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Abstract: For risk assessment, two methods, quantitative risk assessment and qualitative risk as-
sessment, are used. In this study, we identified the regional risk level for a disaster-prevention
plan for an overall area at the national level using qualitative risk assessment. To overcome the
limitations of previous studies, a heavy rain damage risk index (HDRI) was proposed by clarifying
the framework and using the indicator selection principle. Using historical damage data, we also
carried out hierarchical cluster analysis to identify the major damage types that were not considered
in previous risk-assessment studies. The result of the risk-level analysis revealed that risk levels are
relatively high in some cities in South Korea where heavy rain damage occurs frequently or is severe.
Five causes of damage were derived from this study—A: landslides, B: river inundation, C: poor
drainage in arable areas, D: rapid water velocity, and E: inundation in urban lowlands. Finally, a
prevention project was proposed considering regional risk level and damage type in this study. Our
results can be used when macroscopically planning mid- to long-term disaster prevention projects.

Keywords: disaster prevention project; heavy-rain-damage risk index; hierarchical clustering; quali-
tative risk assessment

1. Introduction

The frequency and magnitude of natural disasters such as localized torrential rain and
typhoons caused by climate change are increasing worldwide, and have resulted in massive
property damage and casualties [1]. Heavy rainfall damage, which is one of the main types
of natural disaster in South Korea, causes over 120 million USD in damage every year
in South Korea [2]. Emergency managers in many countries use four phases of disaster
management to reduce the damage caused by natural disasters—Phase 1: Mitigation,
Phase 2: Preparedness, Phase 3: Response, and Phase 4: Recovery. The mitigation phase is
to prevent future emergencies and to take steps to minimize their effects. The preparedness
phase is to take actions ahead of time to be ready for an emergency. The response phase
is to protect people and property in the wake of an emergency, disaster, or crisis. The
recovery phase is to rebuild after a disaster in an effort to return operations back to
normal. The mitigation phase is an especially important element that forms the basis of
disaster management.

Studies on the mitigation phase are closely related to risk assessment and are divided
into quantitative and qualitative risk assessments. Within quantitative risk assessment,
flood risk (i.e., inundation depth and area of flooded land) is analyzed based on a physical
model, and quantitative loss (i.e., damage of property and fatality) is also identified.
T, încu, et al. [3] estimated direct flood damage in three scenarios (i.e., residential buildings,
infrastructure, agriculture) in the basin of the Trotus River located in Romania. Di et al. [4]
proposed a quantitative risk assessment method for the loss of fatality caused by floods.
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In this study, we reproduced the 1953 East Coast flood event in England and used several
methods, such as “Mortality Function” and “Flood Risk Method to People”, for detailed
assessments of the subsequent mortality. The quantitative risk assessment method can
be used to calculate the cost-benefit ratio through reduced loss when disaster prevention
facilities are introduced in a specific area; this method can then be utilized to evaluate the
economics of prevention facilities.

For qualitative risk assessment, the integrated index is calculated using statistical
indicators reflecting regional characteristics, and the risk level of each region is analyzed.
This method can be used to identify the relative level of risk when establishing a disaster
prevention plan for the overall area at the national level. Zhang et al. [5] proposed a
fourth-grade flood damage risk index (FDRI) that considers the potential flood damage
risk, the status of flood damage, flood damage change, degree of social and economic
development, and flood damage defense capability. Fekete [6] proposed social flood vul-
nerability indicators based on factor analysis of flood damage data collected by Germany’s
Federal Government Statistics Office. Sharma et al. [7] assessed the flood risk in the Kopili
River basin of India using flood maps derived from satellite data by overlapping them
with GIS data on roads, crops, and buildings. Amira et al. [8] used qualitative flood risk
assessment to ascertain the risk of flooding in Jakarta, assigning each indicator a score
using the categorical scale method.

