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Abstract: In the midst of climate change, the need for accurate predictions of dam inflow to reduce
flood damage along with stable water supply from water resources is increasing. In this study, the
process and method of selecting the optimal deep learning model using hydrologic data over the
past 20 years to predict dam inflow were shown. The study area is Andong Dam and Imha Dam
located upstream of the Nakdong River in South Korea. In order to select the optimal model for
predicting the inflow of two dams, sixteen scenarios (2 × 2 × 4) are generated considering two dams,
two climatic conditions, and four deep learning models. During the drought period, the RNN for
Andong Dam and the LSTM for Imha Dam were selected as the optimal models for each dam, and the
difference between observations was the smallest at 4% and 2%, respectively. In typhoon conditions,
the GRU for Andong Dam and the RNN for Imha Dam were selected as optimal models. In the case
of Typhoon Maemi, the GRU and the RNN showed a difference of 2% and 6% from the observed
maximum inflow, respectively. The optimal recurrent neural network-based models selected in this
study showed a closer prediction to the observed inflow than the SFM, which is currently used to
predict the inflow of both dams. For the two dams, different optimal models were selected according
to watershed characteristics and rainfall under drought and typhoon conditions. In addition, most of
the deep learning models were more accurate than the SFM under various typhoon conditions, but
the SFM showed better results under certain conditions. Therefore, for efficient dam operation and
management, it is necessary to make a rational decision by comparing the inflow predictions of the
SFM and deep learning models.

Keywords: deep learning; dam inflow; RNN; LSTM; GRU; hyperparameter

1. Introduction

Due to extreme climatic change, accurate analysis of water resources is increasingly
demanded for stable water supply and flood damage mitigation. Among various research
subjects, the amount of the dam inflow is an important element in establishing plans for
coping with drought, flooding, and operating the dam. The major factors affecting the amount
of the inflow are climatic factors, including rainfall, which is the most influential, temperature,
and wind speed, as well as topographical factors such as the basin area and the height of the
slope [1]. However, recently, local rainfalls, which are difficult to predict, have frequently oc-
curred nationwide. In particular, in Andong and Imha Dams in 2015, the inflow decreased
to one-third the level of the average inflow over the past 20 years; and in 2017 and 2018, the
discharge rates were adjusted due to entering the drought “attention stage.” In addition,
in 2020, due to the prolonged rainy season, the inflow increased to more than 40%, and
therefore, floodgate discharge was performed at Andong Dam for the first time in 17 years.
As such, it is an important issue to predict more accurately and quickly the inflow for two
dams, which frequently change in drought and flood conditions every year. The reason for
this study is that Andong Dam and Imha Dam are important dams that account for 50% of
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the water supply in the Nakdong River watershed, but there are few studies that predict the
dam inflow using a deep learning model. In addition, although the geographical locations
of the two dams are adjacent, dam inflow tends to be different depending on the watershed
and precipitation characteristics. In particular, during the typhoon Maisak and Haishen in
2020, an instantaneous inflow greater than the designed flood was observed at Imha Dam.
Therefore, it is necessary to accurately predict the inflow using deep learning for the two
dams in consideration of climate change. In the past, the amount of inflow was calculated
using conceptual and physical models; however, recently, artificial intelligence technology
has been used in more and more cases to analyze the amount of inflow. Kim et al. [2] took
Chungju Dam and Soyanggang Dam as subjects and used the artificial neural network
(ANN) model in predicting the inflow of the dams by applying the meteorological data
in their basin areas, and the basin precipitation was calculated using the Thiessen net-
work. This study showed that the model using all rainfall stations in the Thiessen network
performed better than using only in-watershed or out-watershed stations. Kim et al. [3] ana-
lyzed the average precipitation and the inflow data of Chungju Dam in the Han River basin
by applying an ANN model including a back propagation algorithm. This study showed
that there was a significant improvement in the model accuracy including the correlation
coefficient (CC) when data preprocessing was performed. Mok et al. [4] applied the Long
Short-Term Memory (LSTM) and the ANN model to predict the inflow per hour of Yongdam
Dam. In this study, the LSTM hyperparameters (sequence, hidden dimension, learning rate,
and iteration) were optimized and the model accuracy was improved by applying dam
inflow and rainfall as input variables. Lee et al. [5] performed a quantitative evaluation by
adjusting and simulating input variables for the Taehwa River basin using recurrent neural
network (RNN), time delay neural network (TDNN), and nonlinear autoregressive exoge-
nous (NARX) models. This study improved the Nash–Sutcliffe efficiency (NSE) from 0.530
to 0.988 by adjusting the time delay parameter of the model. Chang et al. [6] introduced
recent advances in machine learning in flood prediction and management, and presented an
academic approach to flood risk-related modeling. Chang et al. [7] explored the effectiveness
of multiple rainfall sources for assimilation-based multi-sensor precipitation estimates
and performed multi-step-ahead rainfall forecasts based on the assimilated precipitation.
Chakravarti et al. [8] demonstrated that the ANN model could be a promising tool to pro-
vide insights from learned relationships as well as accurate modeling of complex processes
through a comparison of the runoff generated by rainfall simulator in the laboratory and
the predicted runoff of the ANN model. Kao et al. [9] proposed a Long Short-Term Memory
based Encoder-Decoder (LSTM-ED) for multi-step-ahead flood prediction for the first time.
Shen et al. [10] suggested that hydrology scientists consider research using DL-based data
mining to complement traditional approaches. Tokar et al. [11] compared and analyzed the
conceptual models and the ANN models, which differed for each basin. After comparing
the Watbal model for the Fraser River, the Sacramento Soil Moisture Accounting (SAC-
SMA) model for the Raccoon River, and the Simple Conceptual Rainfall–Runoff (SCRR)
model for the Little Patuxent River, Colorado, USA, with the ANN model, it was shown as
a result that the ANN model together with the existing conceptual model could be utilized
for rainfall-discharge prediction. Chen et al. [12] compared and analyzed the hourly precip-
itation and discharge data for each hour following the hit of 27 typhoons from 2005 and
2009 at the Linbien River Basin, Taiwan, by applying the conventional regression model
and the ANN model along with the concept of backpropagation. In statistical evaluation,
the ANN model showed better results than the conventional regression analysis model.
Coulibaly et al. [13] predicted the inflow of multi-purpose dams by applying rainfall,
snowfall, inflow, and temperature as input variables of four models: Multilayer Perceptron
(MLP), Input Delayed Neural Network (IDNN), RNN, and Time Delay Current Neural
Network (TDRNN).

