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Abstract: The fracturing water injected into the underground gas reservoirs for development pur-
poses has polluted the reservoirs, triggering a decrease in reservoir permeability and gas production.
Here, we quantitatively investigate and provide preventions for the fracturing water pollution in the
underground gas reservoir. We study the effects of fracturing water pollution on reservoir perme-
ability with core experiments. According to the core experiments, we constructed an area-divided
two-phase porous flow model to study the production of the underground gas reservoir considering
fracturing water pollution. The simulation results are in good agreement with the field development
data. It reveals that in the early, mid-term and late development, respectively, the fracturing water
pollution accounts for 88%, 80% and 45% of the decline in permeability and production of the un-
derground gas reservoir. In terms of the prevention of fracturing water pollution, reservoirs with an
initial permeability over 0.20 mD are preferably produced by natural energy rather than fracturing.
Once using the fracturing water, we suggest applying the propping agent with a large particle radius
to reduce the pollution from the solid solute and adding the clay stabilizer and the surfactant to the
fracturing water to reduce the pollution from the water solvent.

Keywords: fracturing water pollution; underground gas reservoir; pollution prevention; two-phase
flow; porous media; experiments and simulations

1. Introduction

The groundwater protection near the gas reservoirs and the underground environ-
mental hazard from gas exploration have been paid considerable attention [1–3], however,
the pollution of fracturing water such as fracturing water to the underground gas reservoir
receives few focuses. Underground gas reservoirs are usually developed by hydraulic
fracturing because of their low or even ultra-low porosity and permeability [4–6]. In the
process of hydraulic fracturing, due to the injection of the fracturing water, the pollution
from the solid solutes and water solvents of the fracturing water will be brought to the
underground gas reservoirs, and the reservoir permeability will be reduced [7,8]. Due to
the fracturing water pollution and the permeability reduction, the gas production is further
declined [9,10] and the gas reservoirs are no longer eligible for CO2 capture and storage
or underground hydrogen storage [11–13]. From sustainable energy development and
recyclable reservoir utilization perspectives, investigations and preventions on fracturing
water pollution in the underground gas reservoir are significant.

The solid solute pollution of the fracturing water in the underground gas reservoir
is that the proppant particles contained in fracturing water are injected into the reser-
voir pores and form the plugging, resulting in the macroscopic scale loss of the reservoir
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permeability [14–17]. The solid solute pollution caused by fracturing water into the un-
derground gas reservoir can be further divided into filter-plugging pollution and matrix-
plugging pollution [18–21]. Filter plugging pollution refers to the proppant particles
contained in the fracturing water are squeezed into the end faces of the pores to form
a filter, resulting in the loss of reservoir permeability (Figure 1a). The matrix plugging
pollution refers to the blockage caused by the adsorption and retention of proppant parti-
cles inside the pore matrix, resulting in the loss of reservoir permeability (Figure 1b) [22].
Lipei Fu, et al. [23] studied the pollution law of fracturing water by flow experiment. As
the initial core permeability decreases, the water-sensitivity pollution rate and the water-
locking pollution rate increase, while the solid solute pollution rate decreases slightly but
the total pollution rate increases.
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Figure 1. Solid pollution of fracturing water to the underground gas reservoir. (a) Filter plugging
pollution. (b) Matrix plugging pollution.

Researches have also been carried out on pollution from water solvent of the fracturing
water [24–28]. There are two main aspects of water solvent pollution caused by fracturing
water into underground gas reservoirs [29]. On the one hand, the solvent water in the
fracturing water penetrates into the reservoir pores, which reduces the original gas satura-
tion in the pores and hence decreases the gas phase permeability, also known as “water
lock” pollution. On the other hand, the solvent water in the fracturing water penetrates
into the reservoir pores, triggering the clay minerals to expand and migrate, leading to
pore collapse and impairing the reservoir permeability, also known as “water sensitive”
pollution. Compared with the solid solute pollution of fracturing water, water solvent
pollution has a wider range in the underground reservoir [30,31]. For low-permeability
reservoirs, the water solvent pollution from fracturing water is more significant.