In previous research related to qualitative risk assessment, a framework to define flood
risk has been heavily emphasized. For example, Lim et al. [9] developed dimension-related
indicators for various basins based on the Organization for Economic Cooperation and
Development (OECD)’s (2001) P-S-R framework (i.e., the pressure, state, and response
framework), and proposed a flood risk index (FRI) that can identify the overall flood risk
for any given study area. Within the P-S-R framework [10] used in this study, P refers to
a dangerous natural phenomenon or economic loss, S refers to the inventory affected by
dangerous natural phenomena, and R refers to the ability to adapt to dangerous natural
phenomena; however, the PSR framework cannot consider inventory vulnerability. Anin-
dita et al. [11] performed a spatial assessment of flood risk for coastal areas of Central Java,
Indonesia, based on the Intergovernmental Panel on Climate Change (IPCC) framework
(i.e., considering nature of hazard, exposure, sensitivity, and adaptive capacity). Each
region was divided into five risk levels and mapped using GIS. In the IPCC framework [12],
hazard, exposure, and adaptive capacity have the same meaning as pressure, state, and
response of the PSR framework; sensitivity refers to the vulnerability of the inventory.
The Korea Institute of Civil Engineering and Building Technology (KICT) [13] evaluated
qualitative flood risk for Korea using the framework (i.e., considering hazard, exposure,
vulnerability, capacity) presented by the United Nations International Strategy for Disaster
Reduction (UNISDR). The components of the UNISDR framework [14] are similar in mean-
ing to the IPCC’s framework, with the only difference being in words such as vulnerability
(sensitivity is used instead) and capacity (adaptive capacity is used instead).

The results of the aforementioned risk assessment may be analyzed differently depend-
ing on the selection of indicators. Rygel et al. [15] mentioned that the most important factor
in vulnerability assessment is selecting an appropriate indicator, and proposed vulnerabil-
ity assessment techniques that were selected as indicators using the Pareto-ranking process.
Joo et al. [16] stated that disaster management decision-makers may be perplexed by incon-
sistent results for each methodology of flood risk assessment. To solve this issue, a new
method was proposed based on a Bayesian network, designed to support comprehensive
judgment by integrating indicators and weights in major previous studies. Kim et al. [17]
selected assessment indicators via factor analysis and proposed a heavy rain damage risk
index (HDRI). They then presented the results of the risk assessment by classifying it into
three risk levels for Gyeonggi-do, South Korea. Birkmann [18] mentioned that because the
selection of an indicator is the most important part of process to develop an index, it should
be selected through clear principles. In addition, he proposed the concept of a method for
qualitative disaster risk assessment.
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However, in many previous studies, there is insufficient evidence to support selection
on assessment indicators, and the frameworks used in their studies are unclear. Therefore,
this study used the UNISDR framework (i.e., hazard, exposure, vulnerability, and capacity),
which is judged to be the most clearly distinguished among such frameworks. In addition,
a clear selection principle was identified by reviewing the selection principles mentioned
in previous studies, after which the assessment indicators were selected.

There are various types of disaster prevention projects related to floods, which are
related to the causes of flood damage (river maintenance project: river inundation; erosion
control maintenance project: landslide; sewer pipe maintenance project: inland flooding
due to poor sewage; drainage pump station project: inland flooding in the region of lower
elevation, etc.). However, previous studies did not consider the regional cause of flood
damage. As a result, although it was possible to grasp the level of risk in each region, it
was not possible to present a disaster-prevention project favorable to the region. To address
these limitations, the aim of this study is twofold.

The first aim is to improve the limitations, such as unclear frameworks, the assessment
indicator selection of previous qualitative risk assessments; we investigated the assessment
indicators and frameworks used in previous studies. The UNISDR’s framework (i.e., hazard,
exposure, vulnerability, and capacity) was judged the most clearly distinguished among
the various frameworks. The assessment indicators used in previous studies were then
reconstructed into the UNISDR framework. The second aim is to identify the main causes
of damage, by region, that were not considered in previous studies. We also performed
hierarchical cluster analysis using historical damage data through a novel approach to the
existing methodology. Furthermore, the assessment indicators used in this study were
chosen based on six selection principles. Finally, a prevention project suitable depending
on the regional damage type was proposed.

2. Theoretical Background (Materials and Methodology)
2.1. Characteristics of the Study Area

In this study, South Korea was selected as the study area. South Korea is divided into
nine provinces, i.e., GyeongGi (GG), GangWon (GW), GyeongsangBuk (GB), Gyeongsang-
Nam (GN), ChungcheongBuk (CB), ChungcheongNam (CN), JeollaBuk (JB), JeollaNam
(JB), and JeJu (JJ), and eight major cities, i.e., Seoul (SO), Incheon (IC), Busan (BS), Daegu
(DG), Ulsan (US), Daejeon (DJ), Sejong (SJ), and Gwangju (GJ). These cities and provinces
have an average of 14 administrative districts, giving a total of 228 administrative districts.
The location and features of the administrative districts of South Korea are summarized in
Figure 1 and Table 1. In general, the eight cities have a higher level of regional development
than the provinces. Therefore, these cities contain a large number of impervious areas,
whereas the provinces contain large portions of permeable areas due to their agricultural
system. Despite being a province, Gyeonggi-do has a high level of regional development
because it is included in the metropolitan area.