In this study, a deep learning model was used to predict the inflow of Andong and
Imha Dams in the Nakdong River watershed in Korea. To build an optimal prediction
model based on inflow and rainfall data over the past 20 years, accuracy and reliability



Water 2022, 14, 2766 3 of 16

were evaluated by generating various scenarios according to input variables. In addition,
the RNN models were applied considering that the dam inflow is time series data and the
learning efficiency of the existing ANN model decreases as the number and period of data
increase. The prediction model derived from this study is expected to contribute to stable
dam operation management and coping with the disaster.

2. Study Methods
2.1. ANN and RNNs

In this study, the ANN model and the RNN model were compared and analyzed to
derive an optimal model for predicting dam inflow. The flow chart of this study is shown
in Figure 1. Deep learning is one of the algorithms of machine learning and is a more
deeply constructed algorithm than conventional neural network structures. Non-linear
characteristics between input variables can be estimated and have superior effects over
traditional machine learning algorithms. Machine learning is a process in which humans
feed the computers a lot of information, and then the computers predict information, while
deep learning has the characteristics of the computers learning and predicting it without
human’s teaching specifically. The typical activation functions used in the hidden layers of
deep learning are mainly Sigmoid, tanh (hyperbolic tangent), and Rectified Linear Unit
(ReLU). The sigmoid function is a logistic regression function with values between “0” and
“1,” which is utilized for simple classification problems. The tanh function has a value
between “−1” and “1,” and as it moves away from the center value, the slope is lost during
the backpropagation. For solving this slope loss problem is the ReLU function, and all
values below “0” are treated as “0” to stop the learning progress [14].
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The RNN is a specialized model in the field of ordered data processing. In particular,
time series data are mainly utilized, and the previous output data are cycled back into
the input. The following is a comparison of the hidden layer calculation Equation (1) of



Water 2022, 14, 2766 4 of 16

Convolution Neural Network (CNN), which processes grid data like an image, and the
hidden layer calculation Equation (2) of the RNN.

CNN ht = Wxhxt (1)

RNN ht = tan h( Whhht−1 + Wxhxt) (2)

The RNN has the characteristics of weighing each data individually to determine its
importance and memorize it while turning to the next data, but there appears a gradual loss
of information of distant past data in the hidden layer; therefore, a method supplemented
with a separate memory cell prepared is LSTM [15]. The LSTM is one of the RNN models
and is composed of a Forget gate, an Input gate and an Output gate. In order to solve the
problem of gradient loss that occurs as the time difference increases in the RNN model,
the LSTM model introduces a cell. Information is stored in this cell, and it plays a role in
preventing the stored information from being lost in the process of analysis. The gate serves
as a filter that allows unnecessary information to be forgotten or necessary information
to be stored and passed through the cell. This is represented by Equations (3)–(6). In the
forget gate, how much past data will be forgotten is determined, and the input gate plays a
role in estimating important values among the incoming data. Output gates are used to
keep information from past data and predict them simultaneously.

