
Citation: Pakdaman, M.; Babaeian, I.;

Bouwer, L.M. Improved Monthly and

Seasonal Multi-Model Ensemble

Precipitation Forecasts in Southwest

Asia Using Machine Learning

Algorithms. Water 2022, 14, 2632.

https://doi.org/10.3390/w14172632

Academic Editors: Fi-John Chang,

Li-Chiu Chang and Jui-Fa Chen

Received: 7 July 2022

Accepted: 19 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Improved Monthly and Seasonal Multi-Model Ensemble
Precipitation Forecasts in Southwest Asia Using Machine
Learning Algorithms
Morteza Pakdaman 1,* , Iman Babaeian 1 and Laurens M. Bouwer 2,*

1 Atmospheric Science and Meteorological Research Center (ASMERC), Climate Research Institute (CRI),
Mashhad, Iran

2 Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1,
20095 Hamburg, Germany

* Correspondence: pakdaman.m@gmail.com (M.P.); laurens.bouwer@hereon.de (L.M.B.)

Abstract: Southwest Asia has different climate types including arid, semiarid, Mediterranean, and
temperate regions. Due to the complex interactions among components of the Earth system, fore-
casting precipitation is a difficult task in such large regions. The aim of this paper is to propose a
learning approach, based on artificial neural network (ANN) and random forest (RF) algorithms
for post-processing the output of forecasting models, in order to provide a multi-model ensemble
forecasting of monthly precipitation in southwest Asia. For this purpose, four forecasting models,
including GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-RSMAS-CCSM4, included in the
North American multi-model ensemble (NMME) project, are considered for the ensemble algorithms.
Since each model has nine different lead times, a total of 108 different ANN and RF models are trained
for each month of the year. To train the proposed ANN an RF models, the ERA5 reanalysis dataset is
employed. To compare the performance of the proposed algorithms, four performance evaluation
criteria are calculated for each model. The results indicate that the performance of the ANN and RF
post-processing is better than that of the individual NMME models. Moreover, RF outperformed
ANN for all lead times and months of the year.

Keywords: multi-model ensemble; artificial neural network; random forest; precipitation; forecasting;
persian gulf

1. Introduction

The accurate forecasting of precipitation has been an important topic from both theo-
retical points of view and practical applications. Many researchers around the world are
working to improve the accuracy of monthly and seasonal weather forecasts. Such forecasts
are essential for various water resource planning practices, as well as related actions for
agricultural planning and securing food supplies in many regions of the world. With in-
creasing populations that rely on such water resources and the increasing impact of climatic
variations and climate change, requirements for the accuracy of such forecasts are also
increasing. Different computational methods are used for improving forecasts that are gen-
erally divided into two categories: dynamical and statistical methods for post-processing
the outputs of General circulation models (GCMs). The performance of these techniques
can vary for different geographical areas with different topographies and climate types.

Among the computational methods for post-processing the output of forecasts, the use
of machine learning (ML) techniques is very widespread. ML theory employs several types
of tools such as fuzzy systems (e.g., [1]), artificial neural networks, decision trees, and so on.
The widespread use of these techniques can be attributed to the ability of these methods to
model Big Data and their flexibility in calculations, as well as their increased abilities to use
such techniques with available modern computational resources. Examples in hydrology
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include flood forecasting applications (see e.g., [2]) and climate modelling applications for
sub-grid processes ([3]).