South Korea’s main topographical feature is its peninsula, with high elevation in the
east and low elevation in the west. This is due to the country’s extensive mountain ranges,
which are in GW, JB, and GB. Figure 2a shows the elevation of South Korea, where the part
marked in red represents the mountain range. Moreover, as shown in Figure 2b, rivers in
South Korea are primarily classified into three types: national rivers, local rivers, and small
rivers. National rivers are largely divided into four basins: Han, Nakdong, Geum and the
Seomjin-Yeongsan. The Han River flows through SO, IC, GG, and GW, the Nakdong River
flows through GB, GN, DG, US, the Geum River flows through BS. CB, CN, SJ, and DJ,
and JB, JN, and GJ are home to the Seomjin-Yeongsan River. From Figure 2a,b, it can be
seen that rivers are less distributed in regions containing mountain ranges. This means
that mountain ranges and rivers have opposite characteristics, and therefore, the types of
damage caused in each landscape may be different.
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Figure 1. Locations of nine provinces and eight cities in South Korea.

Table 1. Abbreviations for the provinces and cities of South Korea.

Province Abbreviation City Abbreviation

Gyeonggi-do GG Seoul SO

Gangwon-do GW Incheon IC

Gyeongsangbuk-do GB Busan BS

Gyeongsangnam-do GN Daegu DG

Chungcheongbuk-do CB Ulsan US

Chungcheongnam-do CN Daejeon DJ

Jeollabuk-do JB Sejong SJ

Jeollanam-do JN Gwangju GJ

JeJu-do JJ

2.2. Qualitative Risk Assessment Method

Risk assessment is a method for evaluating the relative risk level in a region by
calculating an integrated index from statistical indicators representing a region’s risk levels.
Here, an indicator refers to a variable that contains information about a risk level or state,
and an index is calculated by aggregating two or more indicators or computing their
weights. The procedure for performing heavy rain damage risk assessment is shown in
Figure 3.
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Figure 3. Procedure of heavy rain damage risk assessment.

The first step was to select and collect assessment indicators for the component. The
component used the framework suggested by UNISDR, and consisted of hazard, exposure,
vulnerability, and capacity. Assessment indicators were selected and collected according
to the selection principle. In the second stage, assessment indicators were standardized
and calculated for weight of each indicator. Then, the integrated index, defined as the
heavy-rain-damage risk index (HDRI) was calculated. In the third step, risk levels were
classified for HDRIs by region based on probability distributions. Heavy-rain-damage risk
was then analyzed spatially using ARC GIS tool.
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The sub-index was calculated corresponding to the indicators and it weight of each
component. For example, the Hazard index was integrated through the indicators and
weight of hazard component. If the calculations for the four sub-indices, Hazard index, Ex-
posure index, Vulnerability index, and Capacity index were complete, they were integrated
as the HDRI.

Sub index (SI) = ∑ n
i=1 Ij·wj (1)

HDRI = ∑ n
i=1SIi·wi = HI·wH + EI·wE + VI·wV + CI·wC (2)

where Ij is jth indicator of corresponding component, wj is the jth indicator of corre-
sponding component, HI is the Hazard index, wH is the weight of Hazard index EI is the
Exposure index, wE is the weight of Exposure index, VI is the Vulnerability index, wV is
the weight of Vulnerability index, CI is the Capacity index, and wC is the weight of the
Capacity index.

2.2.1. Principle for Selecting Assessment Indicators

It was confirmed that several principles with similar meanings were repeated in pre-
vious studies for indicator selection. [19–21]. The most frequently used and important
principles among these were extracted; those six principles are listed in Table 2. The major
principles included were correlation, simplicity, quantitative, reliability, redundancy, and
ease. The first principle, correlation, was to check whether the meaning of the components
was similar; the second principle, simplicity, was to check whether the meanings of indi-
vidual indicators were easy to understand; the third principle, quantitative, was to check
whether an indicator could be quantified numerically; the fourth, validity, was to check
whether the conceptual basis of the relevant indicator was clear; the fifth, redundancy, was
to check whether there were indicators with overlapping meanings and, finally, ease was to
check whether it was easy to continuously collect data.

Table 2. Six principles for selection of indicators [19–21].