Forget Gate : ft = σ
(

U f ht−1 + W f xt + b
)

(3)

Input Gate : it = σ(Uiht−1 + Wixt + b) (4)

Output Gate : ot = σ(Uoht−1 + Woxt + b) (5)

ht = ot × tanh(Cell) (6)

where σ is the activation function, U is the input weight, W is the cyclic weight, ht−1 is the
previous stage output, ht is the new output value, xt is the current input vector, and b is
the bias.

In addition, the Gated Recurrent Unit (GRU) is a method with the structure improved
for processing faster than LSTM [16]. GRUs are configured as Reset gate and Update gate
for the advantage of lower learning weights; therefore, faster processing speed with similar
performance compared to LSTM is observed. Reset gate determines the ratio of past data to
remove, and Update gate determines the discarding past data, such as forget gate of LSTM,
and selects only one of t − 1 and t memory data.

2.2. The Storage Function Model (SFM)

The SFM is one of the rainfall–runoff models, and calculates the runoff from the
watershed using the reservoir storage and rainfall as main input variables. In this case,
impervious area, infiltration, and groundwater are considered. The model makes the basic
assumption that stream channels ( I ∼ O) have a downward slope and that the watershed
receives the same amount of precipitation (Rave) as shown in Figure 2. The runoff from the
watershed is calculated by Equation (7) [17].

QT

(
m3/s

)
=

1
3.6
× f1 ×A× q f +

1
3.6
× (fsa − f1)×A× qs + qb (7)

where f1 is the primary runoff rate (dimensionless), A is the watershed area (km2), q f . is
the unit runoff height of runoff area (mm/day), qs is the unit runoff height of infiltration
area (mm/day), fsa is the unit runoff in seepage areas directly infiltrating groundwater, and
qb is the base runoff (m3/s).
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Figure 2. Schematic diagram of the storage function model [17].

Korea Water Resources Corporation (K-water) operates dams through inflow prediction
using the SFM, and the parameters of the SFM corresponding to each dam are optimized in
consideration of the characteristics of the dam basin [17].

2.3. Study Area

Sufficient learning materials are required to calculate the inflow of dams using deep
learning. In this study, Andong Dam and Imha Dam of Nakdong River were selected as the
study areas among multi-purpose dams in Korea that have collected hydrological data for
more than 20 years and secured the largest amount of water supply and storage capacity in
the water system. The locations of Andong Dam and Imha Dam are shown in Figure 3.
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Figure 3. Location and Watershed of Andong and Imha Dams.

Andong Dam was completed in 1976, with a basin area of 1584 km2 and a total water
storage capacity of 1248 × 106 m3. It was built to reduce flood damage by utilizing 110 ×
106 m3 of flood control capacity and facilities. It is responsible for supplying 926 × 106 m3

of water annually, including Nakdong River’s living water, industrial water, and river
maintenance flow. Imha dam was completed in 1993 and has a basin area of 1361 km2

and a total storage capacity of 595 × 106 m3. It is 73.0 m-high, with a 515.0 m-long central
cutoff-wall type rockfill dam built to prevent flood damage in the mid- and downstream
of the Nakdong River and to supply water to the Nakdong River and the southeast coast
areas. It supplies 615.3 × 106 m3 of water annually, including living water, industrial water,
and river maintenance flow (Table 1).
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Table 1. General status of Andong and Imha Dams.

Category Andong Imha

Storage(106 m3) 1248 595

Flood control capacity(106 m3) 110 80

Water supply (106 m3/y) 926.0 615.3

Flood volume (m3/s) 6480 4500

Discharge (m3/s) 4600 2500

2.4. Database Buliding

In this study, the time series period required to compare and analyze four models,
ANN, RNN, LSTM, and GRU models, was set from 2001 to 2020, and we intend to build
an inflow prediction model by utilizing the inflow and precipitation data of Andong and
Imha Dams in the subject period. The equations for daily and hourly inflow are as shown
in Equations (8) and (9). Rainfall data collected from nine rainfall observatories in Andong
Dam basin and eight rainfall observatories in Imha Dam basin were used.

Daily inflow
(

m3

s

)
=

Water Storage(at 24 : 00 today− at 24 : 00 the day before)× 106

60× 60× 24
+ Daily Average Outflow (8)

Hourly inflow
(

m3/s
)
=

Water Storage(at fixed time− at 1hr ago)× 106

60× 60
+ Hourly Average Outflow (9)

Considering the inflow of Andong and Imha Dams from 2001 to 2020, the annual
inflow of Andong Dam in 2003 and 2015 was almost six times different. The inflows of
Andong and Imha Dams during the flood period accounts for approximately 2/3 of the
average annual inflows, and the precipitation and inflow during specific periods, such as
the normal season or the drought and flood periods, are different. Therefore, it is necessary
to analyze after dividing the seasons into the normal season or the drought and flood
periods when selecting the optimal model later. Figure 4 shows the rainfall and inflow of
Andong Dam watershed for 20 years.
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Figure 4. Inflow and rainfall at Andong Dam. (a) Inflow and rainfall for 2001–2020. (b) Rainfall for
the flood period (21 June–20 September).

