* water

Article

Application of Artificial Neural Networks for Mangrove
Mapping Using Multi-Temporal and Multi-Source Remote
Sensing Imagery

Arsalan Ghorbanian 10, Seyed Ali Ahmadi 102, Meisam Amani 200, Ali Mohammadzadeh !

Sadegh Jamali 3

check for
updates

Citation: Ghorbanian, A.; Ahmadi,
S.A.; Amani, M.; Mohammadzadeh,
A.;Jamali, S. Application of Artificial
Neural Networks for Mangrove
Mapping Using Multi-Temporal and
Multi-Source Remote Sensing
Imagery. Water 2022, 14, 244.
https://doi.org/10.3390/w14020244

Academic Editor: Chang Huang

Received: 20 November 2021
Accepted: 12 January 2022
Published: 15 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and

Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics Engineering,

K. N. Toosi University of Technology, Tehran 19967-15433, Iran; s.a.ahmadi@email kntu.ac.ir (S.A.A.);
a_mohammadzadeh@kntu.ac.ir (A.M.)

Wood Environment & Infrastructure Solutions, Ottawa, ON K2E 7L5, Canada; meisam.amani@woodplc.com
Department of Technology and Society, Faculty of Engineering, Lund University, P.O. Box 118,

22100 Lund, Sweden; sadegh.jamali@tft.lth.se

*  Correspondence: a.ghorbanian@email kntu.ac.ir

Abstract: Mangroves, as unique coastal wetlands with numerous benefits, are endangered mainly
due to the coupled effects of anthropogenic activities and climate change. Therefore, acquiring reliable
and up-to-date information about these ecosystems is vital for their conservation and sustainable
blue carbon development. In this regard, the joint use of remote sensing data and machine learning
algorithms can assist in producing accurate mangrove ecosystem maps. This study investigated
the potential of artificial neural networks (ANNs) with different topologies and specifications for
mangrove classification in Iran. To this end, multi-temporal synthetic aperture radar (SAR) and
multi-spectral remote sensing data from Sentinel-1 and Sentinel-2 were processed in the Google
Earth Engine (GEE) cloud computing platform. Afterward, the ANN topologies and specifications
considering the number of layers and neurons, learning algorithm, type of activation function,
and learning rate were examined for mangrove ecosystem mapping. The results indicated that
an ANN model with four hidden layers, 36 neurons in each layer, adaptive moment estimation
(Adam) learning algorithm, rectified linear unit (Relu) activation function, and the learning rate
of 0.001 produced the most accurate mangrove ecosystem map (F-score = 0.97). Further analysis
revealed that although ANN models were subjected to accuracy decline when a limited number of
training samples were used, they still resulted in satisfactory results. Additionally, it was observed
that ANN models had a high resistance when training samples included wrong labels, and only the
ANN model with the Adam learning algorithm produced an accurate mangrove ecosystem map
when no data standardization was performed. Moreover, further investigations showed the higher
potential of multi-temporal and multi-source remote sensing data compared to single-source and
mono-temporal (e.g., single season) for accurate mangrove ecosystem mapping. Overall, the high
potential of the proposed method, along with utilizing open-access satellite images and big-geo data
processing platforms (i.e., GEE, Google Colab, and scikit-learn), made the proposed approach efficient
and applicable over other study areas for all interested users.

Keywords: mangrove; artificial neural networks (ANNSs); Sentinel-1; Sentinel-2; Google Earth Engine
(GEE); multi-temporal; multi-source; remote sensing

1. Introduction

Mangrove ecosystems are among the most productive ecosystems that exist along
coastal areas in tropical and sub-tropical regions. These ecosystems provide unique ecolog-
ical and environmental benefits including coastal protection (i.e., against floods and wave
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attenuation) [1,2], carbon sequestration [3,4], pollution and waste abatement [5,6], and phar-
maceutical production [7,8]. Additionally, mangrove ecosystems are important habitats
for various fauna, providing valuable food services for shrimp farming and fishery [9,10].
However, mangrove loss (i.e., in species and extent) due to the fact of anthropogenic activi-
ties, catastrophic natural hazards in coastal areas, and climate change continued in recent
decades has led to severe environmental degradation [11-14]. Accordingly, it is a global,
regional, and local concern to accurately map these valuable ecosystems to prevent their
loss and establish effective practices for their sustainable management.

In the current era, the advancement of remote sensing technology has created an
unprecedented opportunity to study various natural resources such as mangrove com-
munities [15-20]. In particular, remote sensing systems provide frequent and accurate
data sets over mangrove communities with spatial consistency and synoptic views. These
capabilities make remote sensing an appealing choice for mangrove studies compared to
conventional approaches that rely on in situ data collection. This is rooted in the fact that
conventional practices are time consuming, resource intensive, and, on some occasions,
infeasible (i.e., due to the limited access and harsh environment of mangrove communities
or large-scale studies) [21,22].

