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Abstract: Quasi-two-dimensional (quasi-2D) friction models have been widely investigated in tran-
sient pipe flows. In the case of viscoelastic pipes, however, the effect of different values of the
Reynolds number (Re) on pressure fluctuations (which can lead to water hammer) have not been
considered in detail. This study establishes a quasi-2D friction model employing an integral total
energy method and investigates the work due to frictional and viscoelastic terms at different Re
values. The results show that viscoelastic work (WP) and frictional work (Df) increase with an increase
in Re. However, when the initial Re values are high, the Df values are much larger than the WP

values. In addition, for Re < 3 × 105, the 1D model underestimated the viscoelastic terms. There was
no significant difference between the two models for Re > 3 × 105. In the case of different initial Re
values, the two models produced almost the same values for WP. This study provides a theoretical
basis for investigating transient flow from the perspective of energy analysis.

Keywords: transient flow; viscoelastic pipe; quasi-2D model; energy analysis; Reynolds numbers

1. Introduction

In recent years, viscoelastic pipes have been increasingly used in urban water-supply
systems [1]. The transient-flow pressure fluctuation generated by such pipes is different
from the pressure fluctuation of traditional elastic pipes because of their different viscoelas-
tic properties; when pumps suddenly stop or valves close quickly, a water-hammer accident
result. The peak values of pressure fluctuation are relatively small; however, pressure-
fluctuation attenuation and phase delay are large. Therefore, a correct understanding of
the role of viscoelastic characteristics in the transient-flow pressure-fluctuation process is
necessary.

Accurate numerical calculation of transient flow in viscoelastic pipes must consider the
effect of not only unsteady friction (UF) of the pipe wall but also wall viscoelasticity. Some
researchers have studied the pressure fluctuation of transient flows in viscoelastic pipes.
Rieutord and Blanchard [2] pointed out that the acceleration of pressure attenuation is due
to a time offset between the pressure and the retarded strain of the pipe wall. Covas et al. [3]
proposed that, owing to retarded deformation, the maximum pressure of the transient
flow of viscoelastic pipes is smaller than that of elastic pipes, and the attenuation of the
pressure wave is faster. In addition, Covas et al. [4] found that the viscoelastic effect is more
evident in a transient flow when the retarded time of the viscoelastic pipes is less than the
propagation time of the pressure wave along the pipes.

Numerous studies on the influence of UF on the transient flow of elastic pipes have
been conducted. The results show that a one-dimensional (1D) quasi-steady friction model
can accurately simulate the maximum value of pressure fluctuation in elastic pipelines,
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but in most cases, it cannot accurately describe the peak-pressure damping [1]. One-
dimensional UF model [5] and two-dimensional (2D) friction models [6] can accurately sim-
ulate not only the maximum peak of pressure fluctuations but also the attenuation of pres-
sure fluctuation. Pezzinga [6] compared the error values of 1D- and 2D-model-simulated
maximum and minimum pressure heads with experimental results and confirmed the
accuracy of the 2D-model-simulated shear stress. In a study of different friction models of
the transient flow through a simulated viscoelastic pipeline, Firkowski et al. [7] examined
the effects of UF and experimentally obtained creep functions. Urbanowicz et al. [8] investi-
gated quasi-steady and unsteady frictions in viscoelastic pipes and presented a simplified
effective numerical-convolution integral to describe retarded strain. Sun et al. [9] concluded
that a 1D quasi-steady friction model could accurately simulate the pressure-fluctuation
attenuation of viscoelastic pipes at a certain water temperature.

In previous studies, the viscoelastic parameter was mistakenly thought to be energy
dissipation, but an increasing number of studies have shown that there is energy transfer
between the fluid and the pipe wall [10]. Karney [11] divided the energy involved in
transient flow into four parts: the kinetic energy of the fluid, the internal energy associated
with fluid compressibility and pipeline-elasticity effects, the energy dissipated by friction,
and the work done at the ends of the pipeline. Through integral processing, the basic
momentum and continuity equations of transient flow can be used to analyse the energy of
the entire pipeline. Duan et al. [10] used Fourier methods and energy analysis to show that
energy transfer was related to the ratio of the pressure wave period to the retarded time
(T/τ). Duan et al. [12] used local transient analysis (LTA) and integral total energy (ITE)
methods to study the influence of friction on transient flow in a 1D UF model and 2D k-ε
turbulence model. The results showed that the friction dissipation calculated by the 1D
model was smaller than that calculated by the 2D model after the first pressure-fluctuation
period. Meniconi et al. [13] introduced nondimensional parameters to analyse the energy
dissipation of the transient flow in viscoelastic pipes, finding numerically that the energy
dissipation was related to the Reynolds number (Re) and valve opening. Riasi et al. [14]
employed a 2D k-ε turbulence model to infer nondimensional parameters related to Re
and the viscoelasticity of the pipe. The influence of these parameters on the pressure
fluctuation, wall-shear stress, velocity profiles, turbulence production, and dissipation
was investigated.