In seasonal weather forecasting, [4] employed artificial neural networks (ANNs) for
the monthly forecasting of precipitation over Iran, and used the outputs of the North
American multi-model ensemble (NMME) project. They also used other machine learning
techniques including ANN, support vector regression, decision tree, and random forests for
the monthly forecast of precipitation [5]. Ref. [6] used the non-linear autoregressive neural
network (NARNN), non-linear input–output (NIO), and NARNN with exogenous input
(NARNNX), for annual precipitation forecasting over 27 precipitation stations located in
Gilan, Iran. Their results showed that the accuracy of the NARNNX was better than that of
the NARNN and NIO. Ref. [7] proposed a model for the monthly forecasting of precipi-
tation for East Azarbaijan in Iran, over a ten-year period using the multilayer perceptron
neural network (MLP) and support vector regression (SVR) models. They employed the
flow regime optimization algorithm (FRA) for training step in multilayer neural network
and support vector machine. Ref. [8] constructed an artificial neural network model for
generating probabilistic subseasonal precipitation forecasts over California. They used an
artificial neural network (ANN) to establish relationships between the 7-day accumulated
precipitation of numerical weather prediction (NWP) ensemble forecast. Ref. [9] tried to
use the random-forest-based machine learning algorithm for nowcasting convective rain in
Kolkata, India, with a ground-based radiometer. They found that their proposed model
is very sensitive to the boundary layer instability, as indicated by the variable importance
measure. Their study showed the suitability of a random forest algorithm for nowcasting
the application and other forecasting problems. Ref. [10] used the ensemble precipitation
forecasts of six numerical models from the THORPEX Interactive Grand Global Ensemble
(TIGGE) database, associated with four basins in Iran for 2008–2018, which were extracted
and bias-corrected by the quantile mapping (QM) and random forest (RF) methods. Their
results demonstrated that most models had better skills in forecasting precipitation depth
after bias correction using the RF method, compared to using the QM method and raw
forecasts. Ref. [11] used random forests and regression tree for quantitative precipitation
estimates with operational dual-polarization radar data. The use of neural networks
and machine learning techniques is not limited to precipitation forecasting. For exam-
ple, Ref. [12] used decision tree and neural networks for lightning prediction. Ref. [13] used
a kernel least mean square algorithm for solving fuzzy differential equations and studied
its application in earth’s energy balance model and climate. Ref. [14] studied the theoretical
impact of changing albedo on precipitation and [15] found that fuzzy uncertainty for albedo
creates more real results after solving the fuzzy energy balance equation. For some other
applications of machine learning in climate modeling, see [16–23].

Southwest Asia contains many geographical features including water bodies of Caspian
Sea, Persian Gulf, Oman Sea, Arabian Sea, and elongated mountains of Zagros and Alborz,
as well as widespread deserts in Saudi Arabia, Iraq, and Iran (Lut and Dasht-e-Kavir).
The region has different types of climates including arid, semiarid, Mediterranean, and tem-
perate regions. Due to complex interactions among components of the earth and weather
systems, the forecasting of precipitation is a difficult task in such large regions. Several
researches have conducted monthly forecasts of precipitation in this region and countries
therein. Ref. [24] studied the attributes of precipitation for the Middle East and southwest
Asia during periods of enhanced or reduced tropical eastern Indian Ocean precipitation as-
sociated with opposing phases of the Madden–Julian oscillation (MJO). They used multiple
estimates of both observed precipitation and MJO state during November–April 1981–2016
to provide a more robust assessment in this data-limited region. Ref. [25] assessed the
sensitivity of southwest Asia precipitation during the November–April rainy season to
four types of El Niño–Southern Oscillation (ENSO) events, El Niño and La Niña, using an
ensemble of climate model simulations forced by 1979–2015 boundary conditions. Ref. [26]
studied the potential predictability and skill of boreal winter (December to February: DJF)
precipitation over central-southwest Asia by using six models of the North American
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multi-model ensemble project for the period 1983–2018. Ref. [27] explored the predictability
of central-southwest Asia wintertime precipitation based on its time-lagged relationship
with the preceding months’ (September–October) sea surface temperature (SST), using a
canonical correlation analysis (CCA) approach. They showed that the regional potential
predictability has a strong dependency on the ENSO phenomenon, and the strengthening
(weakening) of this relationship yields forecasts with higher (lower) predictive skill. Based
on the literature review, there are various studies in precipitation forecasting for the coun-
tries of the Southwest Asian region separately. However, there is no integrated approach
based on machine learning methods as well as MME approaches that consider multiple
countries simultaneously. Although extending the computations to a larger area increases
the computational costs, it can better model large precipitation patterns. On the other hand,
using a MME approach can help reduce forecasting error.