There were four releases through Andong–Imha connection tunnel from 2019 to 2020.
The corresponding discharge was calculated as the inflow of Andong Dam and, therefore,
excluded from data preprocessing. Since the range of inflow and precipitation data is wide,
data normalization was used to convert it to a value between 0 and 1 by Min–Max Scaling.
In addition, the data for 20 years are divided into a training set, a validation set, and a
testing set in a 5:3:2 ratio as shown in Figure 5.
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2.5. Input and Output Predictors

In this study, precipitation and dam inflow from previous times were used as input
data to predict the inflow of the dam. The number of previous times precipitation and
inflow are considered for dam inflow prediction is related to the sequence hyperparameter
to be described later. For example, if the sequence is 21, 21 precipitations (Pt, Pt−1, ···
Pt−20) and 21 dam inflows (Qt, Qt−1, ··· Qt−20) are simultaneously considered. Pt and
Qt are precipitation and dam inflow at the current time, respectively, Qt+1 is the dam
inflow at the next time step to be predicted, and Pt−1 and Qt−1 are the precipitation and
dam inflow at the previous time steps to be considered for predicting the dam inflow,
respectively. Figure 6 shows a schematic diagram of the input and output data of the model
with sequence 21.
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2.6. Optional Hyperparameter

In this study, two hyperparameters (Sequence and Batch size) were optimized by
applying a grid search at regular intervals as shown in Table 2. The hyperparameters were
optimized by applying a grid search at regular intervals shown in Table 2. The trial-and-
error method was additionally applied to compensate for the shortcomings of grid search,
which can be difficult to find optimal hyperparameters with regular interval application.
The trial-and-error method found optimal variables for sequence length and batch size
within the range of 1–100 and compared them with the results of grid search. In particular,
the reason why the sequence length(hour) was selected as 12 is that for flood control at the
multi-purposed dam, outflow discharge is approved by the government one day before
the opening of the gate and notified to downstream residents in advance. Among the
high-accuracy models, when overfitting occurs compared to the validation data and test
data, the dropout method was used to supplement the analysis results. The remaining
hyperparameters without grid search were optimized with trial and error. The application
ranges of each parameter are shown in Table 2, and Learning rate 0.001, Dropout 0.2, and
Hidden layer 3 were applied as optimal values in this study.
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Table 2. Application range for hyperparameter optimization.

Optimization Grid Search T and E

Sequence
day 7, 14, 21

1~100
hour 12, 24, 48

Batch size
day 7, 14, 21, 28, 35

1~100
hour 12, 24, 36, 48, 60, 72

Epoch - 100~500 (Early stop)

Learning rate - 0.01~0.0001

Dropout - 0.1~0.25

Hidden layer - 2~5

The name of the scenario is the first letter of ‘dam name–day/time–application model–
scenario order or optimization′. As an example, the scenario is named “ADA-S1”, which
means “Andong–Day–ANN–Scenario No.1”, and “ADA-Opt”, which means “Andong–
Day–ANN–Optimize”.

To evaluate the statistical error and accuracy of the model according to the hyper-
parameter for each model scenario, the coefficient of determination (R2), mean abso-
lute error (MAE), root mean square error (RMSE), and volume error (VE) presented by
Hu et al. [18] were used as performance indicators. Table 3 representatively shows the
ANN model results for Andong Dam among 8 cases (2 dams × 4 deep learning mod-
els) that analyzed the best performance according to each scenario. Among the various
scenarios, ADA-S9 for daily data and AHA-S4 for hourly data were selected.

Table 3. Statistical performance by scenario for the ANN at Andong Dam.

Scenario
Input Statistical Indices

Selection
Sequence Batch R2 MAE RMSE VE

Day

ADA-S1 7 7 0.89 12.01 25.17 0.29

. . .

ADA-S4 14 14 0.83 9.56 20.10 0.13

. . .

ADA-S7 21 21 0.81 9.83 22.37 0.31

ADA-S8 21 28 0.86 9.54 28.62 0.33

ADA-S9 21 35 0.91 9.40 19.18 0.03 #

ADA-Opt 20 20 0.82 11.36 24.40 0.28

Hour

AHA-S1 12 12 0.80 20.70 42.42 0.17

. . .

AHA-S4 24 24 0.94 12.26 22.94 0.12 #

AHA-S5 24 36 0.89 11.34 30.50 0.20

AHA-S6 24 48 0.88 11.82 32.52 0.29

AHA-S7 48 48 0.91 12.59 27.72 0.27

. . .

