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Abstract: Drip irrigation systems are becoming more and more mature, and are presently extensively
applied to increase crop yield and water use efficiency. In order to investigate the effects of irrigation
quota on maize growth, the grain yield, and the water use efficiency (WUE), a field experiment with
four irrigation quotas (T1 420 mm, T2 480 mm, T3 540 mm, and T4 600 mm) was conducted from
2013 to 2021 in Xinjiang, China. The results showed significant changes in maize growth, yield, and
WUE in response to different irrigation quotas. The plant height, leaf area index, soil and plant
analyzer development (SPAD), dry matter accumulation, yield, and harvest index of maize at different
irrigation quotas all showed a ‘single peak curve’, and its change was closely related to the irrigation
level. The growth index, dry matter accumulation, yield, and irrigation water use efficiency with T3
were the highest. The dry matter transfer efficiency, contribution of dry matter translocation to grain,
and the harvest index with T3 showed a significant increase of 13.86%, 26.06%, 29.93%, and 7.62%
compared to T1, respectively. In comparison to T1, T2, and T4, the yield of T3 increased by 32.17%,
13.54%, and 11.27%, respectively, and the WUE increased by 16.56%, 6.49%, and 23.70%, respectively.
The significant correlations established between the maize yield and irrigation quotas could be
simulated by a Kuznets-style relation. The maize yield was negatively correlated with irrigation
quotas. When the irrigation quota (x) was 539.12 mm, the maize yield (y) was 16043.92 kg·hm−2.
These results demonstrate that the optimized irrigation quota (540 mm) can effectively improve the
growth, yield, and WUE of drip irrigation maize in northwest China. Meanwhile, it can provide a
theoretical reference and data support for the optimal amount of irrigation for drip irrigation maize
in Xinjiang China.

Keywords: drip irrigation; maize; irrigation quotas; dry matter accumulation; yield; water use efficiency

1. Introduction

Maize (Zea mays L.) is known as the ‘king of the grain’ in the 21st century [1]. China
plays a significant role in global maize production [2]. Maize growth and yield is closely
linked to water resources; it is generally believed that a water deficit markedly inhibits
maize growth and yield. Since the 1970s, climatic change and economic growth have re-
sulted in a rapid decrease in water [3]. Shortages of water resources are a common problem
in agriculture production worldwide, as well as one of the most important ecological factors
restricting crop productivity. Furthermore, water shortages threaten the deterioration of
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these existing challenges, and further undermine efforts to reduce poverty and improve
food security [4].

Northwest China is a typical irrigation agricultural area, with sufficient sunshine,
drought, and less rain [5]. In Northwest China, irrigation water is a critical factor for
agricultural development. At present, agricultural irrigation water consumption accounts
for more than 60% of the total water consumption in northwest China [6]. Water shortages
have affected agricultural production in northwest China [7]. With the increasing demand
for water resources, their efficient use is being emphasized [8]. The issue of how to
make economic and effective use of water resources and implement reasonable irrigation
measures are at the core of agricultural production. Therefore, it is imperative to optimize
irrigation in arid and semi-arid areas in order to improve unit water yield. Drip irrigation
technology is a new type of surface irrigation technology, used to adapt to the development
of water-saving agriculture [9]. As a trade-off, optimizing irrigation use to reduce the
amount of irrigation is essential for improving the yield of unit water, so as to obtain higher
water use efficiency [10].

Drip irrigation is now commonly used for maize cultivation to increase crop yield and
water use efficiency in China [11]. Drip irrigation slowly drips water and fertilizer directly
into crop root soil through high frequency irrigation, forming an ellipsoid or spherical
wetting body in the root zone [12]. Drip irrigation has had effective yield-increasing and
water-saving effects [13]. A reasonable irrigation quota can save agricultural water while
achieving a high yield [14]. When the irrigation quota is too high, the respiration of
maize roots is limited and the physiological progress is affected [15]. When the irrigation
quota is too low, it cannot meet the crop’s needs for basic physiological development,
resulting in a substantial reduction in yield [16]. Scholars have carried out numerous
studies on irrigation schedule optimization. Greaves [17] designed five irrigation quotas
for maize and concluded that water deficit irrigation had no significant effect on yield, but
greatly improved irrigation water use efficiency. Wang [18] found that a drip irrigation
quota of 54 mm can improve irrigation water use efficiency without significantly reducing
the crop yield of cotton in north Xinjiang. Wang [18] found that in northern Xinjiang,
when the drip irrigation quota was 54 mm, the irrigation water use efficiency could be
improved without significantly reducing cotton yield. Han [19] optimized the maize
irrigation system in the Heihe River basin based on the Aqua Crop-RS model. That study
found that compared with full irrigation, the irrigation quota decreased by 0–657 mm,
water use efficiency increased by 4.13–5.13%, and water use efficiency increased by 69–91%.
WUEET is increased by 4.13–5.13% and WUEI rises by 69–91%. Zhang [20] found that
high grain yield (15.7–19.1 Mg·hm−2), WUE (2.47–2.77 kg·m−3), and economic return
(1691.6–2605.7 US$·hm−2) were achieved at an irrigation quota of 540 mm. were achieved
when the irrigation quota was 540 mm. The study by Tang [21] showed that the yield
of maize increased with the increase in irrigation quota, but when the irrigation quota
exceeded 600 mm, the yield did not significantly increase in the southern region of Xinjiang.
The appropriate irrigation quota for maize was 525–600 mm.