Remote sensing data sets have different characteristics in terms of electromagnetic
spectrum domains, spatial resolutions, temporal resolutions, and radiometric resolutions.
In particular, multi-spectral, synthetic aperture radar (SAR), light detection and ranging
(LiDAR), and hyperspectral data are common remote sensing resources that have been
employed either individually or in conjunction for mangrove studies [23-28]. For instance,
Ashiagbor et al. [29] examined the capability of the Sentinel-1 SAR data to obtain infor-
mation about mangroves in the Keta Lagoon Complex Ramsar Site (KLCRS) to support
sustainable conservation and restoration. Likewise, Bindu et al. [30] employed multi-
spectral images, in situ data, and allometric equations [31] to derive the above-ground
biomass of mangroves and then converted the estimated values to carbon content. More-
over, Hu et al. [32] incorporated LiDAR, multi-spectral, topographical, and climate data to
estimate the above-ground biomass density of mangrove communities. In another study,
Lucas et al. [33] integrated time-series multi-spectral and SAR data to estimate mangroves’
age in Matang Mangrove Forest Reserve (MMFR), Malaysia. Later, interferometric SAR
data were combined with very high-resolution stereo images to estimate the canopy height
of mangroves [33].

Along with remote sensing data, machine learning algorithms have been exten-
sively employed to exploit the full potential of these data for automated mapping of
mangroves. In this respect, different machine learning algorithms, including maximum
likelihood [34], support vector machine (SVM) [35], random forest (RF) [36,37], K near-
est neighbor (KNN) [38], classification and regression trees (CART) [39], and artificial
neural networks (ANNs) [40] have been utilized. For example, Parida and Kumar [35]
implemented an SVM algorithm to map mangrove extent between 2009 and 2019 using
Landsat-5 and Sentinel-2 data sets. Their results indicated an increase in the spatial extent of
mangroves in the Odisha coast, which were mainly associated with plantation, awareness,
restoration, and management. Moreover, Behera et al. [37] applied an RF algorithm for
mangrove mapping in Bhitarkanika Wildlife Sanctuary, India. To this end, red-edge spectral
bands and chlorophyll absorption information of AVIRIS-NG and Sentinel-2 images were
employed, and the results indicated the preeminence of Sentinel-2 images for this task.
Likewise, Zhang et al. [41] used multi-temporal Landsat-5 and digital elevation model
(DEM) data to map mangrove forests based on a decision tree algorithm. It was reported
that employing multi-temporal data can efficiently enhance the classification results by
reducing the tidal effect, and the decision tree approach was superior to conventional
statistical classifiers. In another study, Bihamta Toosi et al. [42] compared the performances
of four machine learning algorithms (i.e., linear SVM, radial SVM, RF, and regularization
in discriminant analysis) for mangrove classification and change detection using Landsat
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archives. The k-fold cross-section validation step was executed, and it was reported that
the RF algorithm achieved the best performance.

Previous studies have acknowledged the benefits of multi-source remote sensing
data and different machine learning algorithms for mangrove classification [41,43-46].
Meanwhile, few studies have been conducted to generate mangrove maps using multi-
spectral data and the ANN algorithm [40,47-49], and its practicability is underreported [40].
Nevertheless, the applicability of the ANN algorithm for mangrove ecosystem mapping
using multi-temporal and multi-source remote sensing data has not been comprehensively
explored.

Notwithstanding the foregoing, this study aimed to investigate the potential of com-
bining the ANN algorithm and multi-source (i.e., multi-spectral and SAR) remote sensing
data for mangrove ecosystem mapping. In this regard, the ANN algorithms with different
topologies and specifications were implemented for mangrove ecosystem mapping. In
particular, the effects of the number of layers and neurons, learning algorithms, type of
activation functions, and learning rates for small-to-medium-sized ANN models were
investigated. Subsequently, several other analyses were conducted to explore the impact of
data transformation/standardization, a limited number of training samples, noise labels,
as well as multi-temporal and multi-source remote sensing data sets on the classification
accuracy using the ANN algorithm.

2. Study Area and Data Sets
2.1. Study Area

The study was conducted over the Hara protected area, located between Khamir port
and northwest estuaries of Qeshm Island at the latitudes and longitudes of 26°43'-26°59’
N and 55°28'-55°48' E, respectively (see Figure 1). It is the largest mangrove community in
the Persian Gulf and Oman Sea, with an area of over 850 km? [50,51]. The Hara protected
area has been officially registered as one of the biosphere reserves under the Ramsar
Convention and included in UNESCO’s Man and Biosphere Program convention list [52].
This area includes vast intertidal zones and grooved tidal channels with considerable
semi-diurnal tidal fluctuations with the minimum and maximum ranges of 0.3 and 4.6 m,
respectively [53]. This suggests considering the tidal effect for accurate mangrove studies
using multi-temporal imagery. Particularly, gray (Avicennia marina) and red (Rhizophora
mucronata) mangrove species exist in the Persian Gulf (e.g., gray and red mangroves), and
the gray mangrove (i.e., Avicennia marina, which belongs to the Acanthaceae family) is the
dominant mangrove species in the Hara protected area [42,54]. This mangrove species
cultivate in sediments with low-oxygen and high-salinity concentrations and are made of
light gray bark and thick, glossy, bright green leaves [8,42]. This region has been impacted
by anthropogenic practices of local and regional communities including leaf-cutting, fishing,
boat journeys for tourism, oil leakage, and petrochemical industries [55-57]. Accordingly,
developing efficient approaches is vital to obtain reliable information for the sustainable
management of such valuable natural resources.