Indicator Selection
Principles Abbreviations Descriptions

Correlation C Examines whether the meanings of the components are similar

Simplicity S Examines whether the meanings of individual indicators are easy to understand

Quantitative Q Examines whether indicators can be quantified numerically

Validity V Examines whether the conceptual basis of the relevant indicator is clear

Redundancy R Examines whether any of the indicators have overlapping meanings

Ease E Examines whether it is easy to continuously collect data

2.2.2. Standardization Method for Assessment Indicators

When calculating an index using an indicator, it is necessary to perform standard-
ization, calculation of weights, and aggregation, because the assessment indicators used
to calculate the index are unit- and scale-dependent, thus making direct calculation im-
possible. Standardization is a method for resolving the issues of deviation and distortion
caused by size and unit differences, by converting each evaluation index into a dimen-
sionless value. Typically, rankings, Z-scores, categorical scales, and re-scaling are used
as representative standardization methods; in this study, data were standardized using
both method re-scaling and categorical scale methods. Generally, the re-scaling method is
easy to understand, and the categorical scale method can be used to solve the problem of
distortion in given datasets [22]. Table 3 describes the features of the two standardization
methods used in this study.
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Table 3. Features of standardization methods used in this study [22].

Methods Equation Description

Categorical scale
Ii =



0.25, i f xi ∈
{

p25th
}

percentile

0.5, i f xi ∈
{

p50th − p25th
}

percentile

0.75, i f xi ∈
{

p75th − p50th
}

percentile

1.00, i f xi ∈
{

p100th − p75th
}

percentile


A method of classifying categories by
quantile and assigning scores even if
the range of specific indicator values

is very wide.
xi means the value of the ith data, and scores are given according to

the range to which the value belongs.

Re-Scaling
Ii =

xi−min(x)
max(x)−min(x)

A transformation method based on
the range of indicators. Standardized

values are included in the range of
0 to 1.

xi means the value of the ith data, and max(x) and min(x) represent
the maximum and minimum values of the data, respectively.

2.2.3. Method of Calculating Weights

Assessment indicators have varying degrees of impact depending on the purpose
of analysis, and they should be given weights during the process of determining their
significance and calculating them as an index. Typically, the analytical hierarchy process
(AHP), factor analysis, the Delphi method, and the entropy method are used as weight
determination techniques [23–26] This study used the entropy technique, which is a method
for calculating objective weights and conducting experiments.

The following procedures were used to calculate the weight of each indicator using
the aforementioned entropy method. First, the constructed values of each indicator are
organized into a matrix by region, followed by the normalization of the configured attribute
information of each indicator. Weight values between the indicators were finally determined
after calculating the entropy for each attribute using normalized data. Equations (3)–(7)
summarize this process [27].

First, a matrix of attribute information of regional assessment indicators is set up:

D =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (3)

Second, attribute information is normalized using the assessment indicator:

pij =
xij

∑m
i=1 xij

(i = 1, 2, · · ·m ; j = 1, 2, · · · , n) (4)

Third, the entropy for each attribute is calculated:

Ej = −k ∑ m
i=1 pij log pij

(
Here, k =

1
log m

; j = 1, 2, · · · , n
)

(5)

Fourth, the weight of each assessment indicator was calculated by considering the
degree of diversity.

Degree of diversity : dj = 1− Ej (6)

Weight : wj =
dj

∑n
j=1 dj

(j = 1, 2, · · · , n) (7)

where, m is the number of regions, n is the number of indicators, i is the ith region, j is the
jth indicator, pij is the ith and jth normalized assessment indicators, and Ej is the entropy
of the jth assessment indicator.
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2.3. Hierarchical Cluster Analysis

Cluster analysis is a typical statistical technique that can identify group objects with
similar characteristics in given datasets. The two types of cluster analysis are hierarchical
and non-hierarchical cluster analysis [28,29]. Hierarchical cluster analysis is a technique for
deriving a target cluster by sequentially clustering subjects with a high degree of similarity
and gradually combining clusters. Non-hierarchical clustering is a technique for clustering
that involves specifying the number of clusters and the initial starting point based on the
cluster center [30].