The cultivation of high-yield maize requires sufficient water, heat, etc. [10]. Water is
the most dynamic factor in determining yield [22]. Insufficient or excessive irrigation water
will limit the yield of maize [23]. At present, many scholars study the effect of different
irrigation modes on maize yield and water use efficiency [24]. There are few studies on the
impact of drip irrigation quota on maize in northwest China. In order to investigate the
effects of irrigation quota on maize growth, the grain yield, and WUE, a field experiment
with four irrigation quotas was conducted from 2013 to 2021 in northwest China. This
study used a comparative test in the same research area for many years. Our aim was to
optimize the irrigation quota for maize. Our hypothesis was that optimal irrigation levels
can improve maize growth and enhance WUE under drip irrigation in Xinjiang, China.
The research results are helpful for optimizing efficient water-saving irrigation, increasing
maize yield, and providing theoretical support for sustainable agricultural development in
northwest China.
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2. Materials and Methods
2.1. Experiment Site

A field experiment was conducted for the purpose of investigating the whole growth
stages of maize from 2013 to 2021. This occurred in an experimental station of the Ministry
of Agriculture, studying the use of water for crops, in Shihezi City, Xinjiang, China (86◦09′ E,
45◦38′ N). The experimental field was located in the western suburbs of Shihezi, with an
elevation of 452.80 m, an average annual temperature of 22.46 ◦C, and an average annual
evaporation of 1942 mm. The depth of the water table in this area is relatively high, varying
from 2 to 3 m over different years. The maximum/minimum temperatures and monthly
effective rainfall for the growth season over the nine-year maize growth periods are shown
in Figure 1. The maximum/minimum temperatures and monthly effective rainfall for the
growth season in nine years during the maize growth periods are shown in Figure 1.
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Figure 1. Meteorological variation during maize growth periods from 2013 to 2021. (a) Daily average
temperature. (b) Monthly effective rainfall.

Soil properties at the test site were measured between the depths of 0 and 100 cm
prior to maize planting in the first season. The soil type is a grey desert soil [25]. Nine-year
averages of the soil’s physicochemical properties are shown in Table 1. The quality of the
irrigation water is shown in Table 2.

Table 1. The physicochemical properties of soil in the station.

Soil Depth
(cm)

Organic Matter
(g·kg−1)

Total Nitrogen
(g·kg−1)

Olsen-P
(mg·kg−1)

Avail.K
(mg·kg−1)

Bulk Density
(g·cm−3)

Saturated
Volumetric

Water Content
(%)

pH

0–20 16.79 1.44 26.52 415.98 1.56 32.01 8.19
20–40 17.92 1.40 26.76 416.78 1.67 33.14 8.20
40–60 16.74 1.38 23.56 354.65 1.72 33.26 8.16
60–80 8.16 1.03 8.13 246.37 1.74 34.54 8.14

80–100 7.04 0.80 6.15 214.47 1.76 35.67 8.16

Table 2. Irrigation water quality.

Index Total Hardness
(mg/L) (CaCO3)

Mineralization
Degree (mg/L)

(NH4-N)
(mg/L)

Permanganate
Index (mg/L)

SO42−

(mg/L) Cl− (mg/L) Phenol

Content 155 367 <0.05 13.53 92.09 25.53 <0.002
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2.2. Experimental Design

Conducted through a completely randomized design, the experiment comprised four
irrigation quotas (T1 420 mm, T2 480 mm, T3 540 mm, and T4 600 mm), which referred
to irrigation quantities of the local farmers. Considering the marginal effect of different
irrigation quotas, the 12 plots were separated from adjacent plots by 2.2 m-wide isolation
strips, and each plot (110 m2) was 20 m long and 5.5 m wide. In each plot, a water reading
meter and a fertilizer tank were installed in order to monitor the amount of irrigation water,
fertilizer, N, P, and K that were applied, respectively. irrigation water and fertilizer that
were applied, respectively. Fertilization was carried out with irrigation and all treatments
had the same management, which began after 30 min of irrigation and ended 30 min before
irrigation stopped. The irrigation water was supplied by underground water. The irrigation
and fertilization levels in each growth period are shown in Table 3. Drip irrigation maize
sowing, harvesting, and sampling time are shown in Table 4.

Table 3. Irrigation and fertilization in different periods.