The aim of this research is to construct a framework based on ANN and RF meth-
ods to improve the performance of monthly forecast of precipitation in Southwest Asia.
For this purpose, a multi-model approach is proposed which uses the output of four GCMs,
including GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-RSMAS-CCSM4 from
the NMME project. We build on previous developments, but include a wider range of
ensemble forecasts, and apply these methods to a larger region, to assess its performance.
The paper is organized as follows: Section 2 contains information about the datasets and
Section 3 illustrates the details of the proposed algorithms. Section 4 contains the results,
and finally Section 5 contains concluding remarks.

2. Data

We propose a multi-model ensemble approach for monthly precipitation forecasting in
Southwest Asia using the output of four models (GEM-NEMO, NASA-GEOSS2S, CanCM4i,
and COLA-RSMAS-CCSM4) from the NMME project. We also need observed precipitation
data as a benchmark to compare the forecasts (or, in this case, the hindcasts). In this regard,
we use ERA5 data for estimating monthly precipitation. The region of southwest Asia in
this paper is contained in the region which is depicted in Figure 1. This region is limited to
latitude 22 ◦N to 42 ◦N and longitude 39 ◦E to 70 ◦E.
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Figure 1. Region of study.
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Details of the GCMs and their abbreviation are provided in Table 1. The applied spatial
resolution in this study is 1° × 1°. The number of members of NEMO, CanCM4i, and
CCSM4 is 10, while the number of members of the NASA model is 4. For simplicity, for each
of four GCMs, we calculated the average values of all members. Moreover, the number of
lead times of NEMO, CanCM4i, and CCSM4 is 12 while the number of lead times of NASA
is 9. Thus, we considered the same number of lead times (nine) for all four GCMs. Based on
the hindcast period and available data for all four models and also the ERA5 data, the period
1982–2016 was considered for constructing the post-processing model. Data of the four
NMME models were downloaded from https://iridl.ldeo.columbia.edu (accessed on 22
January 2022), while the ERA5 data are accessible via https://cds.climate.copernicus.eu
(accessed on 22 January 2022). The unit of the amount of precipitation for NMME models
was different from the units in the ERA5 data. In preprocessing step, the data were prepared
for the post-processing algorithms. No missing data were found in the datasets.

Table 1. Four models which are used in this study for post-processing.

Models Abbreviation Members Lead Times Hindcast Period

GEM-NEMO NEMO 10 12 (0.5–11.5 months) 1981–2018
NASA-GEOSS2S NASA 4 9 (0.5–8.5 months) 1981–2017

CanCM4i CanCM4i 10 12 (0.5–11.5 months) 1981–2018
COLA-RSMAS-CCSM4 CCSM4 10 12 (0.5–11.5 months) 1982–2021

3. Methods

In this section, we use the ability of ANN and RF for monthly forecast of precipitation
in Southwest Asia. Based on [28], MLP neural networks, with hidden layers and sigmoid
transfer function

s(t) =
1

1 + exp(−t)
, (1)

are universal approximators, and we can use them for regression tasks. Figure 2 depicts
a general architecture of a single (hidden) layer perceptron neural network which was
considered in this paper.

Figure 2. General architecture of a single (hidden) layer perceptron neural network. f is the activa-
tion function.

On the other hand, random forest (RF) is an ensemble method in machine learning
that can be used for both classification and regression purposes. The base algorithm in
RF is a decision tree (DT). Based on the type of the problem, two different types of DT are
available: regression DT and classification DT. Thus, based on the type of DT, we can have
RF for regression or classification. For more details about the RF, ANN, and DT, see [29].
In this paper, we used the machine learning toolbox of MATLAB 2018b. A general form

 https://iridl.ldeo.columbia.edu
 https://cds.climate.copernicus.eu


Water 2022, 14, 2632 5 of 15

of the proposed algorithm is depicted in Figure 3, wherein we will simply replace the
ensemble learning algorithm by ANN or RF.