As mentioned, Re is an important parameter in transient flow. Hence, an understand-
ing of how it influences viscoelastic and frictional effects on the energy dissipation of
transient flow is critical for the design and operation of a pipeline system. In this study,
transient flow with different initial Re values was investigated for both 1D and 2D models.
First, the energy equation of the 2D model was derived using the ITE method. The contri-
butions of the viscoelastic and friction terms to the work done in both friction models were
analysed and discussed, and the change rule of the work done under different Re values
were clarified. The trends of work done and energy dissipation at different Re values were
examined from the perspective of energy analysis, and the laws governing fluctuation
of friction and viscoelastic terms at different stages of transient flow were studied. Our
study established a quasi-2D model based on energy analysis to analyse the friction and
viscoelastic effects of transient flow at different Reynolds number.

2. Materials and Methods
2.1. Governing Equations

The continuity and momentum equations of the quasi-2D transient flow model are
expressed as [4,5]:

g
a2

∂H
∂t

+
∂u
∂x

+
1
r

∂(rv)
∂r

+ 2
∂εr

∂t
= 0, (1)

∂u
∂t

+ g
∂H
∂x
− 1

ρr
∂(rτ)

∂r
= 0, . (2)
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where H is the pressure head, Q is the discharge, a is the wave speed, r is the radial
distance from the pipe centre, x is the axial coordinate along the pipe, t is the time, u is the
longitudinal velocity, v is the radial velocity, τ is the shear stress, εr is the retarded strain, g
is the gravitational acceleration, and ρ is the density.

By integrating Equations (1) and (2) over the cross-sectional area of the pipeline, the
continuity and momentum equations for the 1D transient flow in viscoelastic pipes can be
expressed as [4]:

∂H
∂t

+
a2

gA
∂Q
∂x

+
2a2

g
∂εr

∂t
= 0, (3)

∂Q
∂t

+ gA
∂Q
∂x

+
πD

ρ
τw = 0, (4)

where A is the cross-sectional area of the pipeline, and τw is the pipe-wall shear stress
evaluated using the Darcy–Weisbach formula.

2.2. Kelvin-Voigt Model

The behaviour of the viscoelastic pipes was simulated using the Kelvin-Voight (K-V)
model [15,16]. Each of the K-V components consists of a spring and sticky pot, representing
the instantaneous strain and retarded strain components, respectively. The total creep
compliance is given by:

J(t) = J0 +
N

∑
k=1

Jk

(
1− e−

t
τk

)
, (5)

where J0 = 1/E0, E0 is the elastic modulus, Jk = 1/Ek is the creep compliance of the k-th
element, τk is the retarded time of the k-th element, and Ek is the elasticity modulus of the
k-th element.

For viscoelastic pipes, the total strain ε is given by the sum of the instantaneous strain
(εe) and retarded component (εr):

ε = εe + εr. (6)

Using the K-V model with N elements, the retarded strain is the sum of the single-
element deformations [3]:

∂εr(t) = ∑
k=1···N

∂εrk(t). (7)

The retarded strain is [4]:

εr(x, t) = ∑
k=1···N

εrk(x, t) = ∑
k=1···N

γαD
2e

∫ t

0

[
H
(
x, t− t′

)
− H0(x)

] Jk
τk

e
−t′
τk dt′, (8)

where t’ is the time variation.
The retarded strain rate is algebraically expressed as [17,18]:

∂εr(t)
∂t

= ∑
k=1···N

∂εrk(t)
∂t

=
N

∑
k=1

(AH −VE), (9)

with
VE = BH0 + (A− B)H(x, t− ∆t) + Cεrk(x, t− ∆t), (10)