2.2. Reference Samples

Reference samples are required to support the training phase of a supervised classi-
fication algorithm and to evaluate its performance. In this study, reference samples were
collected through visual interpretation of very high-resolution satellite images in Google
Earth and ArcMap, which were captured in 2020. Additionally, the latest version of the
global mangrove extent map [58] and the global distribution of tidal flat map [59] were
also employed. To this end, these maps were overlaid on very high-resolution satellite
images to identify suitable locations for collecting reference samples of the associate classes.
This permitted selecting proper locations with higher confidence. In the first step, ho-
mogenous sites were considered to collect reference samples to avoid selecting mixed
pixels as reference samples. In total, eight classes of land cover with appropriate spatial
distribution (i.e., having suitable representativeness of reference samples over the study
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area) were initially collected (see Figure 1). Later, these samples were randomly divided
into two independent sets of training and test samples. To this end, two criteria of size and
number were considered. The random splitting approach of reference samples into two
independent sets (i.e., training and test) would lead to low bias in the performance of the
final classification results [60]. This step was implemented in the polygon unit, ensuring
training and test samples with no spatial autocorrelation (i.e., spatially disjoint). This is
because splitting reference samples into the pixel unit may lead to the leak of information
(i.e., selection of training and test samples from a single polygon), affecting the evaluation
step of the classification task and decreasing the generality of the classifier [61]. Afterward,
several polygons were added to the mangrove test samples, selected from mangroves from
narrow patches and sparse areas to better investigate the classification performance for
the Mangrove class. This was because several parts of the study area included mangrove
patches with narrow and fragmented conditions. Meanwhile, due to the importance of
mangrove delineation, this practice could assure the robustness of the proposed method
for the accurate mapping of mangroves located along the tidal zones. Table 1 summarizes
the number and area of training and test samples. In total, 824 reference polygons were col-
lected, 144.17 and 160.1 ha of which belonged to the training and test samples, respectively.
The Barren class had a higher number of reference samples due to the fact of its higher
diversity (i.e., surface variation in structure and color) and distribution in the study area.
In contrast, the Vegetation class (e.g., croplands and inland forests/trees) had the lowest
number of reference samples due to the fact of its scarcity in the region.
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Figure 1. The geographical location of the Hara protected area of Qeshm Island in southern Iran,
along with the spatial distribution of the training and test samples over the study area (see Table 1 for
information about training and test samples).

Table 1. The number and area of reference samples (i.e., training and test polygons) for eight classes.

Training Samples Test Samples Total
ID Class
Polygon Area (ha) Polygon Area (ha) Polygon Area (ha)

1 Mangrove 50 17.29 73 24.76 123 42.05
2 Tidal zone 33 20.05 30 18.85 63 38.90
3 Deep water 27 16.09 26 20.23 53 36.32
4 Shallow water 28 15.18 26 15.69 54 30.87
5 Mudflat 67 18.58 59 21.09 126 39.67
6 Urban 28 16.00 29 19.88 57 35.88
7 Barren 139 25.37 136 24.45 275 49.82
8 Vegetation 37 15.61 36 15.15 73 30.76

Total 409 144.17 415 160.1 824 304.27
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2.3. Satellite Images

This study employed a combination of multi-temporal Sentinel-1 and Sentinel-2 satel-
lite images, which were available in Google Earth Engine (GEE). Sentinel-1 and Sentinel-2
are two European satellites developed by the joint cooperation of the European Space
Agency (ESA) and European Commission initiative Copernicus [62].

GEE is a cloud computing platform that hosts petabytes of open-source geospatial
data sets and allows for processing of a massive volume of data for various earth science
tasks [63,64]. The synergistic use of SAR and optical data provides complementary in-
formation regarding the physical and spectral characteristics of existing land covers and
leads to better discrimination, thus enhancing the classification results [65-68]. Further-
more, the utility of multi-temporal satellite images reduces the tidal effects and water level
fluctuations in mangrove communities and, consequently, improves the reliability of the
classification results [22].

Sentinel-1 captures all-weather C-band SAR data in dual-polarization with a 6 day
revisit time. This sensor provides SAR data in three modes: Stripmap, Interferometric
Wide Swath (IW), and Extra Wide Swath [69]. In this study, Ground Range Detected (GRD)
Sentinel-1 images from the IW mode in ascending and descending orbits with a spatial
resolution of 10 m were used. Overall, 89 Sentinel-1 scenes in both polarizations of VH
(vertical transmittance and horizontal receiving) and VV (vertical transmittance and vertical
receiving), acquired from 1 January 2020 to 1 January 2021 (i.e., whole scenes in 2020), were
processed in this study (see Figure 2).

Sentinel-2 carries the MultiSpectral Instrument (MSI) sensor that allows for recording
the Earth’s surface radiation in 13 spectral bands ranging from visible to shortwave infrared
regions of the electromagnetic spectrum. The MSI captures spectral bands in the spatial
resolutions of 10, 20, and 60 m. In this study, only spectral bands with the highest spatial
resolution (i.e., blue, green, red, and near-infrared (NIR)) were utilized. This was because it
was proved that higher resolution images enhance the mangrove ecosystem classification
results [70]. This is rooted in the fact that satellite imagery with a higher spatial resolution
has an advanced capability to delineate mangrove patches with narrow shapes and small
areas [70]. In total, 51 available Sentinel-2 scenes in GEE with a cloud cover lower than or
equal to (<)5%, acquired between 1 January 2020 and 1 January 2021 (i.e., whole scenes in
2020), were employed in the classification (see Figure 2).
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Figure 2. The numbers of Sentinel-1 and Sentinel-2 satellite images that were used in the mangrove
classification. The data were acquired between 1 January 2020 and 1 January 2021.