Treatment/Period Seedling
Stage

Jointing
Stage

Bell-Mouth
Stage

Heading
Stage

Flowering
Stage

Silking
Stage

Grain
Formation

Stage

Milk-Ripe
Stage

Maturity
Stage Total

Irrigation
quantity

(mm)

T1 13.7 53.6 53.6 53.6 53.6 53.6 50.9 45.5 41.9 420.0
T2 16.4 60.0 60.0 60.0 60.0 60.0 60.0 56.4 47.2 480.0
T3 16.4 69.1 69.1 69.1 69.1 69.1 65.5 58.2 54.4 540.0
T4 19.0 75.5 74.5 75.5 74.5 75.5 75.5 70.0 60.0 600.0

Fertilizer
amount

(kg·hm−2)

Urea 0.0 81.8 81.8 90.9 81.8 81.8 72.7 54.5 0.0 545.3
Monoammonium

phosphate 36.4 36.4 45.5 45.5 45.5 27.3 18.2 18.2 0.0 273.0

Potassium
sulphate 0.0 18.2 27.3 27.3 36.4 22.7 18.2 13.6 0.0 163.7

Table 4. Maize sowing, harvesting, and sampling time.

Years Sowing Date Harvest Date Flowering Stage Maturity Stage

2013 8th May 20th September 18th July 23th August
2014 5th May 22nd September 13th July 26th August
2015 2nd May 25th September 15th July 24th August
2016 30th April 24th September 17th July 25th August
2017 7th May 28th September 20th July 28th August
2018 28th April 27th September 18th July 25th August
2019 30th April 22nd September 14th July 22nd August
2020 26th April 1st October 15th July 2nd September
2021 7th May 24th September 19th July 27th August

A joint planter was used to lay drip tapes, film, and sow. Its planting density was
1.26 × 105/hm2 in the experiment. The plants were sown with alternating wide and narrow
rows of 0.8 and 0.3 m. The spacing between plants within a row was 14.4 cm (Figure 2, the
spacing between the drip tapes was 110 cm).

2.3. Material

The green maize variety “ZD958”, which is commonly planted in northern China,
was used as the experimental variety. Zhengdan 958 was the offspring of inbred Zheng 58
and Chang 7–2 (deposition number 20000009), which are approved in China. In this study,
the seeds of Zhengdan 958 were provided by Beijing Denong Seed Technology Co., Ltd.
(Beijing, China) Experimental research and field studies on plants complied with relevant
institutional, national, and international guidelines and legislation. The urea (N ≥ 46.4%,
granules) used in the experiment was produced by Xinlianxin Co., Ltd. (Xinjiang, China).
Monoammonium phosphate (N ≥ 12%, P2O5 ≥ 61%, powder) was produced by Guizhou
Kai Phosphorus Group Co., Ltd. (Guiyang, China). Potassium sulfate was produced by
Luobupo Potassium Salt Co., Ltd. (Xinjiang, China).
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Figure 2. Schematic diagram of cultivation mode for maize.

The source of the irrigation water was a deep well with a depth of 100 m; the salinity of
the water was 0.2–0.3 g·L−1. The type of drip irrigation belt was a single wing labyrinth drip-
irrigation belt (WDF16/2.6–100) produced by Xinjiang Tianye Company (Shihezi, China).
The wall thickness was 0.18 mm, the inner diameter was 16 mm, the drip hole spacing was
300 mm, the rated flow was 2.0 L·h−1, and the working pressure was 0.1–0.15 MPa.

2.4. Sampling and Measurements
2.4.1. Stand Growth Index

Plant height [26]: Ten maize plants with similar growth were randomly selected from
each treatment at flowering and maturity stages, and the height from the ground to the top
of the maize plant was measured using a tape measure.

Leaf area index (LAI) [27]: ten plants with similar growth vigor were randomly
selected from each treatment at flowering and maturity stages. Leaf area: using destructive
sampling, the length and width of the leaves were measured with a tape measure, then
multiplied by 0.75 to calculate the leaf area per plant.

LAI = Leaf area per plant × Number of maize plants per unit of land area/Unit land area

SPAD: the SPAD-502 chlorophyll meter (Minolta, Osaka, Japan) was used to randomly
determine the three ear leaves of 20 maize plants, and plants continuously selected at
flowering and maturity stages.

Dry matter determination: At the flowering and maturity stages, four representative
maize plants with stable growth were randomly selected from the third film and the fourth
film in each plot. The above-ground parts of the plants were removed from the base of the
plants and divided into leaves, stems, and reproductive organs [28]. The leaves and other
organs were packed in paper sampling bags, marked, placed in an oven, kilned at 105 ◦C
for 30 min, dried to a constant weight at 75 ◦C, and weighed and recorded on a balance
with an accuracy of 0.01.

2.4.2. Grain Yield and Yield Components

At the maturity stage, 20 ears were taken from the middle two rows of each plot, and
the grain number per ear was counted. By randomly selecting 10 plants from each plot, the
grain number and row number data were recorded, and then the average was calculated.
A total of 1000 seeds were randomly selected from the seed batches of each plot, and the
weight of the seeds was determined using an electronic balance scale. The ear number,
grain moisture content, and grain yield were also determined for each plot. Grain yield
and kernel weight were expressed at 14% moisture content.
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2.4.3. Data Analysis

Yield (kg hm−2) = 20 grain weight (g)/20 panicles× 126,000/1000× [1-grain moisture
content (%)]/(1–14%) [29].