A =
αD
2e

γ
Jk
∆t

(
1− e−

∆t
τk

)
, B =

αD
2e

γ
Jk
∆t

e−
∆t
τk , C =

e−
∆t
τk

Tk
, (11)

where γ is the bulk weight, α is the constraint coefficient, D is the pipe diameter, e is the
wall thickness, H is the pressure head, and ∆t = L/(a× Nx). Here, Nx is the number of
pipe meshes.
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2.3. Numerical Scheme of 1D and Quasi-2D Models

The solutions for transient flows in viscoelastic pipes were calculated by quasi-2D and
corresponding 1D models using the method of characteristics (MOC). The characteristic
forms of the quasi-2D and corresponding 1D transient-flow equations are:

dH
dt
± a

g
du
dt

+
a2

gr
∂(rv)

∂r
∓ a

g
1
ρr

∂(rτ)

∂r
+

2a2

g

N

∑
k=1

(AH −VE) = 0, (12)

dH
dt
± a

g
dQ
dt
± a2

g
4τw

ρD
+

2a2

g

N

∑
k=1

(AH −VE) = 0. (13)

Because of the steep radial velocity gradient, a gradually encrypted radial grid was
applied from the pipe centre to the pipe wall. This is shown in Figure 1, where j is the
subscript representing the radial grid number, rj is the radial distance between the outer
surface of cylinder j and the pipe centre, and rcj is the radial distance between the centre of
cylinder j and the pipe centre.
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Integrating Equation (11) on the characteristic lines between times n∆t and (n + 1)∆t
(Figure 1) results in the following discretised expressions:

(1 + F)Hn+1
i − θCq,jqn+1

i,j−1 + θCq,jqn+1
i,j −ωCu1,jun+1

i,j−1 +

(
a
g
+ ωCu2,j

)
un+1

i,j −ωCu3,jun+1
i,j+1 = Kpi,j, (14)

(1 + F)Hn+1
i − θCq,jqn+1

i,j−1 + θCq,jqn+1
i,j + ωCu1,jun+1

i,j−1 −
(

a
g
+ ωCu2,j

)
un+1

i,j + ωCu3,jun+1
i,j+1 = Kni,j, (15)

with

F =
2a2∆t

g

N

∑
k=1

αD
2e

γ
Jk
∆t

e−∆t/τk , (16)

Kpi,j = Hn
i−1 + (1− θ)Cqj

(
qn

i−1,j−1 − qn
i−1,j

)
+ (1− ε)Cu1,jun

i−1,j−1

+
[
a/g− (1− ε)Cu2,j

]
un

i−1,j + (1− ε)Cu3,jun
i−1,j+1 +

2a2∆t
g

N

∑
k=1

VE , (17)

Kni,j = Hn
i+1 + (1− θ)Cqj

(
qn

i+1,j−1 − qn
i+1,j

)
− (1− ε)Cu1,jun

i+1,j−1

−
[

a
g
− (1− ε)Cu2,j

]
un

i+1,j − (1− ε)Cu3,jun
i+1,j+1 +

2a2∆t
g

N

∑
k=1

VE , (18)

Cqj =
a∆t2

grcj
(
rj − rj−1

) , Cu1,j =
a∆tvTj−1rj−1

grcj
(
rcj − rcj−1

)(
rj − rj−1

) ,
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Cu3,j =
a∆tvTjrj

grcj
(
rcj+1 − rcj

)(
rj − rj−1

) , Cu2,j = Cu1,j + Cu3,j, (19)

where ε and θ are the weighting coefficients, q(=rv) is the radial flux, and the source terms
Kpi,j, and Kni,j are known values, the elements of which depend on H, u, and q at the
previous time level.

When Equation (14) is subtracted from Equation (15), we obtain:

ωCu1,jun+1
i,j−1 −

(
a
g
+ ωCu2,j

)
un+1

i,j + ωCu3,jun+1
i,j+1 = 0.5

(
Kni,j − Kpi,j

)
. (20)

Instead, if they are added, we obtain:

(1 + F)Hn+1
i − θCq,jqn+1

i,j−1 + θCq,jqn+1
i,j = 0.5

(
Kni,j + Kpi,j

)
. (21)

These equations enable us to calculate the axial velocity, nodal pressure head, and
radial flux.