3. Methodology

The proposed methodology has three main steps, which are explained in the following
three subsections. The satellite image preprocessing is initially described, followed by
detailed explanations of the ANN models and classification procedure. Finally, the accuracy
assessment of the classification results is discussed.
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3.1. Satellite Images Preprocessing

In this study, time-series Sentinel-1 GRD products were collected from GEE. The GEE
developers applied five common preprocessing steps to all GRD scenes, making them
suitable as ready-to-use data for many applications [71]. In this regard, the following
five preprocessing steps were first implemented, the detailed information of which is
available by the GEE developers in [72]: (1) orbit file correction, (2) GRD border noise
removal, (3) thermal noise removal, (4) radiometric calibration, and (5) terrain correction.
Afterwards, a speckle filtering step was applied to all Sentinel-1 scenes. To this end, a
mono-temporal improved Lee sigma despeckling algorithm with a kernel size of 5 x 5 was
implemented to reduce the undesirable speckle effect, enhancing pixel-based classification
results [73,74]. Finally, all the preprocessed Sentinel-1 scenes were categorized based
on acquisition seasons, and a mean reducer function was applied to aggregate Sentinel-1
images and to create seasonal SAR features. For instance, all Sentinel-1 scenes within
spring included 44 features (22 VV + 22 VH), and the mean reducer function was applied
to generate only two features of VV and VH for the spring season. It is worth noting
that the implemented aggregation approach would decrease the negative effects of image
acquisition conditions and also reduce the volume of the input data and speckle noise
effect [46,75].

Sentinel-2 top of atmosphere (TOA) reflectance data were collected for this study.
Similar to Sentinel-1, Sentinel-2 scenes were subjected to initial preprocessing steps in
which orthorectification and radiometric calibration were performed [76]. Later, a cloud
filtering step was considered to avoid the negative effect of clouds in optical images and,
thus, only Sentinel-2 scenes with less than or equal to (<)5% cloud cover were included for
further steps. Subsequently, a median reducer was applied to all Sentinel-2 images in each
season, and seasonal optical features (i.e., four bands in each season) were generated. This
allowed for cloud-free and pure seasonal data sets to be generated with no noise and very
dark/bright pixels [68,77].

In summary, the final satellite data set contained eight SAR and 16 optical features,
which were applied to the ANN algorithm. It is well accredited that the quality of the
classification tasks directly relies on the input features. As such, incorporating multi-source
(i.e., SAR + optical) data increases the discriminative capability of the classifier [65-68].
Moreover, time-series satellite data can manifest the water level fluctuations in estuaries
such as mangrove ecosystems [22]. Consequently, seasonal data sets can mitigate the tidal
effects in the study area and allow for the production of cloud-free mosaics. Finally, all
input features were transformed using the standard scaler approach (i.e., removing the
mean and scaling to unit variance).

3.2. ANN Models and Classification

ANN is among the supervised machine learning algorithms inspired by the biological
neurons system that emulates the human brain’s nervous recognition system [78]. ANNs
are interconnected neurons that attempt to simulate neural processing and have high
capabilities in nonlinear classification tasks [79,80].

Various types of ANN models exist of which the feedforward multi-layer percep-
tron (MLP) is the most common and practical model for classification and regression
tasks [80-82]. The MLP models (hereafter called ANN) include input, hidden, and output
layers in which a number of neurons (or nodes) and connections (or edges) exits. The
data are transferred from the input layer to the output layer through these neurons and
connections (see Figure 3). At the initial stage, the weight value of each connection is
randomly assigned, and, later, the differences between the actual target classes/values and
predicted classes/values (i.e., by the ANN model) are computed. This leads to weight
values refinement through a backpropagation algorithm in an iterative manner [83]. The
backpropagation algorithms calculate the gradient of the loss function and update the
weight values for the next iteration [83]. This procedure continues until the ANN model is
adequately trained, considering the satisfaction of the loss function.
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Input Features

SAR

Generally, four parameters are required to explicitly determine the architecture of an
ANN model [80,84]: (1) number of layers, (2) number of neurons, (3) learning algorithm,
and (4) type of activation function. These parameters directly influence the classification
results of an ANN model and, hence, should be carefully determined to ensure achievement
of the best possible accuracy.

In this study, different ANN topologies and specifications were implemented to
examine the capability of ANN models for mangrove ecosystem mapping. To this end, the
open-source scikit-learn package was used within the Google Colab platform so that other
interested users could freely implement the analyses. In this regard, a grid search analysis
was first performed to find the best number of layers (ranging between one and five layer(s))
and neurons (ranging between six and 36 neurons) using three different learning algorithms.
This resulted in the investigation of 240 models. Three different learning algorithms were
the adaptive moment estimation (Adam) [85], stochastic gradient descent (SGD) [86], and
limited memory Broyden-Fletcher-Goldfarb—-Shanno (LBFGS) [87]. Subsequently, the
effect of the type of activation function was explored with the best topologies for each
learning algorithm. Four types of activation functions, including rectified linear unit
(Relu; finput) = max(0, input)), hyperbolic tangent (Tanh; f(input) = tanh(input)), logistic
sigmoid function (Logistic; flinput) = 1/1 + exp(—input))), and Identity (f(input) = input)
were employed. Afterward, the effect of learning rate was examined for the best ANN
models, yet determined, for the two learning algorithms of Adam and SGD. Finally, the
best topologies and specifications of three ANN algorithms (i.e., based on three learning
algorithms) were applied to map the mangrove ecosystem of the study area. Regarding
the determination of the best topologies and specifications, different statistical criteria (see
Section 4.3) and computation times (i.e., for the training phase) were considered. It is worth
noting that other tunable parameters were set to be equal during the experimental stages
to allow comparable investigation of ANN models on the classification results.