Quantitatively characterizing the pollution caused by fracturing waters during the
fracturing development of underground gas reservoirs is the key to figuring out the core
factors that inhibit the permeability and production of underground gas reservoirs, which is
also a key prerequisite for underground gas reservoir pollution preventions and preventions
and production optimization strategies. In order to observe the microscopic porous flow
dynamics in low-permeability reservoirs and explore the mechanism of fluid microscopic
flow, Hongqing Song et al. [32] proposed a method to make a visual microscopic seepage
model for simulating low-permeability reservoirs. Xuhua Gao et al. [33] used the LBM
method to simulate the flow of shale gas in nanopores, thereby establishing the LBM
adsorption model. Weiyao Zhu et al. [34] proposed the multiphase seepage theory of
low-permeability reservoirs. Hongqing Song [35] established a fracturing well production
model considering shale gas seepage to calculate the relevant changes in the production
process. However, there are no researches that consider the impact of solid solute and water
solvent pollution from fracturing water on the permeability and production of underground
gas reservoirs during the development, or propose how to prevent or treat the fracturing
water pollution.

In this work, we quantitatively investigate the fracturing water pollution in the under-
ground gas reservoir and provide preventions for the fracturing water pollution. We study
the effects of fracturing water pollution on reservoir permeability with core experiments.
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We construct a mathematical physical model by integrating the revealed parameters from
the core experiments to study the production of the underground gas reservoir considering
fracturing water pollution and use COMSOL numerical software to solve the model. We
consider the effects of stress sensitivity and threshold pressure gradient, which are two
crucial geological properties of the gas reservoirs in our model to precisely reveal the
gas production. According to the experimental and numerical investigations, we provide
preventions for the fracturing water pollution triggering the production decline in the
underground gas reservoirs.

2. Experimental Research
2.1. Fracturing Water Pollution Research

Aiming at the problems that the existing storage pollution evaluation system is imper-
fect, and the single pollution degree cannot be accurately calibrated under the condition
of coexistence of multiple injuries, we propose the concepts of absolute pollution degree
of storage (Da) and relative pollution degree (Dr) to quantitatively evaluate the weight of
single pollution in the total pollution of storage [36].

Absolute degree of pollution Da: Characterize the decrease in storage permeability
due to a particular type of pollution, %.

Calculation method:

Da =
Ki − Kp

Ki
× 100%

where, Ki is the initial core permeability, m2. Kp is the permeability after single pollution, m2.
Means of realization: Conventional pollution physics simulation (SY/T 5858-2010).
Relative degree of pollution Dr: Indicates the proportion and weight of a specific type

of pollution in the total pollution stored, %.
Calculation method:

Dr =
∆Ks

∆Km
× 100%

where, ∆Ks is the permeability reduction under single pollution, m2. ∆Km is the permeabil-
ity reduction under multiple pollution, m2.

Means of realization: A single factor evaluation experiment under the multiple pollution.

2.1.1. Solid Solute Pollution from Fracturing Water (SSP)

In this study, the impact of solid solute pollution from fracturing water on the per-
meability of underground gas reservoirs was explored through core experiments. In the
experiment, artificial and natural cores with a diameter of 2.5 cm and a length of 2.5 cm were
used to quantitatively clarify the solid pollution of the fracturing water by measuring and
comparing the permeability of the core before and after fracturing water displacement. The
initial permeability was measured by the forward displacement of kerosene after saturated
standard saline. We reversely displaced the fracturing water, and when placed at a constant
temperature, we displaced the kerosene forward to measure post-pollution permeability.
Figure 2a,b are the core pollution test results using 90 ◦C conventional fracturing water (the
total solid phase content in the gel-breaking solution is 476 mg/L) and 90 ◦C low-pollution
fracturing water (the total solid phase content in the gel-breaking solution is 227 mg/L),
respectively. Figure 2c shows the experimental results of pollution in natural cores and
artificial cores using conventional fracturing water.
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Figure 2. Core flooding samples. (a) Artificial core. (b) natural core. (c) Variation curve of solid solute
pollution from fracturing water degree with formation pressure drop.