Integrating Equation (12) on the characteristic lines between times n∆t and (n + 1)∆t,
the discretised forms of the 1D characteristic equations are expressed as:

(1 + F)Hn+1
i + BQn+1

i +
4εa∆t
ρgD

τn+1
w,i = Cp, (22)

(1 + F)Hn+1
i − BQn+1

i − 4εa∆t
ρgD

τn+1
w,i = Cm , (23)

with

τn+1
w,i = ρvT

un+1
i,NR+1

∆rcNr+1

= ρvT
un+1

i,NR+1(
D/2− rcNr+1

) (24)

Cp = Hn
i−1 +

a
gA

Qn
i−1 −

4a∆t
ρgD

τn
w,i−1 +

2a2∆t
g

N

∑
k=1

VE, (25)

Cm = Hn
i+1 −

a
gA

Qn
i+1 +

4a∆t
ρgD

τn
w,i+1 +

2a2∆t
g

N

∑
k=1

VE . (26)

A five-region turbulent flow model can be introduced to calculate the turbulent eddy
viscosity (vT). Combining Equations (21) and (22), the pressure head and discharge may be
obtained as:

Hn+1
i =

Cp + Cm

2(1 + F)
, (27)

Qn+1
i =

Cp − Cm

2B
− 4εa∆t

ρgDB
τn+1

wi . (28)

2.4. ITE Method Based on Quasi-2D Friction Model

The energy equation corresponding to the quasi-2D model is obtained by integrating
the basic differential equation. However, in addition to axial flow, radial flow is considered
in the quasi-2D model; therefore, radial integration should be considered when the equation
associated with the flow rate is integrated [10].

∫ L

0

∫ D/2

0

[
Eq. (3)× ρ2gH

]
drdx;

∫ L

0

∫ D/2

0
[Eq. (4)× u]drdx (29)

The energy equation of the quasi-2D model is as follows (a detailed derivation is
provided in Appendix A):

dU
dt

+
dT
dt

+ D f + WE + WP = 0, (30)
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where U is the total internal energy of the system, T is the total kinetic energy of the system,
Df is the total rate of frictional dissipation, WE is the total rate of work from the ends of the
pipe, and WP is the total rate of work from the pipe wall, expressed as follows:

U =
ρg2 A
2a2

∫ L

0
H2(x, t)dx, (31)

T(t) =
πρD

4

∫ L

0

∫ D/2

0
u2drdx, (32)

D f (t) = −
πD

2

∫ L

0

∫ D/2

0

u
r

∂(rτ)

∂r
drdx, (33)

WE =
πρDg

2

∫ D/2

0
[u(L, t)H(L, t)− u(0, t)H(0, t)]dr, (34)

WP = 2ρAg
∫ L

0
H

∂ε

∂t
dx. (35)

3. Results: Experimental Setup and Validation

The experimental data in this study were obtained from the Water Engineering Labo-
ratory at the University of Perugia, Italy [19]. High-density polyethylene (HDPE) pipe was
used in the experiment. A pressure tank was used to maintain the pressure upstream of the
pipes, and a fast-closing pneumatic valve was used to generate excitation of the transient
flow downstream of the pipes. The inner diameter (D) of the pipe was 93.3 mm, and the
wall thickness (e) was 8.1 mm. The length of the experimental pipes (L) used in this study
was 128.6 m.

Five groups of experimental data, each with a different Re, initial flow rate, and initial
pressure, were analysed in this study. The specific experimental parameters are listed in
Table 1. The limiting coefficient of the pipe was 0.97, and the relative roughness of the
pipe was 8.57 × 10−4. The K-V parameters were calibrated according to literature [19],
and their values were as follows: 1D model (E0 = 1556 N/mm2 , E1 = 7820 N/mm2,
τ1 = 582.6 ms,E2 = 18,370 N/mm2, τ2 = 59.76 ms, E3 = 6842 N/mm2, and τ3 = 21,570 ms);
2D model (E0 = 1563 N/mm2, E1 = 9596 N/mm2, τ1 = 562.3 ms, E2 = 19,490 N/mm2,
τ2 = 52.18 ms, E3 = 5834 N/mm2, and τ3 = 19,680 ms).

Table 1. Experimental settings [19].