The advantage of hierarchical cluster analysis is that it can perform clustering in a
way that the cluster forms a hierarchy without first specifying the number of clusters,
after which it identifies the cluster’s hierarchical structure using dendrograms [31]. The
dendrogram expresses a cluster’s hierarchical structure in the form of a tree, and within the
hierarchical structure, the lower cluster takes on the form of the upper cluster (Figure 4). In
this study, hierarchical cluster analysis was used to cluster groups that were sequentially or
hierarchically similar to each other.
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Here, the term “distance” should be used to refer to a metric of regional similarity.
There are several methods of defining distance—Euclidean distance, which is the most
frequently used, hamming distance, which is used when all variables are categorical,
Manhattan distance, and cosine similarity. Since the normalized data was used in this
study, the distance was calculated using the Euclidean distance. Equation (8) illustrates the
Euclidean distance equation [32].

dij =

[
∑ p

k=1

(
xik − xjk

)2
]1/2

(8)

where i and j are two objects in p-dimensional space and dij represents the Euclidean
distance, i.e., the shortest direct distance. p is the total number of variables and k is
kth variable.



Water 2022, 14, 219 9 of 19

3. Result of Analysis
3.1. Risk Assessment of Heavy Rain Damage
3.1.1. Selection and Construction of Assessment Indicators

In this study, we investigated the assessment indicators and framework used in refer-
ences [5–18]. The UNISDR framework (hazard, exposure, vulnerability, and capacity) was
judged to be the most clearly distinguished among various frameworks and the assessment
indicators used in previous studies were reconstructed into the UNISDR framework. The
assessment indicators used in this study were chosen based on six selection principles
(Table 2). The principles were correlation (C), simplicity (S), quantitative (Q), validity (V),
redundancy (R), and ease (E). Table 4 shows the assessment indicators selected through
indicator-selection principles.

Table 4. Selection of assessment indicators.

Framework Components Potential Assessment Indicators
Indicator Selection Principles Final

SelectionC S Q V R E

Hazard

Meteorological

Probable rainfall X # # # # # X

Number of days of rainfall of 80 mm # X # # X # X

Maximum rainfall per day # # # # X # X

Maximum rainfall during the duration (24 h) # # # # # # # (H1)

Annual average rainfall # # # # # # # (H2)

Historical Damage

Flood damage # # # # # # # (H3)

Scale of flood damage # # # # X # X

Frequency of flood damage # # # # # # # (H4)

Flooded area # # X X # X X

Exposure

Socio-economic

Total population # # # # # # # (E1)

GRDP # # # # # # # (E2)

Per capita income # # # # X # X

Average official land price # # # # X # X

Population density # # # # X X X

Physical

Number of buildings # # # # # # # (E3)

Infrastructure (road) # # # # # # # (E4)

Slope X # # # X # X

River density # # # # # # # (E5)

Vulnerability

Social

Vulnerable population # # # # # # # (V1)

Poor population # # # # X X X

Infant mortality # # # # X X X

TV distribution rate X # # # # X X

Number of semi-basement households # # # # # X X

Population in flooded areas # # X X # X X

Number of households not supplied with electricity X # # # X X X

Physical

Area of the lowland area # X # X X X X

Runoff curve index # # # # # X X

Disaster-prone districts # # # # # # # (V2)

Steep slope # # # # # # # (V3)

Old buildings # # # # # # # (V4)
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Table 4. Cont.

Framework Components Potential Assessment Indicators
Indicator Selection Principles Final

SelectionC S Q V R E

Capacity

Disaster Prevention
Capability

Number of disaster prevention facilities # # # # # X X

Preventive facilities # # # # X X X

Drainage pump station # # # # # # # (C1)

Dam and reservoir # # X # # X X

River management personnel X # X # # X X

Financial independence # # # # # # # (C2)

Disaster Prevention
History

Cumulative disaster prevention budget # # # # # # # (C3)

Promotion of preventive measures # # X # X X X

River embankment ratio X # X X # X X

The hazard-component indicators selected were maximum rainfall during the duration
(24 h) (H1), annual average rainfall (H2), flood damage (H3), and flood damage frequency
(H4). The exposure component indicators were the total population (E1), the GRDP (gross
regional domestic product) (E2), total number of buildings (E3), road facility area (E4), and
river density (E5). The vulnerability component indicators were vulnerable populations
(V1), disaster-prone districts (V2), steep slopes (V3), and old buildings (V4). Capacity
indicators were drainage pump stations (C1), financial independence (C2), and cumulative
disaster prevention budgets (C3). All assessment indicators chosen for this study were
constructed as of 2019 and as cumulative or average concepts, depending on the nature of
the data.