AHA-Opt 10 10 0.91 11.77 29.45 0.13

#: Selected optimal scenario.

Table 4 shows the optimal scenario selection and the corresponding R2 by comparing
the observations and simulations for each model. The ANN model of the daily data at
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Andong Dam had a correlation R2 validation indicator of 0.91, which was closest to the
observation compared to other models. However, in the peak inflow, the GRU model
showed the closest results to the observations. In the peak inflow of the daily data of Imha
Dam, LSTM model showed 925.2 m3/s, least different from the actual inflow. As for the
scenario result applying the time data of Andong Dam, the correlation of the ANN model
was 0.94, similar to the daily data usage, which was the closest to the observation. Unlike
Andong Dam, in Imha Dam, the RNN model showed less difference between actual peak
inflow and predicted peak inflow than the ANN model. In particular, it was the smallest in
the LSTM model at 34.5 m3/s.

Table 4. Optimal scenario selection.

Dam/Time
Observed

(m3/s)

Simulated (m3/s), R2

ANN RNN LSTM GRU

Andong

Day 998.5

ADA-S9 ADR-Opt ADL-S1 ADG-S1

696.8 725.7 921.6 956.1

0.91 0.82 0.81 0.79

Hour 2629.1

AHA-S4 AHR-S8 AHL-S9 AHG-S6

1835.3 2327.7 3458.1 3053.5

0.94 0.86 0.87 0.87

Imha

Day 935.1

IDA-S9 IDR-S4 IDL-Opt IDG-S5

653.0 915.17 925.2 988.1

0.92 0.82 0.79 0.87

Hour 4890.1

IHA-S4 IHR-S9 IHL-S6 IHG-S7

3909.0 4226.0 4855.6 4248.5

0.92 0.95 0.95 0.95

2.7. Performance Evaluation of Optional Scenarios

For the evaluation for the performance evaluation of the scenarios, the RMSE-observed
standard deviation ratio (RSR) and the Nash–Sutcliffe efficiency (NSE) were applied among
various criteria. The equations for each criterion are shown in the following Equations (10)
and (11). With the calculated RSR and NSE, the model performance can be judged based
on the general performance rating (Table 5) [19].

RSR =
RMSE

STDEVobs
=

√
(∑n

i=1(yi − ŷi)
2)√

(∑n
i=1(yi − yi)

2)
(10)

NSE = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (11)

where yi is the observed value, yi is the mean value, ŷi is the predicted value, and n is the
numbers of data.

Table 5. General performance ratings [19].

Performance Rating RSR NSE

Very Good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65

Unsatisfactory RSR > 0.70 NSE ≤ 0.50
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Table 6 shows the RSR and the NSE calculated for the validation and test data of the
selected scenarios (Table 4), and the performance ratings evaluated with these values. As
a result of having validated the selected scenarios, the RSR value of Andong Dam daily
data was low and similar compared to the Imha Dam results, and the evaluation result was
“Very Good” in the ANN model and “Good” in the RNN model. In the hourly data, the
ANN model showed the lowest result of 0.34, and was evaluated as “Very Good” in all
models. Similar to Andong Dam, Imha Dam was evaluated as “Good” in the RNN model
except the ANN model. In the hourly data, the evaluation was “Very Good” in all models
and the NSE value was above 0.90, deriving reliable results.

Table 6. Performance rating evaluation for selected scenarios.

Case
RSR/NSE

ANN RNN LSTM GRU

Andong

Day

Validation 0.31/0.91 0.55/0.70 0.56/0.72 0.54/0.68

Test 0.31/0.90 0.53/0.68 0.56/0.75 0.56/0.66

Evaluation Very Good Good Good Good

Hour

Validation 0.33/0.99 0.38/0.99 0.38/0.99 0.37/0.99

Test 0.34/0.89 0.48/0.96 0.48/0.95 0.46/0.96

Evaluation Very Good Very Good Very Good Very Good

Imha

Day

Validation 0.36/0.87 0.54/0.68 0.52/0.70 0.59/0.73

Test 0.36/0.87 0.54/0.66 0.53/0.70 0.58/0.70

Evaluation Very Good Good Good Good

Hour

Validation 0.28/0.99 0.22/0.99 0.20/0.99 0.20/0.99

Test 0.29/0.91 0.24/0.95 0.25/0.96 0.24/0.96

Evaluation Very Good Very Good Very Good Very Good

3. Selection of Optimal Models
3.1. Drought Period

In order to select the optimal model according to the period for Andong Dam and
Imha Dam, first, the inflow by quantile for the total test period (2017–2020) was compared.