Case Q (L/s) Re H0 (m) Tc (s)

1 1 13,380 21.63 0.0875
2 2.04 28,320 21.13 0.0752
3 2.95 40,950 20.74 0.1188
4 4.03 55,940 20.34 0.1575
5 5.02 69,680 19.82 0.1533

The numerical results of the 1D and quasi-2D models at Re = 55,940 are compared to
the experimental results in Figure 2a. The figure shows that the simulation results of the
quasi-2D model are very close to the experimental results in terms of peak value, valley
value, and phase, especially in the second half-circle of transient flow (30–50 L/a); the
same is true for the 1D model. Figure 2b shows the simulation results for the pressure
head at different Re values, in which the peak pressure increases with Re. The pressure
head decreases with the increase of Reynolds number, whereas the phase is unchanged at
different Reynolds numbers.
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Figure 3 shows the variation trend of the total, retarded, and instantaneous strain in
the two cases. In the critical region of transient flow, the retarded strain accounted for a
much smaller proportion of the total strain than the instantaneous strain. Although the
retarded strain was relatively small, it can be seen from Figure 3 that, with an increase
in L/a, the retarded strain decreased further and the instantaneous strain also showed a
decreasing trend. At the later stage of transient flow (30 L/a), the total and instantaneous
strain overlapped substantially.
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Figure 3. Results of strain at different Re values: (a) Re = 13,880; (b) Re = 28,320.

From Figure 3, it can also be seen that the instantaneous strain reached its maximum
value at the initial moment of the transient flow, whereas the retarded strain reached its
maximum value in the third phase of transient flow (3 L/a); thus, the total strain reached
its maximum value at 3 L/a. This suggests that the pressure fluctuation in viscoelastic
pipes exhibits a delay compared with that in elastic pipes.

Figure 4 depicts the changes in the instantaneous and retarded strains at five Re values.
Both tended to increase with Re. At the same time, there was a little effect on the peak value
of the retarded strain at different Re values. The maximum peak values of the instantaneous
and retarded strains changed almost linearly with Re. At the same Re value, the maximum
instantaneous strain was approximately five times the maximum retarded strain.



Water 2022, 14, 3258 8 of 15

Water 2022, 14, x  8 of 16 
 

 

  
(a) (b) 

Figure 3. Results of strain at different Re values: (a) Re = 13,880; (b) Re = 28,320. 

From Figure 3, it can also be seen that the instantaneous strain reached its maximum 

value at the initial moment of the transient flow, whereas the retarded strain reached its 

maximum value in the third phase of transient flow (3 L/a); thus, the total strain reached 

its maximum value at 3 L/a. This suggests that the pressure fluctuation in viscoelastic 

pipes exhibits a delay compared with that in elastic pipes. 

Figure 4 depicts the changes in the instantaneous and retarded strains at five Re val-

ues. Both tended to increase with Re. At the same time, there was a little effect on the peak 

value of the retarded strain at different Re values. The maximum peak values of the in-

stantaneous and retarded strains changed almost linearly with Re. At the same Re value, 

the maximum instantaneous strain was approximately five times the maximum retarded 

strain. 

  

(a) (b) 

Figure 4. Variation of (a) retarded and (b) instantaneous strain at different Re values. 

Figure 5 illustrates the time difference (∆𝑡) between the extreme value (peak no.) of 

retarded strain and instantaneous strain (the time of retarded strain/the time of instanta-

neous strain). According to the line graph, the time difference is the biggest at the first few 

peak numbers of the Re values, whereas it is closer at the end peak number. This means 

that different Reynolds numbers have greater influence on the first few cycles of strain, 

that is, viscoelasticity is obvious in the early phase of transient flow. During the whole 

period of transient flow, the time difference between retarded strain and instantaneous 

strain not only shows an upward trend with the peak number monotonic increasing but 

increases as Re values increase. It would be expected that the retarded strain effect would 

become smaller with time because the velocity decreases with time; and the difference of 

Re values also affects viscoelasticity during the transient flow, though not greatly. 

Figure 4. Variation of (a) retarded and (b) instantaneous strain at different Re values.

Figure 5 illustrates the time difference (∆t) between the extreme value (peak no.) of
retarded strain and instantaneous strain (the time of retarded strain/the time of instanta-
neous strain). According to the line graph, the time difference is the biggest at the first few
peak numbers of the Re values, whereas it is closer at the end peak number. This means
that different Reynolds numbers have greater influence on the first few cycles of strain, that
is, viscoelasticity is obvious in the early phase of transient flow. During the whole period
of transient flow, the time difference between retarded strain and instantaneous strain not
only shows an upward trend with the peak number monotonic increasing but increases
as Re values increase. It would be expected that the retarded strain effect would become
smaller with time because the velocity decreases with time; and the difference of Re values
also affects viscoelasticity during the transient flow, though not greatly.
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Figure 5. The time difference between the extreme value of retarded strain and instantaneous strain.