2.1.2. Water Solvent Pollution from Fracturing Water (WSP)

Water lock pollution widely exists in low-permeability tight sandstone oil and gas
reservoirs and is one of the main pollution types of low-permeability tight sandstone oil
and gas reservoirs, which seriously affects the exploration and development of oil and gas
reservoirs. Although there is no unified evaluation standard and normative process for
indoor evaluation of water lock pollution, according to its specific action process, different
scholars have adopted different experimental methods to evaluate. However, a consensus
has been reached on the pollution caused by the water lock effect on the permeability.
Studies have shown that the smaller the permeability of the core, the more serious the
water lock pollution. In this study, 10-14 cm long cores were used for the experiment
(Figure 3), which overcomes the end effect of short cores during the experiment. Different
degrees of water lock were simulated by reverse injection of formation water, and the flow
rate was obtained by using a soap film flowmeter at the end of the core gripper, then the
permeability of the core with different degrees of water lock can then be obtained and the
pollution degree can be calculated [37].
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(1) Experimental procedure

1© The long cores were dried in an incubator at 80 ◦C for 48 h;
2© Put the core into the long core holder, add a confining pressure of 3 MPa and use a

soap film flowmeter to test the gas permeability of the core;
3© After the long core is evacuated for 24 h, the formation water is saturated;
4© After 48 h of pressure saturation, take it out for use;
5© Put the core into the long core holder, add the confining pressure of 3.0 MPa, the

pressure at the inlet end of 1.601MPa, the pressure at the outlet end of 0.101 MPa and
start the displacement;

6© Use a soap film flowmeter at the end of the holder to record the flow rate, and
obtain the core permeability, end the experiment and then change the experimental
conditions to carry out the next set of experiments;

7© The Wendeng pump was used to reverse inject 0.1 PV, 0.2 PV and 0.5 PV forma-
tion water into the end of the long rock core, repeat steps 5© and 6©, and then end
the experiment.

(2) Experimental results (Figure 4a)
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Figure 4. Variation curves. (a) Variation curve of water solvent pollution from fracturing water
degree with formation pressure drop. (b) Variation curve of stress-sensitive pollution degree with
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with drop of formation pressure.

1© The water-lock pollution rate of tight core is inversely proportional to overburden
permeability;

2© The water lock pollution rate of tight cores is above 40%. When the permeability is
lower than 0.1 mD, the water lock pollution rate can reach more than 95%;

3© The water lock pollution law of natural fracture cores is similar to that of matrix cores,
but the pollution rate is generally lower (15–25%).

2.2. Stress Sensitivity (SS) Research

Reservoir rocks are often composed of bedrock, pores, cracks, karst caves, etc., and
belong to a typical porous medium structure. The complex physical structure inside the
rock leads to extremely complex internal stress conditions. Generally speaking, there are
basically the following two types of stress applied to the rock: internal stress (pore fluid
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pressure) and external stress (formation overburden pressure). When the stress exerted
on the storage rock changes, the rock will deform and the pore structure of the rock will
also change accordingly, which will eventually lead to changes in the rock seepage and
storage production (permeability, porosity, etc.), that is, so-called stress sensitivity. For tight
reservoirs, due to their small pore throats, the internal structure of the rock is more complex
than that of conventional oil and gas reservoirs. Therefore, the stress state and deformation
under stress will be very different from conventional oil and gas reservoirs, and the stress
sensitivity characteristics and the influence on reservoir seepage will also be very different
from conventional ones.

On the basis of conventional stress-sensitivity research, time variables are introduced
and the concept of instantaneous and delayed stress-sensitivity effects is proposed.

The conventional stress-sensitive evaluation method believes that the storage com-
pression deformation is completed in a very short time; therefore, the oil and gas industry
standard sets the pressure-bearing time for evaluating stress sensitivity as 30 min. With the
production of fluid, the effective stress of the storage increases, the storage deforms in a very
short time and then the stress-sensitive phenomenon occurs. We name this stress-sensitive
phenomenon generated in a short time the transient stress-sensitive effect.

In fact, the stress deformation of dense storage is a complex and slow process. Under
a certain overburden pressure and pore pressure, the effective stress of the reservoir is
constant, but with the extension of time, the reservoir pores continue to be compressed
and the permeability will continue to change with time, which is called the delayed stress
sensitivity effect.

K(t) =


0.1222

−0.0003 ln t + 0.0121
0.0112e−0.0005t

(t = 0.5)
(0.5 ≤ t ≤ 10)

(t ≥ 10)

Transient Stress Sensitive Phase
Delayed transition stress-sensitive stage
Delayed decay stress sensitive stage

Based on the time-delayed stress-sensitive theory, we obtained the true stress-sensitive
pollution degree of the core in the target area as follows: Under the effect of transient
stress sensitivity, the stress-sensitive pollution rate of cores in Daniudi underground gas
reservoirs is between 25% and 45%; Under the action of delayed stress sensitivity effect, the
stress-sensitive pollution rate of cores in the Daniudi underground gas reservoir is between
55% and 70%, especially in the late development when the pore fluid pressure is low, the
permeability loss will reach more than 70% and stress-sensitive pollution will become the
main source of pollution (Figure 4b).