Figure 3. A general architect of the proposed algorithm.

More details about the proposed approach are illustrated in Figure 4. As the figure
shows, the proposed algorithm has six inputs and one output. The inputs include the
monthly precipitation data of four models from the NMME project, along with the latitude
and longitude of the region. In Figure 4, ERA5 data are used to train RF and ANN, and
finally the output of the algorithm is an approximation of monthly precipitation.

Figure 4. Details of the proposed algorithm.

Suppose that M is the output of the ANN or RF algorithm. Since each climate model
generates the forecast data for different lead times, we need to construct a specific post-
processing model related to each month and lead time. Suppose that Mi(m, l) is the output
of the i-th NMME model M, i = 1, 2, 3, 4 for month m and lead time l. We can say that
Mi ∈ {CanCM4i, CCSM4, NASA, NEMO}. Also suppose that, M̂(m, l) is the output of
the RF or ANN algorithm for month m, and lead time l. Indeed, M̂(m, l) is a function of
Mi(m, l), i = 1, 2, 3, 4, latitude, and longitude, as depicted in Figure 4. This function can be
defined as follows:

M̂(m, l) = F(M(m, l), x, y, P), (2)

wherein M(m, l) contains all data of Mi(m, l), i = 1, 2, 3, 4 (four NMME models), and x and
y indicate longitude and latitude, respectively. Furthermore, P indicates the adjustable
parameters of RF or ANN. If F indicates the RF, P indicates the adjustable parameters
of RF (for example the number of decision trees in the RF algorithm). If F indicates the
ANN algorithm, P indicates the weights of input, hidden, and output layers of the ANN
algorithm. The optimal values of P (which will be indicated by P∗) will be obtained for the
training period. For a seasonal forecast, we do not need to provide separate RF and ANN
algorithms. The monthly results of three consecutive months can be aggregated for the
seasonal forecast of three months.
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For selecting the correct initial months for each month for which the prediction is
made, see Table 2. An example is provided in Table 3 for a situation which we have four
lead times. This table indicates the correct month number for different initial months.

Table 2. Lead times versus months.

Month
Lead Time 1 2 . . . 9

1 M(1,1) M(1,2) . . . M(1,9)

2 M(2,1) M(2,2) . . . M(2,9)
...

...
... . . .

...

12 M(12,1) M(12,2) . . . M(12,9)

Table 3. An example of determining the target month for a given month and lead time.

Month
Lead Time L1 L2 L3 L4

January January February March April

February February March April May

March March April May June

April April May June July

May May June July August

June June July August September

July July August September October

August August September October November

September September October November December

October October November December January

November November December January February

December December January February March

To compare the performance of the models, the values of the correlation coefficient,
root mean squared error (RMSE), Kling–Gupta efficiency (KGE), and Nash–Sutcliffe effi-
ciency (NSE) can be calculated as follows:

r = ∑n
i=1 (Mi −M)(Oi −O)√

∑n
i=1 (Mi −M)2 ∑n

i=1 (Oi −O)2
, (3)

wherein M and O indicate the values of the model and observation, respectively. Fur-
thermore, M and O denote the mean values of corresponding values. The RMSE can be
calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(Mi −Oi)2. (4)

Kling–Gupta efficiency (KGE) is defined as follows (see [30]):

KGE = 1−

√
(r− 1)2 + (

σM
σO
− 1)2 + (

M
O
− 1)2 (5)
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wherein σ indicates the standard deviation. The maximum value of KGE is 1 which
indicates perfect agreement between the model output and observations. Finally, the NSE
(Nash–Sutcliffe efficiency) is calculated as follows ([31]):

NSE = 1− ∑n
i=1(Mi −Oi)

2

∑n
i=1
(
Oi −O

)2 . (6)

Similar to KGE, the maximum value of NSE is 1 which indicates perfect agreement
between model output and observations.