To further illustrate the viscoelastic effect, the ratio of retarded strain to total strain
(εr/ε) is shown in Figure 6. As can be seen in the line graph, the ratio at the valley decreases
from 0.12 in the first valley to 0.05 in the last valley, whereas there is a minor fluctuation in
this peak numbers (from 0.175 in the first peak to 0.125 in the last peak, but the smallest
value is 0.11 in the five peak). The ratios are consistent at different Re values, which
means that the viscoelastic term has no significant effect on transient flow at different
Reynolds numbers.
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4. Discussion: Energy Analysis at Different Reynolds Numbers

To understand the influence of different Re values on the energy variations of vis-
coelastic pipes, distinctions between the viscoelasticity and friction terms were analysed.

4.1. Df in 1D and 2D Models

The energy changes in the viscoelastic and friction terms of the 1D and 2D friction
models under different initial Re values were further analysed based on the ITE method
(i.e., Equation (29)). Combined with Equation (33), the simulation results of the work
done by the friction term Df are shown in Figure 7. The results show that larger Df values
correspond to greater values of the cumulative sum of the wall-shear stress of the entire
pipeline. This indicates that the work done by the friction term becomes larger as Re
values increase.
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Figure 7. Frictional work Df at different Re values in the critical region: (a) 1D model; (b) 2D model.

In Figure 7a,b, the Df values calculated using the 2D model are larger than those
calculated using the 1D model. It can be seen that the 1D model underestimated the
instantaneous wall shear stress under flow conditions with initial Re values in the range of
1.0 × 105–3.0 × 105.

As shown in Figure 7, with an increase in the initial Re, Df differed only slightly
between the 1D and 2D models. This means that the instantaneous wall-shear stress
calculated by the 1D model was close to that calculated by the 2D model, with an initial Re
value of 4.0 × 105–7.0 × 105.

For all Re values, Df was maximal near the initial time and gradually decayed with
time in both the 2D and 1D models.
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Furthermore, the Df values were positive for both models in the critical region of
turbulence. Thus, the Df values show the dissipation of the friction energy in the transient
flow. This is consistent with the description of transient flow energy in pipelines [10]. The
Df values also increased with an increasing initial Re.

4.2. WP in 1D and 2D Models

The simulation results for WP (the work done by the viscoelastic term of the pipe wall
per unit time) are shown in Figure 8. The WP values gradually increased with the initial
Re values.

Water 2022, 14, x  10 of 16 
 

 

  
(a) (b) 

Figure 7. Frictional work Df at different Re values in the critical region: (a) 1D model; (b) 2D 

model. 

In Figure 7a,b, the Df values calculated using the 2D model are larger than those cal-

culated using the 1D model. It can be seen that the 1D model underestimated the instan-

taneous wall shear stress under flow conditions with initial Re values in the range of 1.0 

× 105–3.0 × 105. 

As shown in Figure 7, with an increase in the initial Re, Df differed only slightly be-

tween the 1D and 2D models. This means that the instantaneous wall-shear stress calcu-

lated by the 1D model was close to that calculated by the 2D model, with an initial Re 

value of 4.0 × 105–7.0 × 105. 

For all Re values, Df was maximal near the initial time and gradually decayed with 

time in both the 2D and 1D models. 

Furthermore, the Df values were positive for both models in the critical region of tur-

bulence. Thus, the Df values show the dissipation of the friction energy in the transient 

flow. This is consistent with the description of transient flow energy in pipelines [10]. The 

Df values also increased with an increasing initial Re. 

4.2. WP in 1D and 2D Models 

The simulation results for WP (the work done by the viscoelastic term of the pipe wall 

per unit time) are shown in Figure 8. The WP values gradually increased with the initial 

Re values. 

  
(a) (b) 

Figure 8. Viscoelastic work, WP, at different Re values in the critical region: (a) 1D model; (b) 2D 

model. 