2.3. Threshold Pressure Gradient (TPG) Research

In order to further study the threshold pressure gradient characteristics of under-
ground gas reservoirs, we firstly investigated the threshold pressure gradient of tight cores
containing irreducible water under normal pressure (101 KPa) and storage conditions. The
threshold pressure gradient research cores are natural cores taken from underground gas
reservoirs in the research target area, the basic physical properties of the core are shown in
Table 1.

Table 1. Test core physical properties.

Core Serial
Number

Diameter
(cm)

Length
(cm)

Porosity at
Atmospheric Pressure
(%)

Permeability at
Atmospheric Pressure
(×10−3 µm2)

Remark

1 2.534 5.968 5.51 0.05 Conventional core
2 2.536 6.210 6.98 0.17 Conventional core
3 2.538 4.254 8.46 0.53 Conventional core
4 2.535 6.041 10.63 1.24 Conventional core
5 2.538 6.084 10.95 3.94 Fractured core
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In order to better simulate the real situation of storage, the cores used in the dynamic
start-up pressure gradient test are all cores containing irreducible water and the water
saturation of all cores is 41–45%, which is close to the irreducible water saturation.

The characteristics of the threshold pressure gradient of underground gas reservoir
cores under storage conditions are clarified by comparing the threshold pressure gradients
of different cores under storage conditions and at normal pressure. In the initial pressure
gradient test under storage conditions, the pore fluid pressure is set at the original forma-
tion pressure of the gas field, 26 MPa, and the confining pressure is 39 MPa (Figure 4c).
According to the results of previous research, it can be seen that the threshold pressure
gradient of the core is closely related to its own permeability, and the underground gas
reservoir core also has a relatively obvious stress-sensitive effect. In order to avoid the
influence of permeability changes due to different pore fluid pressures on the measurement
results of the threshold pressure gradient. In the normal pressure test, the pore fluid pres-
sure was set to 0.101 MPa and the confining pressure was set to 13.101 MPa, that is, the
effective stress on the cores in the two experiments was the same, 13 MPa. Therefore, it can
be considered that the permeability of the two groups of experimental cores is the same, so
as to ensure the reliability of the test results as much as possible.

According to the experimental data, it is found that the threshold pressure gradient of
core 1 increases linearly with the decrease of pore fluid pressure its expression is as follows:

G = −0.003 3pf + 0.1416 R2 = 0.992

where, G is the threshold pressure gradient, MPa/m; pf is the pore fluid pressure, MPa.
The dynamic threshold pressure gradient effect during the development of under-

ground gas reservoirs can be quantitatively described as follows:

G = −λpf + G0

where, G0 is the threshold pressure gradient under the initial conditions of the core, MPa/m;
λ is the threshold pressure gradient sensitivity coefficient, cm−1.

3. Materials and Methods
3.1. Physical Models and Model Assumptions

Assuming hydraulic fracturing development of vertical wells, the pollution to the
reservoir by fracturing water will lead to a decrease in permeability, so the area around the
fracturing vertical well is divided into three areas. Zone I is the pollution of fracturing water
caused by the injection of fracturing water into the reservoir during hydraulic fracturing,
which is manifested as a decrease in permeability. Zone II is the high water cut area formed
after the injection of fracturing water, Zone III is the matrix flow zone. Details are shown in
Figure 5.
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fracturing, which is manifested as a decrease in permeability. Zone Ⅱ is the high water 

cut area formed after the injection of fracturing water, Zone Ⅲ is the matrix flow zone. 

Details are shown in Figure 5. 

 

Figure 5. Schematic diagram of fracturing development zones for water-bearing underground gas
reservoirs considering fracturing water pollution.
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3.2. Mathematical Model

Motion equation of water solvent:

∇ ·
[

α · K f · Krw · ρ f w

µ f w
· ∇ · Pf w

]
+ qw = α ·

∂
(

φ f · ρ f w · Sw

)
∂t

where, α—dimensionality coefficient, dimensionless; Kf—penetration, mD; Krw—liquid phase
relative permeability; ρfw—water solvent density, kg/m3; µfw—water solvent viscosity, mPa·s;
t—time, s; P—pressure, MPa; ∅—porosity; Sw—water saturation; qw—mass flow of
water, kg/s;

Motion equation of gas:

∇ ·
[

α · K f · Krg · ρ f g

µ f g
· ∇ · Pf g

]
+ qg +

α · σ · Km · ρm

µm
·
(

Pm − Pf g

)
= α ·

∂
(

φ f · ρ f g · Sg

)
∂t

where, Krg—gas relative permeability; ρfg—gas phase density, kg/m3; µ—gas viscosity, mPa·s;
Sg—gas saturation; qg—mass flow of gas, kg/s; σ—shape factor, dimensionless; Km—original
permeability, mD.