Input Layer
(Features)

1st Hidden Layer 274 Hidden Layer 34 Hidden Layer

Output Classes

Mangrove

Urban

Barren

Vegetation

\ Node - Neuron

Edge — Synapse
(contains weight)

Figure 3. A schematic presentation of an artificial neural network (ANN) for mangrove ecosystem
classification.
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3.3. Accuracy Assessment

One critical step to ensure the reliability of any classification model is evaluating its
performance [88]. Accordingly, the independent test samples (see Section 3.1), which were
not involved in the training phase, were used for statistical accuracy assessment. In this
regard, the macro averaging F-score (hereafter F-score) values of each ANN model (i.e., all
cases in Section 4.2) were first computed to determine the best ANN model [89]. Meanwhile,
the computation time of each ANN model was calculated as a side criterion to assist in
deciding the most accurate ANN model. Later, the confusion matrices for the best ANN
model were calculated. Additionally, several parameters, including overall accuracy (OA),
kappa coefficient (KC), producer accuracy (PA), and user accuracy (UA), were derived from
the confusion matrix for accuracy assessment. Finally, the maps produced by the three
ANN models were visually compared with very high-resolution images.

4. Results

This section covers the experimental results of exploring the ANN topologies and
specifications (see Section 4.2). The results are separated into different subsections to
provide an explicit overview of different analyses. The effects of the number of layers and
neurons based on different learning algorithms are first presented, followed by the impact
of activation functions and learning rates. Finally, the produced maps of the study area,
focusing on the mangrove ecosystem, are provided based on the best settings of ANN
models for each learning algorithm.

4.1. Number of Layers and Neurons

Figure 4 presents the F-score and computation time values of the ANN models with
different topologies (i.e., number of layers and neurons) using three learning algorithms
(i.e., Adam, LBFGS, and SGD). It should be noted that the Relu was considered in this step
due to the extensive application of this activation function [90,91]. ANN topologies with
one to five layer(s) with a step of one layer and a number of neurons from 6 to 36 with a
step of 2 neurons were employed as small-to-medium-sized ANN models. The results also
demonstrate the effect of different learning algorithms for mangrove ecosystem mapping
using the ANN algorithm. Based on the results (see Figure 4a), the best ANN topologies for
Adam, LBFGS, and SGD learning algorithms, respectively, were four layers with 36 neurons
(F-score of 0.97) in each, one layer with 26 neurons (F-score of 0.95), and three layers with
36 neurons (F-score of 0.95) in each, respectively. Additionally, it was observed that the
Adam learning algorithm had more consistent classification results (i.e., convergence with
higher overall accuracies) with an average F-score value of 0.95 (£1%). The SGD had
similar behavior with an average F-score value of 0.94 (£1.1%), while the LBFGS had a
weaker performance with an average F-score value of 0.90 (£11%) and one divergence case
(i.e., dissatisfaction of the loss function). Furthermore, over 20% of the ANN topologies
with the LBFGS learning algorithm obtained lower F-score values than 0.90. Meanwhile,
computation time generally had a consistent manner for all three learning algorithms. The
computational time generally increased as the number of layers and neurons increased, with
more dependency on the number of neurons (see Figure 4b). Regarding the computation
time (i.e., training phase), the LBFGS entailed lower computation time with an average
of 4.5 s, while the other two required approximately 6.5 s on average. It should be noted
that the relative difference among computational times would increase when using more
features or producing mangrove ecosystem maps of large-scale areas. Therefore, the time
criterion could be considered an additional factor in identifying a suitable ANN topology.

4.2. Activation Function

As stated in Section 4.1, the Relu was considered as the activation function to determine
the best topologies for each learning algorithm. Adopting the best topologies from the
previous section, the effect of four activation functions were explored. The results (see
Figure 5) proved the capability of the Relu over other activation functions of Tanh, Logistic,
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and Identity. These results are in agreement with previous literature suggesting the high
capability of the Relu activation function [90,91]. In particular, the Relu achieved higher
F-score values, and in close competitions, required lower computation times. Furthermore,
the results suggested a lower dependency of the ANN model on its activation function,
especially based on the achieved accuracy (i.e., F-score value) when the best topology was
identified. Moreover, the Identity entailed lower computation time, especially compared
with Tanh and Logistic activation functions, and the combination of SGD and the Logistic
led to inconsistent results with no convergence, making it less appropriate.
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Figure 4. The (a) F-score values and (b) computation times of the grid search of the artificial neural
networks (ANNSs) algorithm with different topologies (i.e., number of layers and neurons) and three
learning algorithms of adaptive moment estimation (Adam), limited memory Broyden-Fletcher—
Goldfarb-Shanno (LBEGS), and stochastic gradient descent (SGD). The black square determines the
best ANN topology for each learning algorithm.
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Figure 5. Obtained (a) F-score values and (b) computation times of the training phase of the ANN
algorithm using the best topologies adopted from Figure 4 for the three learning algorithms based on
four different activation functions.