Meteorological data were obtained from the Korea Meteorological Administration
(KMA), and damage data were obtained from the Statistical Yearbook of Natural Disaster
(SYND) published by the Ministry of the Interior and Safety (MOIS). The total population,
GRDP, total number of buildings, and financial independence were obtained from the
Korean Statistical Information Service (KOSIS) and data on road area and river density
were obtained from the Ministry of Environment (MOE). MOIS collected data on drainage
pump stations and investment costs for the disaster prevention budget. In Table 4, a circle
means the indicator was selected, and a cross means the indictor was not selected.

3.1.2. Standardization and Calculation of Weights of Assessment Indicators

Since it is advantageous for the visualization of integrated index, the re-scaling method
was standardized and used, but the categorical scale method was also considered to
minimize distortion caused by extreme values. Statistics of the assessment indicators for
standardization are shown in Table 5.

As shown Table 5, the maximum values of H4, V3, and C1 were excessively large
in comparison to the average value, and thus, 80% of data did not exceed 0.1. The data
mentioned above (H4, V3, and C1) signified that the probability distribution was skewed
to the left and the tail was generated far to the right, which means that some data among
the total are extreme values. If there is standardization without using the categorical scale
method, significant data distortion problems can be caused. To this end, the integrated
index was also calculated considering the categorical scale, and the score for each percentile
is shown in Table 6.
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Table 5. Elementary statistics for assessment indicators.

Assessment
Indicators

Re-Scaling The Percentage of Standardized Value

Min Max 20% 40% 60% 80%

H1 833.18 1443.75 0.2245 0.3503 0.4490 0.5518

H2 96.43 200.625 0.2906 0.3778 0.4889 0.6391

H3 0 156 0.2321 0.3654 0.4679 0.5923

H4 0 635,553,387 0.0024 0.0065 0.0161 0.0407

E1 16,993 1,194,465 0.0245 0.0709 0.1753 0.3181

E2 431,322 60,407,392 0.0171 0.0446 0.0853 0.1725

E3 2257 180,936 0.1184 0.1718 0.2508 0.3608

E4 0.000421 0.281286 0.0233 0.0346 0.0712 0.1614

E5 0 0.209904 0.0444 0.0712 0.1098 0.1740

V1 7382 258,384 0.0491 0.1038 0.2135 0.3627

V2 0 20 0.0250 0.0500 0.1500 0.3000

V3 0 71.76 0.0002 0.0025 0.0224 0.1015

V4 337 67,767 0.1235 0.1843 0.2463 0.3156

C1 0 283,740 0.0008 0.0016 0.0081 0.0250

C2 0 453,722.3 0.0176 0.0352 0.0851 0.1341

C3 8.5 69.2 0.1081 0.1951 0.2965 0.4870

Table 6. Percentile and score for standardized value.

Percentile Score Percentile Score

0% ≤ xi < 20% 0.2 60% ≤ xi < 80% 0.8

20% ≤ xi < 40% 0.4 80% ≤ xi < 100% 1.0

40% ≤ xi < 60% 0.6 - -

Table 7 summarizes the weights of the assessment indicators and the sub-index. Here,
the sub-index means that it is integrated by the indicators of each framework. As shown
in Table 7, the Hazard index places a large weight on H4 (accumulated amount of heavy
rain damage), showing that previous damage is critical for determining the current risk of
heavy rain damage. The Exposure index is distributed more evenly than the hazard, index
and the density of river has the most weight. The steep slopes of the Vulnerability index
(V3) show that it has the highest weight, whereas the number of disaster-prone districts
(V2) has the second-highest weight. In terms of capacity, the drainage pump station’s
treatment capacity (C1) had the highest weight. As for the weights of the sub-index, the
Hazard index had the highest weight for each sub-index and the Capacity index has the
second-highest weight.

3.1.3. Definition of the Risk Level of Heavy Rain Damage by Region

Each sub-index was calculated using the weight and assessment indicators corre-
sponding to each component (see Equation (1)). Figure 5 illustrates the spatial distribution
map of each sub-index. The Hazard index, Exposure index, and Vulnerability index have
positive (+) values which show an increased risk of heavy rain damage, while the Capacity
index has a negative (−) value which indicates a decreased risk of heavy rain damage.
According to the Hazard index, the frequency of damage was high in GG and the scale of
damage was large in GW and JB. It was confirmed that rainfall occurrence characteristics
were concentrated in the central and southern coastal regions, and as a result, GW, GG,
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JB, and GN have a high Hazard index. The Exposure index consists of indicators that are
susceptible to damage from heavy rain, and the more developed a region is, the greater the
risk of flooding. Indicators such as population, GRDP, and road density were found to be
higher in urban areas such as SO, BS, IC, DG, and GJ. Thus, the Exposure index seemed to
be higher in urban areas.