The stress is sensitive to the fracture system, and the exponential fitting formula for
fracture permeability is as follows:

Zone I:

K = Km1 · e−c·(Pe−P)

Zone II:

K = Km2 · e−c·(Pe−P)

Zone III:

K = Km3 · e−c·(Pe−P)

Threshold pressure gradient:

v = −K
µ
·
(

∂P
∂r
− λ

)
λ = −0.0033P + 0.1416

3.3. Model Validation

The model was numerically solved by COMSOL, and detailed meshing information
and initial and boundary conditions are shown in Table 2. The simulation results were
compared with the field development results (Figures 6 and 7) from the Daniudi gas field
in Inner Mongolia, PR China.

Table 2. Meshing information and initial and boundary conditions.
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The Daniudi gas field is located in the northern part of the Yishan slope in the Ordos
Basin, with an area of 2003 km2. By the end of 2016, it had submitted natural gas proven
reserves of 4545.63 × 108 m3, controlled reserves of 43.78 × 108 m3, predicted reserves of
315.1 × 108 m3 and tertiary reserves of 4904.51 × 108 m3. The average permeability of the
study zone of the Daniudi gas field is 0.046 mD. It is the main natural gas production base
of North China Oil and Gas Branch.

4. Mechanisms of Water Pollution in Underground Gas Reservoir
4.1. Fracturing Water Solid Solute Pollution

A full-cycle fracturing development production model for water-bearing underground
gas reservoirs based on this study, combined with COMSOL numerical simulation software
to solve for yields under single pollution factors and under conventional storage develop-
ment conditions, the gas reservoir production under conventional reservoir development
conditions is also compared with the gas reservoir production under the action of a single
pollution factor, and finally, the degree of pollution caused by the action of each factor
on the gas reservoir production is discussed. In this study, single pollution factors refer to
solid solute pollution from fracturing water, water solvent pollution from fracturing water,
stress sensitivity and threshold pressure gradient. The conventional reservoir development
conditions refer to the gas reservoir development without considering the solid pollution
of fracturing water, the liquid pollution of fracturing water, stress sensitivity and threshold
pressure gradient.

Firstly, the influence on the development production of gas reservoirs under the
condition of only solid solute pollution from fracturing water is explored. Combined with
the core experimental results, it can be seen that the proppant particles injected from the
fractures form filter cakes and matrix plugging in the reservoir pores, which at the same
time hinder the migration and diffusion of proppant particles in the pores. Therefore, the
solid pollution from fracturing water is mainly concentrated in the action area around
the fracture. In the early stage of underground gas reservoir development, although the
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development pressure is high (>20 MPa), most of the development pressure is consumed by
the solid phase particles plugged in the pores. Therefore, compared with the conventional
reservoir development conditions, the production at the initial stage of development
under the condition of solid solute pollution from fracturing water is significantly reduced
(Figure 8). It is obvious that the solid solute pollution from fracturing water will continue
from the early stage of development to the first half of the middle stage of development
(about 900 days ago, Figure 8). As the development pressure decreases, in the second half of
the mid-development period, the solid particles tend to be dispersed from the aggregated
state in the pores, the plugging effect is weakened, the pollution to the production by the
solid pollution is reduced and the production of the gas reservoir has recovered. At the
end of development, the pollution effect of solid solute pollution from fracturing water on
gas reservoir production is further reduced.
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4.2. Fracturing Water Water Solvent Pollution