Harvest index (%) = yield/aboveground biomass × 100 [30].
Dry matter translocation (kg·hm−2) = stem and leaf dry matter at flowering stage—stem

and leaf dry matter at maturity stage;
Dry matter transfer efficiency (%) = dry matter translocation/stem and leaf dry matter

at flowering stage × 100;
Contribution of dry matter translocation to grain (%) = dry matter translocation/grain

yield × 100 [31].

2.4.4. Water Use Efficiency (WUE) [32]

Seasonal evaporate-transpiration (ET) was estimated using the water balance ap-
proach [32].

ET = P + I + Cp − Dp − R f − ∆S

where P, precipitation; I, irrigation; Cp, contribution through capillary rise from groundwa-
ter; Dp, deep percolation; Rf, runoff. ∆S = Sf − Si, change in the soil water storage in the
profile, where Si represents soil water storage in the profile at sowing and Sf represents soil
water storage in the profile at harvest.

Since the groundwater was relatively deep (2–3 m), Cp was assumed to be negligible.
Dp was considered to be negligible beyond 90 cm due to negligible changes in the soil
moisture storage below a soil depth of 90 cm. There was no runoff (Rf ) from the field, as all
of the plots were provided with bunds. ∆S indicates that the soil water storage at the time
of sowing is similar to that at the time of harvest, which can be ignored. Thus,

ET = P + I
WUE = Y/ET

where Y is the grain yield of maize.
Irrigation Water Use Efficiency (IWUE)
Calculation formula of irrigation water use efficiency (kg·m−3) is [24].

IWUE = Y/I

In the formula, Y is the yield per unit area (kg·hm−2), and I is the irrigation amount of
maize growth period (mm).

2.5. Statistical Analysis

All data were statistically analyzed using SPSS 25.0, including one-way ANOVA and
multiple mean comparison using the least significant difference (LSD) test (α = 0.05). The
figures were prepared via Origin 2018 and Excel 2016.

3. Results
3.1. Growth Index

Irrigation quotas significantly (p < 0.05) affected the maize growth index (Figure 3).
With the increase in irrigation quotas, the growth indices of maize at the flowering and
maturity periods first increased, but then decreased, and the effects were the most obvious
at a quota of 540 mm (T3). In comparison to T1, T2, and T4, the plant height at the flowering
stage of T3 increased by 9.78%, 5.00%, and 2.32%, and that at the maturity stage increased
by 7.90%, 4.36%, and 1.68%, respectively. The leaf area index showed that at the flowering
stage, T3 treatment was 16.39% and 12.89% higher than T1 and T2, and T4 treatment was
10.89% and 7.56% higher than T1 and T2, respectively. At the maturity stage, T3 was 17.48%
and 10.68% higher than T1 and T2, and T4 was 12.58% and 6.07% higher, respectively. At
the flowering and maturity stages, T3 resulted in 9.46% and 5.95% higher SPAD compared
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with T1, and 4.22% and 5.78% higher SPAD compared with T2, respectively. Plant height,
leaf area index, and SPAD have specific functional relationships.
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Note: Different lowercase letters indicate that there are significant differences between different
treatments of each index in the same growth period.

Dry Matter Accumulation

Irrigation quotas significantly affected the dry matter accumulation of maize at the
flowering and maturity stages. The biomass of the leaves, stems, and reproductive organs
of maize at different irrigation quotas all showed a ‘single peak curve’, and the changes
were closely related to the irrigation level (Figure 4). In comparison to T1, T2, and T4, the
biomass of the reproductive organs of the T3 maize increased by 29.91%, 16.62%, and 5.26%,
the biomass of the stems of T3 increased by 23.27%,12.68%, and 7.24%, the biomass of the
leaves of T3 increased by 25.69%, 11.21%, and 8.33%, and the total biomass increased by
16.09%, 4.47%, and 45.43% at the flowering stage, respectively (Figure 4—Left). The biomass
of the reproductive organs and stems, as well as the total biomass of T3 at the maturity
stage, were significantly higher than those of T1 and T2, and there was no significant
difference between T3 and T4. The biomass of the reproductive organs of T3 was higher
than that of T1 and T2 by 17.76% and 13.26%, the biomass of the stems increased by 23.98%
and 11.71%, and the total biomass increased by 19.69% and 10.57%, respectively. The leaf
biomass of T3 was significantly higher than that of the plants which underwent other
treatments; it increased by 33.76%, 24.48%, and 12.96%, respectively (Figure 4—right).
Dry matter accumulation at the flowering and maturity stages of maize showed that the
assimilation ability of the T3 maize to carbohydrate was stronger than that of the plants
which underwent other treatments. The irrigation quota and dry matter accumulation
were fitted and analyzed, and it was found that they have specific functional relationships.
The dry matter accumulation at maturity was negatively correlated with irrigation quotas:
y =−0.2094 x2 + 233.14 x− 39386, R2 = 0.9039. When the irrigation quota (x) was 556.69 mm,
dry matter accumulation (y) was 25,505.87 kg·hm−2.