The WP values from the 1D model were similar at all Re values to those from the 2D 

model because the governing equations of both models were consistent in calculating the 
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The WP values from the 1D model were similar at all Re values to those from the
2D model because the governing equations of both models were consistent in calculating
the retarded strain. The work due to the viscoelastic term of the pipe wall in the two
friction models was essentially the same under different initial Re values. In particular,
the maximum value of WP calculated by both friction models appeared at approximately
2 L/a for all Re values, and the WP values gradually decayed over time. In the critical
region of turbulence, WP had both positive and negative values. This indicates that the
interaction between the fluid and the pipe wall during transient flow involves both energy
transfer and energy dissipation, which agrees with the description of the energy variation
of transient flows in pipelines in the literature [10].

By comparing Figures 7 and 8, it can be seen that the work done by the viscoelastic
and friction terms was similar at low Re. With an increase in the initial Re, Df became
significantly greater than WP. This shows that the work done by the friction term had a
significant influence on the energy dissipation when the initial Re values were relatively
high [13].

To further illustrate the dependence of the viscoelastic effect at different flow condi-
tions, the WP values of viscoelastic term were compared with the 1D model at different
Reynolds number (Figure 9). From these figures, the difference of WP values between
1D model considering both friction and viscoelastic effects, and only considering the vis-
coelastic effect, increase with Re values, but compared with the increase of Df values at
different Reynolds number, there was a slight increase in WP values in orders of magnitude.
This is because the viscoelastic effect does not dominate under different initial Reynolds
numbers [10,20].
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4.3. Energy integral in 2D Models

Figure 10 shows the cumulative energies of the viscoelastic and friction terms, along
with their sum (the total dissipational energy change) for the entire pipeline under different
initial Re values.

The cumulative work done by the friction term increased with time, most steeply
between 0 and 5 L/a; after 20 L/a, the energy dissipation gradually stabilised. This indicates
that energy dissipation was the dominant mode of energy change.

The positive energy change of the viscoelastic term was the largest between 0 and
2.5 L/a, and the negative energy change was largest between 2.5 and 5 L/a, as shown in
Figure 10. The energy change in the viscoelastic term had a sinusoidal fluctuation and
an overall upward trend over time. This indicates that the energy change between the
viscoelastic pipes and the fluid in the pipe not only led to energy conversion but also energy
dissipation in the initial stage of the transient flow in the pipes. The energy changes became
predominantly dissipative as time elapsed.

It can also be seen from Figure 10 that the energy changes of both the viscoelastic
and friction terms increased with Re. At different initial Re values, the energy variation
trend of the friction term was essentially the same. However, for the energy change of the
viscoelastic term, the fluctuation range was larger and the duration longer when the initial
Re values were small.

In particular, the proportion of energy dissipation generated by the friction term in the
total energy change increased continuously with an increase in the initial Re values. Accord-
ingly, the proportion of energy change generated by the viscoelastic term in the total energy
change decreased. More specifically, the proportions of the viscoelastic terms in the total
energy variation were 22.1% (Re = 13,880), 18.2% (Re = 28,320), 15.1% (Re = 40,950), 11.9%
(Re = 55,940), and 10.1% (Re = 69,680) when the transient flow time was approximately
60 L/a.
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5. Conclusions

In this study, the ITE method was used to derive the energy equation of a quasi-2D
model of viscoelastic pipes, and the work changes of the friction term and viscoelastic term
in 1D and 2D models under different initial Re values were compared. The results are
as follows:

(1) When the initial Re was < 3.0 × 105, the 1D (but not the 2D) model underestimated
the work due to the friction term Df. For Re > 3.0 × 105, this error was reduced.

(2) The work done by the viscoelastic term of the pipe wall remained approximately
constant under different initial Re values for both the 1D and 2D models.

(3) With an increase in Re values, both the viscoelastic and frictional work in the 1D
and 2D models increased with time. However, Df > WP for a large initial Re.
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(4) The energy dissipation of the friction term increased significantly initially then
slowed down, and finally approached a constant value.

(5) The energy change of the viscoelastic term exhibited sinusoidal fluctuation during
the early stage of the transient flow. At a smaller initial Re, the fluctuation in energy lasted
for a long time, presented an overall upward trend, and finally approached a constant value.