Then, the analysis results for each quantile of the inflow during the normal and dry
season are derived, and the daily inflow from Andong and Imha Dams are used to select the
inflow prediction model with the highest reliability during the drought period. In addition,
the periods of 28 June–20 August 2017, and 13 February–29 March 2018 in the study area
was in the ‘caution’ stage of drought crisis warning under the “Fundamental Act on Disaster
and Safety”. Therefore, this period data was used for drought period analysis.

Table 7 shows the inflows of the 1st (25%), 2nd (50%), and 3rd (75%) quartiles and
peak inflows of ADA-S9, ADR-Opt, ADL-S1, and ADG-S1, which are the optimal scenarios
for Andong Dam (Table 4). Over the total period (2017–2020), the RNN model showed
that the 1st, 2nd, and 3rd quartile values were close to the observations, especially within
the maximum difference of up to 2 m3/s. In the drought period (2017–2018), the RNN
predicted the 2nd and 3rd quartile inflows and maximum inflows closest to the observations,
excluding the 1st quartile values. The difference in the maximum inflow between RNN
predictions and observations was 6.25 m3/s, the smallest difference compared to other
RNN models. Figure 7 shows a comparison of the predicted inflow ranges for each model
versus the observed ranges for the total and drought periods.
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Table 7. Inflow prediction by period at Andong Dam.

Andong
Observed

(m3/s)
Simulated (m3/s)

ANN RNN LSTM GRU

Total period
(2017–2020)

25% 3.70 10.88 5.61 1.56 4.43

50% 8.12 11.09 8.50 4.43 7.54

75% 20.41 24.44 21.75 16.09 14.49

Drought period
(2017–2018)

25% 3.38 10.88 5.61 1.15 4.65

50% 6.38 10.88 6.52 2.28 7.26

75% 14.62 16.65 13.65 10.94 8.67

Max 299.03 214.77 305.28 241.11 258.09
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In the case of Imha Dam, the inflows of the 1st, 2nd and 3rd quartiles and peak inflows
were calculated by applying the optimal scenarios (IDA-S9, IDR-S4, IDL-Opt, IDG-S5).
Figure 8 shows a comparison of the predicted inflow ranges and the observed ranges of each
model for the total and drought periods at Imha Dam. As shown in Table 8 and Figure 8, the
prediction of the RNN shows the largest difference from the quartile value of the measured
inflow compared to other models. On the other hand, inflow predictions of LSTM have
the smallest differences from observations in the 1st and 3rd quartiles during the total
period and in the 1st and 2nd quartiles and the maximum during the drought period. In
the prediction of the maximum inflow, the difference between observation and prediction
was 45.14 m3/s, which showed a difference of approximately 10%. The GRU prediction
showed the most accurate result with a difference of 0.27 m3/s from the observation in the
3rd quartile of the drought period. As shown in Table 8, in Imha Dam, LSTM was selected
as the optimal model for inflow prediction during the total and drought periods.

As a result of predicting the dam inflow during the drought period, the RNN model for
Andong Dam and the LSTM model for Imha Dam were closest to the observed inflow. The
reason that the RNN model yielded better results than the LSTM model at Andong Dam
lies in the activation function. The existing RNN model uses the tanh function among the
activation functions to cause the gradient loss problem. However, in this study, the ReLu
function was used to reduce gradient loss during backpropagation learning. The reason
that the LSTM model was selected as the optimal model in Imha Dam is that the loss was
less than that of the RNN model due to the cells of the LSTM with memory function. In
addition, although the watersheds of the two dams are close, the optimal model is different
because various factors such as land conditions, river slope, and rainfall characteristics
worked. Therefore, it can be seen that the analysis process to find an appropriate model is
important by referring to these points.
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Table 8. Inflow prediction by period at Imha Dam.

Imha
Observed

(m3/s)
Simulated (m3/s)

ANN RNN LSTM GRU

Total period
(2017–2020)

25% 1.58 3.20 11.18 1.16 3.49

50% 4.12 3.87 12.82 4.57 5.08

75% 10.55 7.27 20.15 12.82 14.79

Drought period
(2017–2018)

25% 1.19 3.18 10.72 0.60 3.70

50% 2.52 3.40 11.80 2.61 4.91

75% 7.88 5.27 15.26 9.00 7.61

Max 470.37 652.99 415.17 425.23 388.09

3.2. Typhoons

It is important not only to analyze the normal or drought period using daily data to
predict the inflow to the dam, but also to analyze it using hourly data for flood control. In
particular, in the case of Imha Dam, the inflow of dams in flood season (21 June–20 September)
was 157.9 × 106 m3 in 2019, while it was 743.6 × 106 m3 in 2020.In other words, the inflow
amount was 4.7 times different even in the same period. Accordingly, by applying the six
major typhoon cases to each model, the maximum observed inflow and the prediction of
models are compared, and the most accurate model is selected by calculating R2. Table 9
shows the six major typhoons applied in this study. In particular, after the rainy season in
2020, typhoons occurred consecutively, and approximately 270 mm of rainfall fell in the
basins of Andong and Imha Dam, and a maximum of 23.4 mm of rainfall per hour was
recorded in the basin of Imha Dam. Among the six typhoon cases, Typhoon Maysak and
Haishen in 2020 occurred consecutively and, therefore, are considered to be one case.