3.2. Grain Yield and Harvest Index
3.2.1. Yield and Its Components

The results in Table 5 demonstrate that, with the exception of row number per ear, the
irrigation quotas significantly influenced the maize yield and components. The yield and
the components of maize, at different irrigation quotas, all showed a ‘single peak curve’, and
the change was closely related to the irrigation level. Ear diameter, kernel number per row,
row number per ear, thousand-kernel weight, and yield were factors which we considered.
In comparison to T1, T2, and T4, the ear diameter of the T3 maize increased by 6.80%, 4.57%,
and 3.01%, its kernel number per row increased by 7.52%, 4.90%, and 2.93%, its thousand-
kernel weight increased by 9.51%, 5.93%, and 6.61%, and its yield increased by 32.17%,
13.54%, and 11.27%, respectively. The significant correlations established between the
maize yield and irrigation quotas could be simulated by Kuznets-style relation. The maize
yield was negatively correlated with irrigation quotas: y = −0.2593 x2 + 279.59x − 59323,
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R2 = 0.9222. When the irrigation quota (x) was 539.12 m3·hm−2, the maize yield (y) was
16,043.92 kg·hm−2.
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Table 5. Yield and components of maize under different irrigation quotas.

Year Treatment Ear Diameter
(mm)

Kernel Number
per Row

Row Number
per Ear

1000-Kernel
Weight (g) Yield (kg·hm−2)

2013

T1 42.01 ± 2.11 b 35.26 ± 3.69 b 14.26 ± 0.89 b 322.65 ± 23.83 c 10,495.01 ± 1063.83 c
T2 43.67 ± 4.54 ab 35.87 ± 1.83 ab 14.54 ± 0.59 b 329.14 ± 28.11 bc 12,841.24 ± 987.93 b
T3 44.11 ± 1.45 a 36.52 ± 2.22 a 16.27 ± 0.67 a 346.63 ± 31.03 a 15,852.10 ± 1293.72 a
T4 43.09 ± 3.69 ab 35.90 ± 2.81 ab 14.91 ± 1.05 b 333.17 ± 34.69 b 15,601.48 ± 1168.72 ab

2014

T1 43.21 ± 1.35 c 35.92 ± 2.75 ab 15.19 ± 1.01 a 319.83 ± 25.17 c 11,702.33 ± 968.15 c
T2 44.67 ± 1.58 ab 35.96 ± 2.11 ab 14.83 ± 0.88 ab 339.12 ± 22.95 b 13,366.67 ± 1473.38 ab
T3 45.94 ± 1.29 a 36.14 ± 3.61 a 15.26 ± 0.27 a 358.2 ± 18.37 a 14,404.35 ± 1185.43 a
T4 44.90 ± 1.53 ab 35.93 ± 1.98 ab 14.74 ± 0.83 ab 345.27 ± 25.55 b 12,833.21 ± 1277.49 bc

2015

T1 44.30 ± 1.97 c 29.50 ± 3.09 b 12.60 ± 0.95 bc 335.58 ± 34.03 c 13,916.40 ± 2026.18 b
T2 47.22 ± 1.34 ab 33.35 ± 1.95 ab 12.80 ± 0.98 bc 365.74 ± 29.18 bc 14,842.01 ± 1567.29 b
T3 49.24 ± 1.74 a 35.24 ± 2.49 a 14.05 ± 0.48 a 393.92 ± 21.86 a 16,515.66 ± 2617.32 a
T4 48.05 ± 3.19 a 30.85 ± 1.09 b 13.65 ± 1.00 ab 337.29 ± 17.84 c 14,288.22 ± 1632.62 b

2016

T1 43.42 ± 1.36 c 29.75 ± 2.69 b 13.43 ± 0.43 b 350.88 ± 21.07 b 12,308.60 ± 1178.62 b
T2 44.00 ± 1.61 bc 33.30 ± 1.14 ab 14.75 ± 1.41 a 365.43 ± 26.76 b 15,511.86 ± 1365.48 b
T3 48.55 ± 1.75 a 34.60 ± 0.75 a 14.90 ± 0.50 a 376.14 ± 33.57 a 16,843.50 ± 1634.13 a
T4 45.50 ± 0.43 b 33.05 ± 2.83 ab 14.60 ± 0.86 a 354.94 ± 72.73 b 15,063.40 ± 1549.37 b

2017

T1 46.18 ± 2.04 b 31.90 ± 2.14 c 14.65 ± 0.61 a 324.00 ± 27.39 c 12,831.30 ± 1375.19 bc
T2 46.66 ± 1.59 ab 34.05 ± 1.47 ab 14.71 ± 0.88 a 330.50 ± 37.18 b 14,236.02 ± 1467.28 b
T3 47.01 ± 1.38 a 34.75 ± 1.64 a 14.90 ± 0.64 a 345.75 ± 31.29 a 16,739.75 ± 1275.74 a
T4 47.97 ± 1.04 a 35.45 ± 0.94 a 13.90 ± 0.48 ab 325.75 ± 35.44 bc 14,877.88 ± 1128.48 b

2018

T1 46.51 ± 1.78 b 32.10 ± 1.89 b 14.00 ± 0.86 a 325.425 ± 19.91 b 12,622.08 ± 1022.43 b
T2 46.85 ± 2.73 b 32.45 ± 2.25 b 14.30 ± 0.50 a 322.2 ± 15.62 b 15,041.43 ± 1793.74 b
T3 49.00 ± 3.49 a 35.65 ± 3.85 a 14.30 ± 0.30 a 347.225 ± 36.72 a 16,320.98 ± 1317.82 a
T4 44.85 ± 1.17 c 34.45 ± 3.51 ab 13.80 ± 0.77 a 324.475 ± 14.55 b 15,788.32 ± 1082.73 ab



Water 2022, 14, 3822 9 of 14

Table 5. Cont.