4.3. Learning Rate

After determining the three ANN models (i.e., for each learning algorithm), the effects
of learning rates were explored. It is worth noting that only Adam and SGD support
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different learning rate values, so the investigations were relevant for these two learning
algorithms. In this regard, 12 learning rate values ranging between 1 X 10° and 0.5 were
applied. The results (see Figure 6) presented similar behaviors for Adam and SGD when
different learning rates were considered to train the ANN model. In particular, the ANN
models with both learning algorithms achieved low F-score values when the learning rate
values were very high or very low. In fact, very low learning rate values cause the ANNs
not to converge in a limited number of iterations, while high values of learning rate make
the algorithm jump from local minimums, not being able to converge into the best answer.
This also indicated a high dependency of the ANN model on the learning rate value, which
should be considered to ensure the most optimal classification result.

F SNl
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(0]
; 0.6 > g )
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0.2 S
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. : > X [
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#-Adam SGD Learning rate

Figure 6. Obtained F-score values for two ANN architectures using the Adam and SGD learning
algorithms based on different learning rate values.

4.4. Mangrove Ecosystem Maps

After analyzing different ANN topologies and specifications in the previous sections,
the best ANN models with three learning algorithms were applied to classify the mangrove
ecosystem. Figure 7 shows the confusion matrices of the produced thematic maps, com-
puted using independent test samples. The confusion matrices are generally diagonal in
all cases (i.e., three learning algorithms), and few confusions happened. In particular, the
highest confusions were between Shallow water and Tidal zone and between Urban and
Barren. The former was mainly rooted in the fact that these classes have high similarity
because of the water fluctuations (i.e., due to tides) and, thus, make it challenging to fully
separate them. The latter was primarily associated with the materials used for residential
roof construction over the study area, which was similar to Barren (bare soil). Furthermore,
a minor confusion was observed between Mangrove and Vegetation and Mudflat. The
first (i.e., Mangrove and Vegetation) was related to the slight similarity between these
two vegetated classes. The second (i.e., Mangrove and Mudflat) mostly occurred due
to the existence of mixed pixels as the result of their proximity at the boundary of each
class. Table 2 also provides other statistical criteria derived from the confusion matrices.
It can be seen that three ANN models obtained high PAs and UAs in each class. Overall,
Mangrove and Mudflat classes had the first and second highest PAs and UAs on average.
In contrast, Shallow water and Tidal zone obtained the lowest PAs and UAs on average
using ANN models with three different learning algorithms. This could be associated with
their similarity due to the water level changes.
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Figure 7. The confusion matrices of the three best ANN models with the learning algorithms of
(a) Adam, (b) LBEGS, and (c) SGD.

Table 2. Statistical accuracy parameters of the produced mangrove maps using the ANN models
with three learning algorithms of Adam, LBFGS, and SGD.

ANN Models with Learning Algorithms

ID Class Adam LBFGS SGD
PA UA PA UA PA UA
1 Mangrove 98.5 99.7 97.9 99.9 98.8 100
2 Tidal zone 90.4 97,5 95.5 94.3 95.0 94.0
3 Deep water 98.3 99.4 98.0 99.1 98.5 98.1
4 Shallow 96.5 88.1 922 92.1 90.3 92.0

water
5 Mudflat 100 97.9 99.3 98.4 99.7 98.8
6 Urban 95.4 97.4 89.9 95.0 89.8 96.5
7 Barren 97.5 95.9 96.1 91.2 97.8 91.2
8 Vegetation 99.2 98.9 98.5 96.5 98.6 98.0
OA =97.02 and KC = 0.97 OA = 96.00 and KC = 0.95 OA =96.30 and KC = 0.96

The produced maps (i.e., only classes within the mangrove ecosystem) with a 10 m
spatial resolution using different ANN models are presented in Figure 8. Based on the
visual interpretation, the produced maps had acceptable accuracies, suggesting the high
capability of combining the ANN algorithm and seasonal multi-source remote sensing
data for mangrove ecosystem mapping. Overall, mangrove areas were delineated precisely,
with higher accuracies through the Adam, LBFGS, and SDG algorithms, respectively.
All three ANN models were also capable of correctly classifying most of the mangrove
areas with small areas or narrow patches that extend along the coastal areas, where the
highest capability was observed for the ANN model with the Adam learning algorithm.
However, some mangrove regions were still not detected correctly due to the fact of being
too sparse and fragmented. This would be effectively resolved using satellite images
with higher spatial resolutions [46]. In particular, based on Figure 8, it can be seen that
the Adam learning algorithm had the best performance in depicting mangrove areas and
distinguishing Mangrove and Mudflat. In contrast, this happened with lower accuracy
for other learning algorithms, especially SGD, which could not discriminate the small
patches of Mudflat among Mangrove. Additionally, the middle parts of water bodies with
higher depths were correctly identified by Adam and SGD, while there existed several
misclassifications with the Tidal zone when using the LFBGS learning algorithm.