Tables 10 and 11 show the peak inflow predicted by each deep learning model using
hourly inflow data for Andong Dam and Imha Dam, respectively. In Andong Dam, the GRU
predictions had the smallest differences from the peak inflows observed from Typhoons
Maemi, Kongrei, and Maysak and Haishen (Table 10). On the other hand, in Imha Dam, the
RNN prediction showed the smallest difference from the peak inflow observed in Typhoon
Rusa, Kongrei and Mitag (Table 11). Figure 9a,b show the comparison of the observations
and predicted inflow by four models for Typhoons Maysak and Haisen in Andong Dam
and Imha Dam, respectively. The GRU for Andong Dam and the RNN for Imha Dam
were selected as the optimal model based on the maximum inflow prediction and R2 value
under typhoon conditions. However, as the maximum inflow prediction and R2 values
differ greatly depending on the characteristics of each typhoon, such as rainfall strength
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and preceding rainfall, as shown in Tables 10 and 11, it is considered desirable to compare
various models and analyze for future flood simulation.

Table 9. Typhoon cases.

Typhoon Period
Andong (mm) Imha (mm)

Rainfall Hour (Max) Rainfall Hour (Max)

Rusa 23 August–1 September 2002 165.4 21.9 182.9 29.3

Maemi 6–14 September 2003 251.7 31.5 220.8 26.9

Kongrey 29 September–7 October 2018 94.3 5.1 128.3 10.4

Mitag 28 September–3 October 2019 133.1 12.5 166.6 19.9

Maysak and
Haishen 28 August–7 September 2020 268.1 15.0 270.0 23.4

Table 10. Predicted inflow to Andong Dam by typhoon cases.

Typhoon Observed
(m3/s)

Simulated (m3/s)

ANN RNN LSTM GRU

Rusa
Max 3678 2570 3623 4016 4025

R2 - 0.94 0.95 0.94 0.96

Maemi
Max 4522 3161 4267 4339 4597

R2 - 0.95 0.94 0.96 0.96

Kongrey
Max 793 549 644 683 699

R2 - 0.62 0.77 0.81 0.76

Mitag
Max 1845 1286 1866 2117 1773

R2 - 0.91 0.95 0.94 0.95

Maysak andHaishen
Max 2629 1835 2328 3458 3053

R2 - 0.80 0.72 0.73 0.90

Table 11. Predicted inflow to Imha Dam by typhoon cases.

Case
Observed

(m3/s)
Simulated (m3/s)

ANN RNN LSTM GRU

Rusa
Max 7113 5677 7102 7014 6709

R2 - 0.94 0.96 0.95 0.94

Maemi
Max 6665 5312 6221 6848 6938

R2 - 0.95 0.95 0.94 0.92

Kongrey
Max 2584 2086 2458 2174 2222

R2 - 0.90 0.97 0.88 0.87

Mitag
Max 3534 2856 3488 3647 2793

R2 - 0.96 0.97 0.94 0.95

Maysak and
Haishen

Max 4890 3909 4226 4856 4248

R2 - 0.91 0.91 0.89 0.90

K-water, which operates Andong Dam and Imha Dam, is currently using the SFM to
predict the inflow of the two dams. Therefore, the inflow of the SFM and the predicted
inflow of the GRU (Andong Dam) and the RNN (Imha Dam) were compared through
analysis according to typhoon conditions. The SFM was calibrated so that the predicted
inflow was closest to the observed maximum inflow while adjusting the parameters. In
some cases, the R2 has increased while the maximum predicted inflow has decreases.
However, in practical dam operation, the maximum inflow and arrival time are more
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important factors. Therefore, the calibration was performed to better match the maximum
inflow than the R2 between the prediction and the observation.
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In Andong Dam, the difference between the predictions and the observations of the
maximum inflow for Typhoons Kongrei and Mitag was larger in the SFM than in the GRU.
In the case of Imha Dam, the inflow of the SFM was predicted to be lower than the observed
value as well as the RNN inflow in all Typhoon conditions (Table 12). These results show
that the RNN selected in this study is a reliable model when compared with the results of
the SFM currently being used for dam inflow prediction. Overall, the predictions of the
deep learning models were closer to the observed maximum inflow than that of the SFM.
On the other hand, during Typhoon Maysak and Haishen at Andong Dam, the predictions
of the SFM were better in agreement with the observed inflow than those of deep learning
models. Therefore, it is necessary to derive more reasonable results through comparison of
the predicted values of the SFM and deep learning models when making decisions related
to dam operation.