Year Treatment Ear Diameter
(mm)

Kernel Number
per Row

Row Number
per Ear

1000-Kernel
Weight (g) Yield (kg·hm−2)

2019

T1 43.57 ± 0.11 a 34.75 ± 1.94 b 16.42 ± 0.93 b 323.50 ± 41.75 b 12,315.23 ± 1367.05 b
T2 43.55 ± 0.08 a 33.05 ± 1.52 ab 16.11 ± 0.36 b 329.25 ± 40.56 a 13,164.46 ± 1506.54 b
T3 43.64 ± 0.19 a 35.90 ± 2.62 a 25.25 ± 0.72 a 326.00 ± 29.86 a 16,408.04 ± 1480.95 a
T4 43.47 ± 0.08 a 33.35 ± 2.94 ab 15.84 ± 1.03 b 323.25 ± 16.07 b 13,866.91 ± 2277.41 b

2020

T1 42.83 ± 1.88 c 31.05 ± 1.59 a 14.7 ± 0.38 a 329.14 ± 39.01 c 13,818.51 ± 700.42 c
T2 43.51 ± 0.99 bc 31.40 ± 0.21 a 14.80 ± 0.53 a 333.73 ± 33.29 bc 15,775.93 ± 2026.60 bc
T3 49.55 ± 1.54 a 31.30 ± 0.90 a 14.93 ± 1.10 a 369.91 ± 59.09 a 18,800.32 ± 1653.87 a
T4 47.82 ± 1.06 ab 32.80 ± 0.73 a 14.91 ± 0.82 a 346.58 ± 30.21 b 16,053.01 ± 2651.63 b

2021

T1 43.63 ± 0.45 b 30.55 ± 0.60 b 13.78 ± 0.37 a 329.50 ± 26.34 c 12,827.10 ± 1446.74 b
T2 43.98 ± 1.83 b 30.33 ± 2.09 b 13.85 ± 0.13 a 340.00 ± 19.05 b 16,565.66 ± 1056.69 b
T3 45.52 ± 0.83 a 32.53 ± 2.09 a 14.02 ± 0.13 a 372.50 ± 16.40 a 17,247.86 ± 614.30 a
T4 44.54 ± 1.96 b 31.93 ± 1.73 ab 13.95 ± 0.51 a 344.75 ± 16.33 b 15,658.92 ± 1971.10 b

Mean

T1 43.96 ± 1.45 c 32.31 ± 2.26 c 14.34 ± 0.71 b 328.95 ± 28.72 c 12,537.40 ± 1238.73 c
T2 44.90 ± 1.81 bc 33.31 ± 1.62 bc 14.52 ± 0.70 ab 339.46 ± 28.08 b 14,593.92 ± 1471.44 b
T3 46.95 ± 34.74 a 34.74 ± 2.24 a 15.99 ± 0.53 a 359.59 ± 30.91 a 16,570.28 ± 1452.59 a
T4 45.58 ± 33.75 b 33.75 ± 2.06 ab 14.48 ± 0.82 ab 337.28 ± 29.27 bc 14,892.37 ± 1637.73 b

Note: different lowercase letters indicate significant differences between different treatments of the same indicator.

3.2.2. Harvest Index

The results in Table 6 demonstrate that the irrigation quotas significantly influenced
the biomass transfer and related indicators. With the increase in irrigation quotas, dry
matter transport and correlative indicators of maize first increased, but then decreased, and
the effects were the most obvious at a quota of 540 mm (T3). The dry matter translocation
of the T3 maize was 13.86%, 13.29%, and 9.95% higher than that of T1, T2, and T4, and the
grain contribution increased by 29.93%, 6.96%, and 11.31%, respectively. The dry matter
transfer efficiency of T3 was higher than that of T1 and T2; it increased by 26.06% and
14.88%, and the harvest index increased by 7.62% and 3.11%, respectively. In general, T3
was superior to other treatments in dry matter translocation, dry matter transfer efficiency,
grain contribution, and harvest index, and was more beneficial for improving maize yield.

Table 6. Effect on harvest index of maize under different irrigation quotas.