Compared with solid solute pollution from fracturing water, because the solvent water
in the fracturing water has a stronger migration ability in the pores, the liquid pollution of
the fracturing water not only exists in the action area around the fracture but also affects the
reservoir pores outside the action area around the fracture. In the early development, the
reservoir area affected by the liquid pollution for fracturing water has high water saturation.
The water saturation in the action area around the fracture is even close to 100%, which
has significant pollution to the “water lock” and “water sensitivity” of the gas reservoir,
and the gas permeability is low. With the advancement of the development cycle, the water
in the storage is continuously discharged and the water saturation decreases; however,
at the same time, the pressure of storage development is also reduced, resulting in the
weakening of liquid pollution at the end of development, but it still cannot be ignored
(Figure 9). Therefore, from the perspective of a single influencing factor, the liquid pollution
of fracturing water has the most significant pollution on the production of underground
gas reservoirs.
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4.3. Stress Sensitivity Effects

When the impact of fracturing water on storage production pollution is not considered
and the pollution to production caused by the characteristics of underground gas reservoirs
is focused on, the pollution to production caused by the stress sensitivity of storage is
more significant. When the stress applied to the storage rock changes, the rock will deform
and the pore structure of the rock will change accordingly, which will eventually lead
to changes in the rock seepage and storage production (permeability, porosity, etc.), the
so-called stress sensitivity phenomenon occurs. For tight reservoirs, due to their small
pore throats, the internal structure of the rock is more complex than that of conventional
oil and gas reservoirs, and its stress sensitivity is more pronounced. In addition, the
stress and deformation of tight reservoirs is a complex and slow process. Under a certain
overburden pressure and pore pressure, the effective stress on the reservoir is constant.
However, with the extension of time, the pores of the reservoir continue to be compressed
and the permeability will continue to change with the passage of time, which is called the
delayed stress sensitivity effect. Therefore, in the middle and late stages of development,
stress-sensitive pollution becomes the main source of production pollution (Figure 10).

4.4. Threshold Pressure Gradient Effects

For tight reservoirs, the reservoir characteristics of low porosity and low permeability
make the seepage law of reservoir fluid (oil, gas, water) very different from that of con-
ventional medium and high permeability reservoirs. The most obvious difference is that
the fluid will have a threshold pressure gradient in a tight reservoir. In general, compared
with solid solute pollution from fracturing water, water solvent pollution from fracturing
water and stress sensitivity, the threshold pressure gradient has the lowest impact on
production pollution. From the perspective of the full cycle, the start-up pressure gradient
is more harmful to the production in the first half of the early, middle and late stages of
development (about 4000 days ago; Figure 11). This is because the permeability of the
core will decrease rapidly at the initial stage of the decrease in pore fluid pressure, and
the threshold pressure gradient of the core will increase with the decrease of permeability.
Therefore, in the initial stage of pore fluid pressure drop, the threshold pressure gradient of
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the experimental cores rises rapidly. When the pore fluid pressure further decreases, on the
one hand, the permeability of the core tends to be stable gradually, so the variation range
of the threshold pressure gradient of the core will also decrease. On the other hand, when
the pore fluid pressure is low, the slippage effect has a greater impact on the gas seepage,
resulting in a high apparent permeability of the core and a decrease in the threshold pres-
sure gradient of the core. Therefore, under the influence of the dual factors of permeability
and slippage effect, the increase of the threshold pressure gradient of the core will be much
slower when the pore fluid pressure is low.
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5. Preventions of Water Pollution in Underground Gas Reservoir

As we discussed, the fracturing development is not adoptable for any underground gas
reservoirs due to the production pollution from the fracturing water, but there is a criterion
for choosing the production mode. To determine the production mode, we investigated the
gas production of the natural development and the fracturing development, and fracturing
development is preferable only when the mean production is higher than that of the natural
development. To calculate the production of the fracturing development, we considered
solid pollution, liquid pollution, stress sensitivity and threshold pressure gradient, and we
adopted the mean permeability of the Daniudi gas field, 0.38 mD (after fracturing), as the
initial permeability. To calculate the production of the natural development, we considered
stress sensitivity and threshold pressure gradient, but we varied the initial permeability
from 0.38 mD to 0.15 mD (0.4×). Via tuning the initial permeability, we figured out the
critical permeability (Figure 12), 0.20 mD, for the determination of the production mode.
Reservoirs with an initial permeability over 0.20 mD are preferably produced by natural
energy rather than fracturing.

Water 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 12. Critical permeability for natural development rather than fracturing. 