The agreements between produced mangrove maps were also computed to obtain a
quantitative measure of the differences among these maps. It was observed that nearly 90%



Water 2022, 14, 244

12 of 20

of pixels had identical labels, and other disagreements appeared primarily between the
water classes (i.e., Deep water and Shallow water) and Tidal zone, while the minority was
related to the Mangrove and Mudflat classes.
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Figure 8. Mangrove ecosystem classified maps using the ANN models with three learning algorithms
of Adam (first row), LBFGS (second row), and SGD (third row), along with the corresponding very
high-resolution images (fourth row) over the study area.

5. Discussion

In this section, first, a few general remarks are provided. Then, three different analyses
are presented to provide a more comprehensive overview of the performance of the ANN
models. Although the input data in these analyses were related to the mangrove ecosystem,
the reached implications primarily manifest the behavior of ANN models that could
elucidate a path for readers implementing ANN algorithms over different study areas.
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5.1. General Remarks

Mangrove ecosystems provide many economic, ecological, and environmental ben-
efits for humans and their surroundings [92]. Some of these services are unique, which
rationalizes the importance of conserving mangrove ecosystems from degradation. One
of the efficient approaches for mangrove mapping is to employ remote sensing data to
frequently monitor these natural resources and take the necessary actions to avoid their
further loss [93]. In this regard, the machine learning algorithms, such as ANN, that were
investigated in this paper can be incorporated to obtain highly accurate information about
the mangrove ecosystems. Currently, satellite images with medium spatial resolutions, such
as Sentinel-1, Sentinel-2, and Landsat archives, can be accessed with no cost, permitting
monitoring of these ecosystems with optimized costs in spatial and temporal directions [22].
Indeed, these satellites could be effectively employed by different national and local organi-
zations regarding the preservation practices of mangrove ecosystems from decay. However,
it should be considered that more accurate information, especially on sparse mangroves
and narrow mangrove patches, requires the utility of satellite images with higher spatial
resolutions, and the high cost of these images is the primary obligation [94].

The ANN models proved to be capable of producing accurate mangrove ecosystem
maps. Likewise, the results and further discussions could elucidate the path for other
researchers to implement the ANN algorithm in other areas. Additionally, the proven
potential of the ANN algorithm in this study may encourage other researchers to suppose
achieving satisfactory results in other mangrove ecosystems even with more complex
conditions. For instance, it is expected to obtain accurate results using the ANN algorithm in
other mangrove ecosystems with other classes such as terrestrial forest, other wetland types,
shrubs, and other vegetated communities. This is because other vegetated communities
and wetlands have a higher rate of spectral similarity with mangroves [95]. This would
affect the classification procedure by decreasing the separability of classes and, thus, robust
algorithms are vital for accurate mapping. Furthermore, Three ANN models performed
satisfactorily, and the achieved PAs and UAs (see Table 2) suggested that the ensemble of
ANN models can enhance the results, which could be investigated in future studies. This is
mainly due to the fact that each ANN model obtained higher accuracies in different classes
over the study area.

In this study, the satellite images were collected from GEE. This cloud-based platform
uses high-performance parallel computing that allows for the application of preprocessing
steps on numerous images [20,68]. Consequently, it can help to reduce the required time
for applying preprocessing steps that are almost repetitive procedures and can lead to a de-
crease in the dedicated time [46,96]. Despite these massive advantages, this cloud platform
does not currently support ANN models in its base form (i.e., JavaScript API); hence, the
experiments should be taken in another platform. Here, the Google Colab platform and the
scikit-learn package were used in support of the implemented methodology so that it can
be applied at a low cost by any users around the world.

The results of this study confirmed the capability of the implemented ANN model
for mangrove ecosystem mapping. Accordingly, this algorithm could be implemented to
produce an accurate baseline of mangrove ecosystems in any region. Additionally, the
utility of charge-free satellite images (i.e., Sentinel-1 and Sentinel-2) and cloud computing
platforms allow for frequent mangrove mapping at a low cost. In this regard, the temporal
evolutions and changes in mangrove ecosystems can be mapped in previous years based on
the availability of Sentinel-1 and Sentinel-2 images and the following years. This framework
permits consistent monitoring of mangrove ecosystems and creates the opportunity to
enact practical workflows to preserve these natural resources, especially in protected areas,
from adverse anthropogenic and natural processes. Furthermore, frequent monitoring
through such a reproducible approach can assist in assessing the applied practices, such as
conservation planning and mangrove plantation, to support sustainable development.



Water 2022, 14, 244

14 of 20

5.2. Impact of Data Standardization

Input data transformation has been recognized as an impactful preprocessing task
when using machine learning algorithms such as ANN models [97]. Accordingly, the
remote sensing data of this study were transformed using the standard scaler approach (i.e.,
removing the mean and scaling to unit variance). However, an analysis was also performed
to investigate the impact of data transformation/standardization on ANN models based on
three different learning algorithms. ANN models with different topologies were retrained
using raw input features. Based on Figure 9, all ANN models failed to retain their behavior
in comparison to using transformed input data (see Figure 4). In particular, the ANN
models with the LBFGS and SGD learning algorithms failed to converge in almost all
cases. However, the ANN model in which the Adam learning algorithm was employed
performed more consistently. In fact, this analysis demonstrated the capability of the Adam
learning algorithm to handle untransformed input data.
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Figure 9. The F-score values of the grid search of the artificial neural network (ANN) algorithm
with different topologies (i.e., number of layers and neurons) and three learning algorithms using
untransformed input data.