Treatment
Dry Matter at

Flowering Stage
(kg·hm−2)

Dry Matter at
Maturity (kg·hm−2)

Dry Matter
Translocation

(kg·hm−2)

Dry Matter
Transport

Efficiency (%)

Grain Contribution
(%) Harvest Index (%)

T1 15,890.05 ± 1738.37 c 21,814.93 ± 1188.26 c 6569.02 ± 1555.33 c 53.43 ± 22.60 c 40.00 ± 20.44 c 60.10 ± 14.17 c
T2 17,657.26 ± 1899.31 bc 23,613.32 ± 1371.05 b 6601.98 ± 1200.16 bc 58.63 ± 26.12 bc 48.59 ± 22.75 bc 62.73 ± 8.59 b
T3 18,447.08 ± 1107.74 a 26,110.00 ± 1906.50 a 7479.68 ± 1587.54 a 67.36 ± 21.52 a 51.97 ± 16.94 a 64.68 ± 19.07 a
T4 17,645.46 ± 1968.47 bc 24,893.06 ± 1434.82 b 6802.67 ± 1968.47 b 65.96 ± 22.77 ab 46.69 ± 22.79 bc 64.25 ± 4.51 a

Note: different lowercase letters indicate significant differences between different treatments of the same indicator.

3.3. Water Use Efficiency (WUE)

Water use efficiency (WUE) is the standard for comparing the economy of agricultural
water use units under different irrigation quotas (Table 7). The WUE of maize at different
irrigation quotas showed a ‘single peak curve’, and the changes were strongly associated
with the irrigation levels. The IWUE of the T3 maize was better than that of T2 and T4;
the IWUE of T3 increased by 0.94% and 19.50%, respectively. The WUE of T3 was 16.56%,
6.49%, and 23.70% higher than that of T1, T2, and T4, respectively. The WUE of maize
was lower when the irrigation water was too high, and T3 improved the WUE of maize
compared with other treatments, demonstrating its water-saving effect. The WUE was
negatively correlated with irrigation quotas: y = −7e−5x2 + 0.0729x − 15.349, R2 = 0.8931.
When the irrigation quota (x) was 520.71 mm, the WUE (y) of the maize was 3.07 kg·m−3.
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Table 7. WUE of drip irrigated maize under different irrigation quotas.

Year Treatment
Irrigation Amount in
Maize Growth Period

(mm)

Yield
(kg·hm−2)

IWUE
(kg·m−3)

WUE
(kg·m−3)

2013

T1 420 10,495.01 c 2.50 c 2.33 b
T2 480 12,841.24 b 2.68 b 2.52 ab
T3 540 15,852.10 a 2.94 a 2.79 a
T4 600 15,601.48 ab 2.60 b 2.48 ab

2014

T1 420 11,702.33 c 2.79 a 2.33 b
T2 480 13,366.67 ab 2.79 a 2.55 ab
T3 540 14,404.35 a 2.67 ab 3.08 a
T4 600 12,833.21 bc 2.14 b 2.00 c

2015

T1 420 13,916.40 b 3.35 a 2.56 ab
T2 480 14,842.01 b 3.09 b 2.71 ab
T3 540 16,515.66 a 3.06 b 3.03 a
T4 600 14,288.22 b 2.38 c 2.14 b

2016

T1 420 12,308.60 b 3.41 a 2.42 b
T2 480 15,511.86 b 3.23 b 2.73 ab
T3 540 16,843.50 a 3.12 b 3.10 a
T4 600 15,063.40 b 2.51 c 2.19 c

2017

T1 420 12,831.30 bc 3.29 a 2.44 ab
T2 480 14,236.02 b 2.97 ab 2.43 ab
T3 540 16,739.75 a 3.04 ab 2.81 a
T4 600 14,877.88 b 2.48 b 2.11 b

2018

T1 420 12,622.08 b 3.48 a 2.55 b
T2 480 15,041.43 b 3.13 ab 2.79 ab
T3 540 16,320.98 a 3.02 ab 3.03 a
T4 600 15,788.32 ab 2.63 b 2.39 c

2019

T1 420 12,315.23 b 3.41 a 2.54 b
T2 480 13,164.46 b 2.74 bc 2.34 b
T3 540 16,408.04 a 3.04 b 3.04 a
T4 600 13,866.91 b 2.31 c 2.03 c

2020

T1 420 13,818.51 c 3.77 a 3.01 ab
T2 480 15,775.93 bc 3.29 b 3.09 ab
T3 540 18,800.32 a 3.48 b 3.31 a
T4 600 16,053.01 b 2.68 c 2.55 b

2021

T1 420 12,827.10 b 3.29 a 2.95 b
T2 480 16,565.66 b 3.45 a 3.22 ab
T3 540 17,247.86 a 3.19 ab 3.52 a
T4 600 15,658.92 b 2.61 b 2.47 c

Mean

T1 420 12,537.40 c 3.49 a 2.57 b
T2 480 14,593.92 b 3.15 b 2.88 ab
T3 540 16,570.28 a 3.18 b 3.08 a
T4 600 14,892.37 b 2.56 c 2.35 b

Note: different lowercase letters indicate significant differences between different treatments of the same indicator.