Table 12. Predicted inflow by optimal deep learning model and the SFM in typhoon conditions.

Case

Andong Imha

Observed
(m3/s)

Simulated (m3/s) Observed
(m3/s)

Simulated (m3/s)

GRU SFM RNN SFM

Rusa
Max 3628 4025 3799 7113 7102 6098

R2 - 0.96 0.96 - 0.96 0.98

Maemi
Max 4522 4597 4267 6665 6221 5767

R2 - 0.96 0.92 - 0.95 0.96

Kongrey
Max 793 699 668 2584 2458 2241

R2 - 0.76 0.80 - 0.97 0.96

Mitag
Max 1845 1773 1982 3534 3488 3207

R2 - 0.95 0.95 - 0.97 0.98

Maysak and
Haishen

Max 2629 3053 2486 4890 4226 4011

R2 - 0.90 0.89 - 0.91 0.93

4. Discussion

This study showed the process of predicting and analyzing dam inflow using deep
learning models. The reason for conducting this study is that it is important to predict the
inflow with high accuracy for dam operation in disaster situations such as drought and
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flood. Most of the prediction results showed that the RNN models had higher accuracy
than the ANN model. The reason for these results is that precipitation and inflow are
time-series data, and the RNN models circulate the previous results as input variables
so that learning is performed continuously without compromising the learning ability
relatively. In typhoon and drought conditions, recurrent neural network models (RNN,
LSTM, GRU) were selected as optimal models. In comparison with the SFM and the deep
learning models, the prediction of most deep learning models was found to be closer to the
observed maximum inflow than that of the SFM, but the SFM also showed better results
under certain conditions.

These results suggest that even if dam basins are adjacent, different deep learning
models may be selected as the optimal model for each dam by various factors including
land condition and rainfall characteristics. Therefore, further studies including various
factors such as land condition, evaporation, temperature, and wind speed that have not
been considered in this study are needed to predict more accurate dam inflow using deep
learning model.

5. Conclusions

In this study, for efficient water resource management of Andong Dam and Imha
Dam, the optimal model was selected through comparison and validation of deep learning
models in predicting the inflow to the two dams. Considering that dam inflow prediction is
a time series analysis, RNN models were mainly applied. Four deep learning techniques—
ANN, RNN, LSTM, and GRU—were utilized based on dam hydrology data for the past
20 years to predict the inflow of the dams, and optimal input variables were derived
through various indicators. In addition,

(1) To evaluate the detailed prediction capability of the deep learning model with each
scenario, the data were analyzed according to quartile values after differentiating the
entire period and the drought period. To select a deep learning model most suitable
to the drought and normal season based on the scenario, predictions and observations
for the inflows of the 1st, 2nd and 3rd quartiles and peak inflow were compared using
the daily time series data. In Andong Dam, the RNN model produced the closest
quartile values to the observed inflow in the total period (2017–2020) and it also
derived the closest to the measurements in the normal and drought period. In Imha
Dam, the LSTM model showed the closest to the observations in the normal season.
During the drought period, the LSTM prediction showed the smallest difference from
the observations in the 1st and 2nd quartiles, whereas the GRU prediction showed
the smallest difference in the 3rd quartile.

(2) A comparative analysis of six cases of past typhoons showed different predictions
depending on the deep learning models. In Andong Dam, the GRU model showed
higher accuracy compared to other models in the inflow prediction. In Imha Dam,
unlike Andong Dam, the predicted inflow of the RNN showed the highest correlation
and the most agreement with the observations. In Typhoon Mitag, R2 has a high
correlation of 0.97 and a difference of 1% between the observations and predictions
which is the closest to the measured value compared to other models. As a result of an-
alyzing the selected model, since the dam inflow and precipitation were characterized
as time series data, the RNN derived predicted inflow with relatively high reliability.

(3) Compared with the SFM currently used to predict the inflow into the dam, the
selected deep learning models derived results that were closer to the observed inflow
in the maximum inflow prediction. In predicting future typhoon inflows, using a
conceptual or physical model and a deep learning model together will help in efficient
decision making.

The appropriate deep learning model varies depending on weather conditions such as
drought, typhoon, and torrential rain; therefore, it is important to compare various deep
learning models to cope with uncertain future climate change and to manage the operation
of reservoirs efficiently and safely. In addition, as the SFM rather than the deep learning
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model shows better prediction results under certain typhoons, the analytical ability of
hands-on workers to utilize deep learning models, as well as existing SFMs is important,
as shown in the previous analysis. This study, which analyzed inflow predictions using
hydrological data and deep learning models, is expected to contribute to stable dam
operation management and disaster response when used as basic data for inflow prediction
models of various multi-purpose dams including Andong and Imha Dams.
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