Table 7. Weights of the assessment indicators and sub-index.

Framework Assessment
Indicators

Indicators
Weight

Sub-Index
Weight

Hazard

H1 0.0043

0.3198
H2 0.0075
H3 0.0867
H4 0.9014

Exposure

E1 0.139

0.1978
E2 0.1861
E3 0.0613
E4 0.189
E5 0.4245

Vulnerability

V1 0.123

0.186
V2 0.2937
V3 0.518
V4 0.0654

Capacity
C1 0.7646

0.2963C2 0.1983
C3 0.0371

The Vulnerability index was highest in GW, GB, JB, and JN, which are predominantly
composed of disaster-prone districts and steep slopes. As shown in the elevation map
(Figure 4), there are many areas that are vulnerable to damage from heavy rain distributed
along the mountain ranges. In addition, these areas have a high risk of landslide damage.
The Capacity index refers to areas with a high density of disaster-prevention facilities, and
this index was particularly high in JN, GN, and CN.

The heavy-rain-damage risk index (HDRI) was integrated through Equation (2) using
sub-index and weight. Figure 6a shows the probability distribution of HDRI. Since HDRI
followed a normal distribution, it was possible to classify the probability values into evenly
intervals. This means that some regions have similar probability values and therefore,
similar risk levels. The cumulative probability of the HDRI is shown in Figure 6b, and the
probability boundaries between Levels 1 and 4 was defined as 0%, 25%, 75%, and 100%. As
such, areas at low risk of heavy-rain damage were classified as Level 1, whereas those at
high risk were classified as Level 4.

The assessment indicators for flood risk were selected based on the principle, these
were weighted averaged and integrated as the HDRI. The heavy-rain-damage risk level
was classified based on the probability distribution of the HDRI. Figure 7 illustrates the
spatial distribution map of the risk level by region. According to the results of the regional
heavy-rain-damage risk assessment presented in Figure 7, the risks were greatest in GD,
GG, and JB, while SO, IC, DG, CN, and JD were considered relatively safe.
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3.2. Classification of Heavy Rain Damage Types Based on Hierarchical Cluster Analysis

The magnitude of damage that occurs each year in South Korea is aggregated and
recorded for a total of 23 facilities: 13 public and 10 private facilities. The study collected
data on heavy rain damage from 2003–2019 and analyzed the ratio of major damaged facilities.

As can be seen in Figure 8, more than 30% of damage occurred in streams, 17% in
water resource infrastructure, 13% on roads, and 8.9% in erosion-control infrastructure.
Furthermore, 5% damage is incurred by arable land, 4% by buildings, and 2% by military
facilities; facilities that accounted for less than 1% of damage were not indicated. The
primary facilities in South Korea that sustain damage from heavy rains are streams, water
resource facilities, roads, erosion control projects, arable land, buildings, and military
facilities. In order to identify the type of damage by region according to topographical
characteristics, we performed a hierarchical cluster analysis using the regional damage
ratios for the seven facilities as variables. As shown Figure 9, damage types were divided
into five clusters.
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Figure 9. Hierarchical cluster analysis result based on dendrogram.

Based on the findings in Figure 10, the Type A area was identified as the location of the
most damage in “erosion control” and “road”, and the Type B area had the highest damage
ratio in “stream facility” and “road”. In addition, the Type C area had a high damage ratio
in arable land, Type D area was identified as just “stream facility”. Type E area had a high
damage ratio for “building”. These findings indicate that topographical characteristics and
the level of regional development have a significant impact on different types of damage
from heavy rainfall.
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Figure 10. Regional classification of damage type from the analysis.

Considering the damage-type map and topographical characteristics together, Type A
was mainly found in mountainous regions of GW, JB, and JN, indicating that the damage in
“erosion control” and “road” due to landslides was severe. Damage occurs frequently in the
local river in the GG area near the Han River in the case of Type B. Type C was confirmed
to be primarily distributed in CN, CB, GN, and GB areas where arable land is located. Type
D was confirmed in the GJ and GG areas where damage occurred in “stream facility”. Type
E was primarily found in city-oriented SO, IC, and DG areas.
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Type A affects erosion control facilities and roads due to landslides, and thus, in Type
A areas, prevention projects such as erosion facility maintenance and repair projects and
road drainage maintenance projects to reduce landslides should be implemented. Type
B is a case of damage caused to levee facilities by river inundation, and to road facilities
by poor road drainage; thus, a river improvement project that can lower water depth
and a road drainage maintenance project that can well release water into drainage should
be implemented.