4. Discussion
4.1. Effects of Different Irrigation Quotas on Yield and Growth Index of Drip Irrigation Maize

In arid and semi-arid regions, the water resources directly affect the distribution
and growth of crops [33]. Irrigation is a key factor in agricultural development. An
appropriate irrigation water quota ensures a high crop yield, resource conservation, and
environment-friendly agricultural development [34]. Nevertheless, the continuous supply
of additional water does not always increase food production, as some water may be
consumed inefficiently through soil evaporation, especially under drought conditions.
When the irrigation quota reaches a certain value, the influence of a continuous increase in
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irrigation amount on the growth index is greatly weakened [35]. Fang [36] found that in the
arid oasis farming system, water-saving irrigation (medium and low irrigation) reduced the
maize yield by 12.0–28.0% compared with full irrigation of different soils. You [37] found
that the plant height and yield components of winter wheat increased with the increase in
annual irrigation quotas. However, Jia [38] demonstrated that applying deficit irrigation
(375 m3·hm−2) at the flowering stage (IF) of plants grown under a medium planting density
(M:75000 plants·hm−2) (MIF) RFRH system can increase biomass and grain yield. Ma [39]
found that the maximum and average dry matter accumulation rates in maize plants
increased as the irrigation quota increased from 300 to 375 mm. When the irrigation quota
was increased to 450 mm, the maximum dry matter growth rate, the maximum average
dry matter growth rate, and the yield of maize were all decreased, which is consistent with
our results. This study showed that proper irrigation can continuously increase growth
index, biomass accumulation, and yield. However, with the continuous increase in the
irrigation quota, the growth, dry matter accumulation, and yield of maize decreased. Those
studies were conducted in arid regions, and achieved the same results as ours. However,
for semi-arid areas, the effect of irrigation on crop yields is not significant, as most rainfall
occurs during the growing season [40]. The inconsistency between irrigation optimal
irrigation quota may be due to differences in factors such as soil type, maize variety, and
climatic conditions.

4.2. Effects of Different Irrigation Quotas on WUE of Drip Irrigated Maize

WUE is an important water use index in crop production. In order to reduce the
waste of water resources in agricultural production, it is necessary to study how to achieve
a high WUE for crops [41]. Water-saving measures are widely considered to improve
the utilization efficiency of water resources, and to further alleviate the crisis of water
shortage, especially in arid areas. The development of the drip irrigation technique has
enriched the agricultural measures of water-saving irrigation, as it can directly supply
water to crops. By adjusting the water supply, the regulation of water and fertilizer can
be achieved, which can promote the growth of crops. Drip irrigation quantity is also
important; excessive irrigation will reduce WUE, and limited irrigation may lead to higher
WUE and lower field-scale ET. Hence, optimizing the irrigation schedule is an important
measure for improving the yield and WUE. Wang [42] found that compared with the
irrigation amount used for field production (390 mm), an excessive amount of mulched
drip irrigation (600 mm) reduced the seed cotton yield, resulting in a decrease in irrigation
water use efficiency (IWUE). Wang [42] found that compared with the irrigation amount
used for field production (390 mm), when the irrigation amount was 600 mm, the seed
cotton yield was reduced, resulting in a decrease in WUE. Zhang [20] found that when the
irrigation level was reduced by 10%, the grain yield and economic return did not change
significantly, but the evapotranspiration decreased and the WUE increased (4.61–6.66%).
The appropriate irrigation amount (540 mm) could obtain a higher WUE level (average:
3.08 kg·m−3). Our conclusion is that appropriate irrigation quotas lead to higher WUE
levels [43,44]. In our study, the IWUE of maize at irrigation quotas showed a “single peak
curve”, and its variation was negatively correlated with irrigation level. The effects were
the most obvious at the quotas of 540 mm (T3); the highest IWUE of T3 reached 3.18 kg·m−3.
Drip irrigation, dense planting, and plastic film mulching are effective ways to change the
surface resistance, reduce soil evaporation, save water, increase production, and improve
WUE. Thus, an appropriate irrigation quota guarantees a high maize yield and improves
WUE, resource conservation, and environmentally friendly agricultural development.

The results of this study were obtained under the same soil texture, planting pattern,
maize variety, and drip irrigation belt conditions. Further research is needed under other
test conditions.
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5. Conclusions

(1) From the comparative field observation experiment on four kinds of irrigation quotas
under drip irrigation conditions, conducted for 9 consecutive years, it can be con-
sidered that the growth, yield, and irrigation WUE of maize are closely related to
the irrigation quota. With the increase in irrigation quotas, the growth, yield, and
irrigation water use efficiency of maize first increased, but then decreased.

(2) Based on the analysis of each index, the growth index, dry matter accumulation,
yields, and WUE with T3 were the highest. In comparison to T1, T2, and T4, the yield
of T3 increased by 32.17%, 13.54%, and 11.27%, respectively, and the WUE increased
by 16.56%, 6.49%, and 23.70%, respectively.

(3) The significant correlations established between the maize yield and irrigation quotas
could be simulated by Kuznets-style relation. When the irrigation quota (x) was
539.12 mm, the maize yield (y) was 16,043.92 kg·hm−2. Hence, optimizing the ir-
rigation quota (540 mm) can effectively improve maize growth, yield, and water
use efficiency under drip irrigation in the northwest region of China. In the future,
the amount and duration of irrigation should be further optimized in the proposed
planting methods, in order to further save water and increase efficiency.
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