(6) With an increase in initial Re values, the proportion of the energy dissipation
generated by the friction term in the total energy change increased continuously, whereas
the proportion of the energy change generated by the viscoelastic term in the total energy
change decreased correspondingly.
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Nomenclature

The following symbols are used in this paper:
A cross-sectional area of the pipeline
a wave speed
D pipe diameter
Df total rate of frictional dissipation
Ek elasticity modulus of the k-th element
e wall thickness
g gravitational acceleration
H pressure head
J creep compliance of the k-th element
j subscript representing the radial grid number
Nr number of segments along the radius
Nr0 number of cylinders along the radius
Q discharge
q radial flux
r radial distance from the pipe centre

rcj
radial distance between the centre of the cylinder j cross-section and the
pipe centre

rj
radial distance between the outer surface of the cylinder j cross-section
and the pipe centre

T total kinetic energy of the system
t time
U total internal energy of the system
u longitudinal velocity
v radial velocity
WE total rate of work from the ends of the pipe
WP total rate of work from the pipe wall
x axial coordinate along the pipe
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Greek Symbols
α constraint coefficient
ε, θ weighting coefficients
εr retarded strain
ρ density
τ shear stress
τk retarded time of the k-th element
τw pipe-wall shear stress
γ bulk weight
Abbreviations
quasi-2D quasi-two-dimensional
1D one-dimensional
Re Reynolds number
K-V Kelvin-Voight
HDPE high-density polyethylene pipe
MOC method of characteristics

Appendix A. Derivation of Equation (29)

We multiply Equation (3) by Hdx and integrate along the pipe length L:

g
2a2

d
dt

∫ L

0
H2dx +

∫ L

0
H

∂u
∂x

dx + 2
∫ L

0
H

∂ε

∂t
dx = 0 (A1)

Then, we integrate along the pipe diameter D:

g
2a2

d
dt

∫ D/2

0

∫ L

0
H2dxdr +

∫ D/2

0

∫ L

0
H

∂u
∂x

dxdr + 2
∫ D/2

0

∫ L

0
H

∂ε

∂t
dxdr = 0 (A2)

In the quasi-2D model, the pressure changes are only along the axial direction of the
pipeline, and slight changes in the radial direction are ignored. Therefore, the first and
third terms in Equation (A2) can be treated as constants in the pipeline radial direction:

g
2a2 ·

D
2

d
dt

∫ L

0
H2dx +

∫ L

0

∫ D/2

0
H

∂u
∂x

drdx + 2 · D
2

∫ L

0
H

∂ε

∂t
dx = 0 (A3)

Multiplying by 2ρAg/D, we have

ρAg2

2a2
d
dt

∫ L

0
H2dx +

πρDg
2

∫ L

0

∫ D/2

0
H

∂u
∂x

drdx + 2ρAg
∫ L

0
H

∂ε

∂t
dx = 0 (A4)

Next, we multiply Equation (2) by u and integrate along the pipe diameter D and the
pipe length L simultaneously:

1
2

d
dt

∫ L

0

∫ D/2

0
u2drdx + g

∫ L

0

∫ D/2

0
u

∂H
∂x

drdx− 1
ρ

∫ L

0

∫ D/2

0

u
r

∂(rτ)

∂r
drdx = 0 (A5)

Calculating the derivatives of the second term of Equation (A5), we have

∫ D/2

0

∫ L

0
u

∂H
∂x

dxdr =
∫ D/2

0

[
−
∫ L

0
H

∂u
∂x

dx + u(L, t)H(L, t)− u(0, t)H(0, t)
]

dr (A6)

Solving Equations (A4) and (A6) simultaneously yields

ρAg2

2a2
d
dt

∫ L
0 H2dx− πρDg

2

∫ D/2
0

∫ L
0 u ∂H

∂x dxdr + 2ρAg
∫ L

0 H ∂ε
∂t dx

+πρDg
2

∫ D/2
0 [u(L, t)H(L, t)− u(0, t)H(0, t)]dr = 0

(A7)
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Finally, solving Equations (A5) and (A7) simultaneously yields:

ρAg2

2a2
d
dt

∫ L
0 H2dx + πρD

4
d
dt

∫ L
0

∫ D/2
0 u2drdx− πD

2

∫ L
0

∫ D/2
0

u
r

∂(rτ)
∂r drdx

+2ρAg
∫ L

0 H ∂ε
∂t dx + πρDg

2

∫ D/2
0 [u(L, t)H(L, t)− u(0, t)H(0, t)]dr = 0

(A8)
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