In order to comprehensively explore the influence degree of each pollution factor on 

production under the combined action of multiple pollution factors in the whole develop-

ment cycle, we have discussed the following five scenarios, such as: including all pollution 

factors contains all pollution factors except solid solute pollution from fracturing water 

contains all pollution factors except water solvent pollution from fracturing water con-

tains all pollution factors except stress-sensitive injuries contains all pollution factors ex-

cept threshold pressure gradient pollution (Figure 13). By comparing the difference in 

production when a single pollution factor is excluded, the influence of each pollution fac-

tor on the production in the whole development cycle is obtained (Figure 14). 

The simulation results show that in the early development, fracturing water-solid 

relative storage production pollution is the largest, accounting for 40–50%; fracturing wa-

ter solvent pollution accounts for 30–45%; stress-sensitive pollution accounts for 5–10%; 

pressure gradient pollution accounts for less than 3%. In the mid-term development, frac-

turing water has the greatest pollution to storage Production, accounting for 50–60%; solid 

solute pollution from fracturing water accounts for 15–25%; stress-sensitive pollution ac-

counts for 10–25%; threshold pressure gradient pollution accounts for 3–5%. At the end of 

development, stress sensitivity has the greatest pollution to storage production, account-

ing for 40–60%; solid solute pollution from fracturing water accounts for less than 10%; 

water solvent pollution from fracturing water accounts for 40–50%; threshold pressure 

gradient pollution accounts for 3% within (Figures 13 and 14). 

In addition, from the perspective of the whole development cycle, when considering 

all the pollution factors of fracturing water-containing solid pollution, water solvent pol-

lution from fracturing water, stress sensitivity and threshold pressure gradient, the aver-

age daily production of underground gas reservoirs in the early development stage It is 

similar to the mid-term, with a difference of no more than 15%; the average daily produc-

tion in the early and mid-stage development is about three times that of the late-stage 

development. 

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000

Fractur ing production

Natural production (Initial permeability)

Natural production (Cr itical permeability)

Natural production (0.6 Initial permeability)

Natural production (0.4 Initial permeability)

Productivity 

(104 m3/d)

Fractur ing development per iod (d)

Mean Productivity: 4.26 (104 m3/d)

Mean Productivity: 3.19 (104 m3/d)

Mean Productivity: 2.82 (104 m3/d)

Mean Productivity: 2.82 (104 m3/d)

Mean Productivity: 

2.13 (104 m3/d)

Figure 12. Critical permeability for natural development rather than fracturing.

It is notable that the critical permeability, 0.2 mD, is obtained by the established model
according to the specific boundary and initial conditions we adopt in this work. At various
boundary and initial conditions, such as initial reservoir pressure, boundary reservoir
pressure, geological properties, rock and clay properties and fracture properties, a diverse
critical permeability can be calculated. The key goal of this section is to demonstrate
the application of our model to obtain a critical permeability. According to the critical
permeability, further prevention of the fracturing water pollution to the gas reservoir
accordingly can be implemented.

In order to comprehensively explore the influence degree of each pollution factor
on production under the combined action of multiple pollution factors in the whole de-
velopment cycle, we have discussed the following five scenarios, such as: including all
pollution factors contains all pollution factors except solid solute pollution from fracturing
water contains all pollution factors except water solvent pollution from fracturing water
contains all pollution factors except stress-sensitive injuries contains all pollution factors
except threshold pressure gradient pollution (Figure 13). By comparing the difference in
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production when a single pollution factor is excluded, the influence of each pollution factor
on the production in the whole development cycle is obtained (Figure 14).
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(a) The influence of solid solute pollution. (b) The influence of water solvent. (c) The influence
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pollution factor.

The simulation results show that in the early development, fracturing water-solid
relative storage production pollution is the largest, accounting for 40–50%; fracturing
water solvent pollution accounts for 30–45%; stress-sensitive pollution accounts for 5–10%;
pressure gradient pollution accounts for less than 3%. In the mid-term development,
fracturing water has the greatest pollution to storage Production, accounting for 50–60%;
solid solute pollution from fracturing water accounts for 15–25%; stress-sensitive pollution
accounts for 10–25%; threshold pressure gradient pollution accounts for 3–5%. At the end of
development, stress sensitivity has the greatest pollution to storage production, accounting
for 40–60%; solid solute pollution from fracturing water accounts for less than 10%; water
solvent pollution from fracturing water accounts for 40–50%; threshold pressure gradient
pollution accounts for 3% within (Figures 13 and 14).