5.3. Impact of Limited Training Samples

It is already known that training samples are required to support the training phase of
any supervised machine learning algorithm. Furthermore, it is accredited that collecting
training samples, either through in situ field campaigns or visual interpretation of high-
resolution images, is time consuming and resource intensive [98]. Therefore, it is more
convenient to develop efficient approaches or incorporate robust machine learning algo-
rithms that require a limited number of training samples [99,100]. Accordingly, the impact
of limited training samples on the performance of the ANN models was also explored. To
this end, only a limited number of training samples from the original set (see Section 3.1)
was considered in this section. In particular, the number of training samples for each class
was set between 10 and 500 to evaluate the performance of ANN models. Figure 10 illus-
trates the outcome of using a limited number of training samples for mangrove ecosystem
mapping. It is evident that three ANN models experienced an F-score fall compared with
the case of using whole training samples. For example, the F-score values of the ANN
models with the Adam, LBFGS, and SGD learning algorithms, respectively, decreased by
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7%, 16%, and 7%, considering their best case using a limited number of training samples.
Furthermore, Figure 10 shows that the LBFGS relatively tends to obtain lower accuracies
when the number of training samples was limited.

o
=

== Adam LBFGS =e=SGD

O D D D O D P d D O

Number of samples

Figure 10. The obtained F-score values using three ANN models with a limited number of training
samples for each class.

5.4. Impact of Noise Labels

The quality of training samples can directly influence the classification results. As
such, the existence of noise labels (i.e., training samples with wrong labels), from any
source, in the training samples can adversely affect the performance of machine learning
algorithms [101]. For instance, mislabeling of 25% of the training samples reduced the OA
of the RF up to 10%. Additionally, based on experimental results, the KC obtained using
the KNN classifier decreased by approximately 35% when 28% of the training samples
had wrong labels [101]. In this perspective, the performance of the best ANN models was
examined in the case of the presence of noise labels. To this end, the labels of a portion (in
percentage) of the training samples were randomly changed to other classes. It should be
noted that an equal percentage was applied to training samples of each class. Additionally,
the impact of noise labels was investigated based on a different number of training samples
to identify whether there was any relationship between these two factors. It was observed
(see Figure 11) that ANN models were minorly affected by noise labels when the noise label
percentage was set between 1% and 100%, and a more dramatic decrease in the F-score
occurred when over 60% of training samples were subjected to label change. Furthermore,
no direct relationship was found between the number of training samples and noise labels.
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Figure 11. The obtained F-score values for the ANN models using (a) all (16,000), (b) 5000, (c) 1000,
and (d) 500 training samples with noise labels (i.e., wrong labels).
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5.5. Contribution of Multi-Temporal and Multi-Source Images

Using multi-temporal and multi-source remote sensing imagery is recognized as a
practical approach to obtaining higher land cover (e.g., wetlands) classification results [102].
This is rooted in the fact that different remote sensing data sources could provide comple-
mentary information of the Earth’s surface. For instance, multi-spectral and SAR data sets
provide spectral and physical properties of the Earth’s surface, respectively. Furthermore,
multi-temporal remote sensing could provide discriminative information about differ-
ent classes with dynamic characteristics, reducing the confusion of existing classes and
improving the classification results [21,103].

Regarding the contribution of the multi-source remote sensing data, the best ANN
models were incorporated to map the mangrove ecosystem using single-source data sets. It
was observed that the obtained F-score value using multi-spectral (i.e., Sentinel-2) images
for the best ANN model was 0.95, which was nearly 2% lower than using multi-source
data sets. Furthermore, the results revealed that incorporating only the SAR data set could
not achieve satisfactory results (i.e., F-score = 0.75). The results indicated that the utility
of multi-source remote sensing could enhance the classification results and could lead to
accurate mangrove maps. This improvement would be more considerable in locations with
more complex conditions [65].

Moreover, the best ANN model was employed to examine the effects of using multi-
temporal data sets in the classification results. In this regard, single-season data sets were
fed into the best ANN model, and it was observed that no single-season data set achieved
higher classification accuracy. In particular, the spring, summer, autumn, and winter data
sets achieved F-score values of 0.94, 0.91, 0.92, and 0.92, respectively. These values were 3%,
6%, 5%, and 5% lower than the accuracy of the map using multi-temporal data sets.

6. Conclusions

This paper investigated the applicability of integrating ANN models with multi-
temporal and multi-source remote sensing data. The results indicated the high potential
of the ANN models, especially the ANN model with the Adam learning algorithm for
mangrove ecosystem mapping (F-score = 0.97). Furthermore, the results demonstrated the
higher consistency of ANN models when incorporating the Adam learning algorithm. It
was also observed that all three ANN models achieved high UAs and PAs, although higher
class accuracies were reached by different models. This showed the potential improvement
in classification accuracy by using an ensemble approach to integrate the classification
results of ANN models with different learning algorithms. Additionally, it was concluded
that data standardization is an unavoidable preprocessing step when using the SGD and
LFBGS learning algorithms. The ANN models proved to have a high resistance in noise
label conditions (i.e., training samples with wrong labels), and the classification results with
a limited number of samples were subjected to accuracy loss with more effects when using
the LBFGS learning algorithm. Finally, it was observed that incorporating multi-temporal
and multi-source remote sensing data sets could enhance the mangrove classification
results, and it is expected to see more improvement in other complex ecosystems.
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