Wenchuan earthquake. Stress changes
generated by the mainshock may lead to the diffusion of fluid trapped along the fault, then
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the increased pore pressure caused fault reactivation and triggered aftershocks where the
rock stress was at the critical state.

Some aftershocks in the r–t plot (Figure 2c) did not follow the envelope line, par-
ticularly early in the aftershock sequence. Stress transfer may be the main triggering
mechanism of these aftershocks. These aftershocks display burst-like characteristics in r–t
space [29], but they do not gradually migrate away from the initiation point over time.
Although the stress transfer caused by the mainshock may have triggered some aftershocks
in the initial stage, pore pressure diffusion may predominate the aftershocks in the area
NA afterwards.

Focal mechanism tomography (FMT) is one of the main methods to estimate the excess
pore pressure in a source region. Excess pore pressures were in the range of 0~60 MPa for
the 2009 L’Aquila earthquake in Italy [11]. In this study, the estimated range of the increase
in pore pressure caused by fluid intrusion is 0~80 MPa, which is comparable with the
results of the L’Aquila earthquake. In addition, the larger increase in pore pressure along
the dip than along the strike is similar to the results of the Matsushiro earthquake [40].
However, in addition to the mechanical aspect, the chemical effect of fluid should also be
considered in future research, which may contribute to change the composition of the fluid
and rock during fluid migration and hydraulic–mechanical interactions [42].

5.2. Spatiotemporal Distribution of Aftershocks and Pore Pressure Diffusion

In the hydraulic–mechanical coupling model, the evolution of the fault reactivation
area calculated is correlated with the spatiotemporal distribution of aftershocks in the area
NA. Several investigations of the 1965–1967 Matsushiro earthquake swarm in Japan have
also suggested that the migration of deep fluids may have strongly influenced swarm
activity [40]. The spatiotemporal distribution of the Matsushiro earthquake swarm is also
comparable with the evolution trend of the fault reactivation area in this study [43]. Here,
we studied the area NA for analyzing the correlation between the pore pressure diffusion
and the aftershocks distribution. Nevertheless, it does not mean that only the aftershocks
in the area NA might be related to deep fluid intrusion along the Longmenshan fault zone.
This is due to the fact that the geological structure and the focal mechanism of aftershocks
are similar in the area NA [29], which indicates that the seismogenic process of the area
tends to be uniform. Therefore, the influences of heterogeneous structure and complex
stress state along the fault zone on the spatiotemporal distribution of aftershocks have
been minimized. However, for analyzing the triggering mechanism of aftershocks and
pore pressure diffusion process of fluid intrusion along the whole Longmenshan fault zone,
several aspects require further study, as discussed in the following.

First, in the modeling process, we treated fluid as the main factor affecting aftershock
activity. However, there may be other important factors, such as the mechanical effect of
fault slip, the interaction between aftershocks, or the effect of seismic waves. Additionally,
the trapped fluid intrusion area is assumed as a point in the model due to the fact that
the dimension of the trapped fluid area is very small compared to the modeling area NA,
e.g., [16,44]. However, in the case of the dimension of the modeling area decreasing, the
source term might be depicted as a line or other shapes constrained by the geophysical data,
which should be explored in the further study. Additionally, the location of the intrusion
point and the flow rate of the source term is assumed as constant in this study. We should
note that these critical properties may contain uncertainties due to the limitation in the
insufficient observation data, which should be further explored. Second, the heterogeneity
and anisotropy of rocks and a non-uniform stress distribution along the fault may also affect
the spatiotemporal distribution of aftershocks. The permeability of fault rocks affects the
fluid migration, which may influence the spatiotemporal distribution of aftershocks [13,45].
Thus, a model with heterogeneous permeability based on upscaling permeability for
fractured rocks should be explored in a future study [46]. Furthermore, the sensitivity
analysis should be further investigated for such key parameters listed in Table 1, which may
have a significant impact on the coupled hydraulic–mechanical model. Third, a different
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initial stress state in the model may influence fault reactivation during fluid migration.
Advanced methods for calculating crustal stress, e.g., [47], could help in constraining
our hydraulic–mechanical model and thus may yield a better match between the real
data and model results. Fourth, the model solved the pore-pressure diffusion equation
numerically and fault reactivation area analytically, and we noted that recent contributions,
e.g., [16,48], built models with coupled fluid–mechanical equations for analyzing the
relationship between aftershock and fluid diffusion. Calculation of deformations and
displacements should be further studied.

Therefore, it is necessary to further consider the heterogeneity and anisotropy of rocks,
the properties of the fluid source, and the related dynamics during aftershocks. Based
on the results of scientific drilling in the Wenchuan fault, further research is needed to
combine seismology and geochemistry to obtain comprehensive poroelastic parameters
and understand their changes along the fault during the aftershock sequence.

5.3. Numerical Aspects of the Model

Considering the Longmenshan fault zone is very large horizontally and the distance
between most aftershocks and their initial point (which is located at the bottom-center
of the model) is less than 10 km in the studied area (Figure 2c), a rectangle fault plane
30 km × 11.5 km (dip angle 60◦, 11.5 = 10/sin(π/3)) is built for eliminating the boundary
effect in the horizontal and vertical directions.

The Wenchuan aftershocks were distributed along the Longmenshan fault zone (Figure 1).
Especially, the model dimension of the studied area NA is 30 km × 30 km × 10 km, which is
still very large and is not feasible for computation when the meshes are very fine. Considering
the assumed homogeneous hydraulic properties within the fault plane, which yields more
stable results than those of the heterogeneous model, a 1 km× 1 km (30× 10) grid is assumed.
The calculated results in Figures 4 and 5 demonstrate that the change of pore pressure reached
the top boundary (i.e., the Earth’s surface), which may affect the distribution of pore pressure.
In addition, for demonstrating the stability and reliability of the numerical models, sensitivity
analyses of mesh and model size have been conducted (Figure 9). It is shown that either
refining the grid block of 0.75 km × 0.77 km (40 × 13) for the fault plane (green color) or
enlarging the model dimension of 30 km × 40 km × 10 km (blue color), the calculated pore
pressures at 30 days are very close regarding the numerical model used in the previous study
(red color). The relative errors are roughly evaluated, and are below 6%.
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6. Conclusions

Based on previous studies of the Wenchuan earthquake and the spatiotemporal distri-
bution of aftershocks with respect to pore pressure diffusion of deep fluids, we established
a three-dimensional hydraulic–mechanical coupling model to investigate pore pressure
diffusion and its mechanical effects in the fault plane using FLAC3D. During fluid intru-
sion into the fault plane, the pore pressures increase significantly by up to 80 MPa within
70 days in the study area NA. The increase in pore pressure, ∆P, along the fault dip is
greater than that along fault strike on the fault plane. During 70 days, ∆P decays from the
intrusion point with an averaged gradient of 0.8 MPa/km and 1.1 MPa/km along the dip
and strike direction, respectively. The increase in pore pressure on the fault plane reduces
the maximum and minimum effective stresses and thus can lead to fault reactivation. The
evolution of the fault reactivation area calculated in the model is compared with the spa-
tiotemporal distribution of aftershocks, taking into account the assumed input parameters
and measurements of other studies. Our results provide insights for understanding the
triggering mechanisms of the Wenchuan aftershocks.
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