Because Type C can occur due to poor drainage in arable land, prevention projects
such as sewer-pipes maintenance projects should be implemented. Type D was a case
of damage caused to a stream facility by rapid water velocity and river inundation, and
prevention projects such as a river improvement project that can lower the flow velocity
and water depth could be implemented. Type E mainly occurred due to inundation of
urban area by lowlands areas; thus, prevention projects such as drainage-pump projects
that can release the flooded water in lowlands into rivers could be implemented.

3.3. Analysis for Heavy Rain Damage Risk and Damage Type in Each Region

To comprehend the characteristics of heavy rain damage by region, risk level, and
damage types classified in the previous section, the two results are evaluated in this section.
As shown Figure 11, the risk level is represented by a fill color, and the damage type is
represented by an outline color. From the results of this study, GW, JB, CB, and GG areas
were identified as having high risk levels. For damage type in these areas, GW and JB were
shown to be Type A and C, the GG area was Type B and C, and the CB area was Type C.
Considering the causes of damage in these areas, when damage occurs in GW and JB, the
scale of damage can be large and caused by landslides, and as the stream density in the
GG area is high, damage can be occur frequently. In the CB area, damage are occurred
mainly in arable land due to poor drainage by steep slopes. The GB and GN areas are the
representative areas shown to be in risk level 3, and the damage type for this area is C.
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In addition, urban area such as IC, SO, BS, and GJ were presented Type E and low risk
level; west coast area such as JN, CN, and IC also were presented a low risk level. However,
even if the risk levels are comparable, the damage type and cause can be different according
to the topographic characteristics. Thus, in order to determine the priority and type of
appropriate prevention projects, it is necessary to consider the risk level and damage type
each region.

4. Discussions and Conclusions

In this study, a method which can identify the types and priorities of disaster preven-
tion projects by considering various regional characteristics was proposed. First, potential
assessment indicators for risk assessment were gathered by reviewing previous research
cases, and assessment indicators relevant to this study were chosen based on principle for
indicator selection. Following that, an integrated index and the risk level were calculated
and four grades were identified. Damage types by region were classified into five types
using hierarchical cluster analysis and the facility’s history of damage in the corresponding
region. Finally, the two results were combined to examine the characteristics of heavy-rain
damage in each region, and appropriate types and priorities of disaster prevention projects
were proposed based on these findings.

The results of the risk-level analysis revealed that the risk level was relatively high
in cities such as GW, JB, GG, CB, and JJ, where heavy rain damage occurs frequently or is
severe, and relatively low in cities such as JN, CN, IC, and SE. The frequency of damage
was found to be low in GW and JB, but the scale was very large; while, the scale was
small, but it occurred very frequently in GG. According to the damage type analysis,
Type A which mainly consists of landslide damage was primarily found in GW and JB,
whereas Type B is river inundation damage and was found in GG. Furthermore, Type C is
agricultural land damage which was prevalent in CB, and Type D is stream facility damage
by rapid water velocity and was found in GJ, GG. Type E is building damage, which was
prevalent in urban areas such as SO, IC, and DG. When analyzing regional characteristics
by linking risk level and damage type, there were few cases of damage due to landslides in
GW and JB, but most of the damage was significant. Damage occurred primarily in river
facilities in GG, and most of the damage was minor, but it occurred frequently. Finally,
considering the most dangerous areas in relation to the risk level and damage type, GW
and JB areas were identified as requiring an erosion facility maintenance and repair project
and a sewer pipes maintenance project; a river improvement project was suggested for
the GG area. Furthermore, in CB and JJ, a sewer-pipe maintenance project should ideally
be implemented.

We were able to identify the flood cause and to propose the prevention project for
each region by analyzing the major damage types that were not considered in previous
risk-assessment studies and with risk level. However, since this study is the result of
analysis at the national level, it was impossible to identify the specific location at district
level where each prevention project was necessary. Therefore, in future research, it will be
necessary to derive the specific location via quantitative risk assessment for high-risk areas
that were identified in the results of this study.

In this study, a strategy for determining the risk level and type of damage South
Korea’s entire region was proposed. When developing various types of disaster-prevention
project plans from a macroscopic perspective, it is believed that identifying the types of
projects and prioritizing them can be of great help in reducing the national budget in
terms of time and cost. Therefore, the findings of this study are expected to be used as a
method of identifying damage characteristics by region when developing a plan for disaster
prevention projects.
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