In addition, from the perspective of the whole development cycle, when considering all
the pollution factors of fracturing water-containing solid pollution, water solvent pollution
from fracturing water, stress sensitivity and threshold pressure gradient, the average daily
production of underground gas reservoirs in the early development stage It is similar to
the mid-term, with a difference of no more than 15%; the average daily production in the
early and mid-stage development is about three times that of the late-stage development.

According to the numerical results, we clarify that in early development, the solid
pollution is dominant due to the formation of filter- and matrix-plugging in pores; the liquid
pollution is dominant in mid-term development and significant in the full development
cycle due to high water saturation that constrains the gas permeability and clay swelling
that constrains the reservoir permeability; in late development, the stress sensitivity is
dominant due to the pore collapse caused by the reservoir pressure drop.

We further provide the pollution constraint and production decision based on the
clarified mechanisms. When considering pollution constraints, we suggest optimizing both
the propping agent and solvent of the fracturing water to reduce the production pollution
of underground gas reservoirs. To reduce the solid pollution in early development and
stress sensitivity in late development, we suggest applying the propping agent with a
large particle radius, which maintains high porosity and constrains the pore collapse
compared with that with a small particle radius. To reduce the liquid pollution in mid-term
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development, we suggest adding the clay stabilizer and the surfactant to the fracturing
water solvent, which constrains the clay swelling and accelerates the fracturing water
draining back.

6. Discussion

In this work, we consider the solid solute effect, water solvent effect, stress sensitivity
and threshold pressure gradient in our model to reveal the fracturing water pollution to
the production of the gas reservoirs. Our model and analysis are adaptable for the precise
forecast of gas production and reliable prevention of fracturing water pollution in tight
rock gas reservoirs developed by water fracturing.

In addition to these factors, more factors should be considered since situations of the
actual gas reservoirs can be more complicated than reported in this work. For instance,
fluid species and chemical equilibrium should be considered when the water with high
salinity or carrying acid or base is adopted for fracturing [38]. The chemical reaction
between the water solvent and reservoir probably corrodes the rock and clay, increasing
the porosity and permeability. However, the solid solute can spread more broadly after
the corrosion, which conversely inhibiting gas production. Therefore, further studies
on the effects of fluid species and chemical equilibrium are promising. Besides, improv-
ing our model to study the fracturing water pollution to coalbed methane production is
highly recommended. The coalbed demonstrates various physical properties compared
with rock reservoirs, complicating the gas production forecasting and water pollution
evaluation [39]. Moreover, the effects of 3D heterogeneity of the gas reservoir on gas pro-
duction and fracturing water pollution are encouraged based on expanding our model from
2D to 3D form. Last but not least, coupling researches on gas production and fracturing
water pollution considering CO2 underground sequestration are promising to achieve a
water-energy-environment eco-system.

7. Conclusions

We have demonstrated the mechanisms of the fracturing water pollution, particu-
larly the fracturing water pollution in the underground gas reservoir. We divided the
fracturing water pollution into solid solute pollution and water solvent pollution to bring a
comprehensive insight into how fracturing water pollution impacts the permeability and
production of the underground gas reservoir. We revealed that the injected solid solute
plugged the entrance of the narrow pores and plugged the inside domain of the wide
pores to trigger the permeability decline of the underground gas reservoir. In addition,
the fracturing water solvent displaced the gas in pores to reduce the gas saturation and
swelled the reservoir matrix to collapse the pores, leading to the production decline of the
underground gas reservoir.

We clarified that as the underground gas reservoir was developed from the early stage
to the late stage, the pollution contribution from the solid solute of the fracturing water
decreased from 50% to 5%. Meanwhile, the pollution contribution from the water solvent of
the fracturing water maintained over 40%, and in the mid-term development was roughly
60%. In general, the fracturing water pollution to the permeability and production of the
underground gas reservoir accounted for over 80% in the early and mid-term development
stages and 62% throughout the development.

We provided preventions for fracturing water pollution in the underground gas
reservoir to eliminate the permeability and production decline. According to our numerical
results, we proposed that reservoirs with an initial permeability over 0.20 mD are preferably
produced by natural energy rather than fracturing. In terms of the underground gas
reservoirs with an initial permeability under 0.20 mD, the fracturing water should be used
after optimization. Once using the fracturing water, we suggest applying the propping
agent with a large particle radius to reduce the pollution from the solid solute and adding
the clay stabilizer and the surfactant to the fracturing water to reduce the pollution from
the water solvent.
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