For tuning the hyperparameters of the ANN and RF algorithms, we used an empirical
approach. We examined several values for each hyperparameter and selected the best case.
For example, to determine the best value for the number of decision trees in the RF, we
examined the values 20, 40, 60, . . . , 200. The best performance of RF was achieved for the
number of trees equal to 100. As another example, for the number of neurons in the hidden
layer of the ANN, we examined the values 3, 6, 9, . . . , 21. The best performance of ANN
(considering the RMSE, KGE, NSE, and the correlation coefficient) was achieved for the
number of neurons equal to 15. It must be noted that using more (less) neurons or more
(less) DTs may cause overfitting (underfitting).

4. Results and Discussion
4.1. Monthly Forecasts

After applying ANN and RF for post-processing the output of the four NMME mod-
els, the values of root mean squared error (RMS), correlation coefficient, Nash–Sutcliffe
efficiency (NSE), and Kling–Gupta efficiency (KGE) were calculated to evaluate the perfor-
mance of the proposed algorithms for each model separately.

The raw forecast performance of the four models (before post-processing), along with
the performance of RF and ANN (after post-processing), was calculated for all lead times
and months. To train and test the RF and ANN, the dataset was divided into two subsets.
Since the hindcast period was 1982–2016 and contains 35 years, the period 1982–2007
(26 years) was considered for training the RF and ANN, while the period 2008–2016
(9 years) was considered to test the RF and ANN. This means that approximately 75% of
data were used for training and 25% was used for testing.

Figure 5 depicts the values of KGE for all months and lead times 1–4 while Figure 6
depicts the values of KGE for all months and lead times 5–9. For example, the maximum
value of KGE in the first lead time of Figure 5 occurs in May (which predicts May itself)
and for both ANN and RF. The maximum value of KGE in the second lead time of Figure 5
occurs in April (which predicts May) and for both ANN and RF. It is also should be noted
that all calculated performance indices (KGE, RMSE, and NSE), as well as the correlation
coefficient, were calculated for test period 2008–2016. Thus, all generated figures are
devoted to period 2008–2016.

As shown in Figure 5, the values of KGE for RF and ANN are higher than the other
NMME models. This is true for approximately all months and lead times (except May in
lead 4, whereby the KGE of ANN is lower than that of NASA and CanCM4i). However,
the values of KGE (for RF) for all months and lead times are higher than those for ANN
and also the NMME models.

When considering the RF and ANN methods, Figure 5 shows that for lead time
1, the maximum forecast error occurs in September, which may be due to the fact that
September is the transition month from the warm period to the cold period of the year. A
similar discussion can be made for Figure 6. As shown in Figure 5, the lowest values of
KGE for the NMME models are −0.27 (for CCSM4 and month 8), −0.27 (for NEMO and
month 7), −0.31 (for CCSM4 and month 5), and −0.27 (for NEMO and month 5) for lead
times 1–4, respectively. These values are improved by applying the RF method to 0.68, 0.66,
0.67, and 0.68 respectively. Similarly, as shown in Figure 6, the lowest values of KGE for
the NMME models are −0.27 (for NEMO and month 4), −0.29 (for NEMO and month 3),
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−0.21 (for NEMO and month 3), −0.19 (for NEMO and month 2), and −0.13 (for NEMO
and month 1) for lead times 5–9, respectively. These values are improved to 0.62 (using the
RF and ANN), 0.63 (RF and ANN), 0.4 (RF), 0.41 (ANN), and 0.4 (RF), respectively.
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Figure 5. Kling–Gupta efficiency (KGE) for lead times 1–4.
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Figure 7 shows the values of NSE for all months and lead times 1–4. As it can be
observed in Figure 7, the values of NSE for the RF and ANN are higher than those for the
other NMME models. This is true for approximately all months and lead times (except
some months of lead 2). However, the values of NSE for the RF algorithm (for all months
and lead times) are higher than those for the ANN and also for the NMME models. As
shown in Figure 7, the lowest values of NSE for the NMME models are −0.48 (for CCSM4
and month 8),−0.42 (for CCSM4 and month 6),−0.39 (for CCSM4 and month 5), and−0.44
(for CCSM4 and month 4) for lead times 1–4, respectively. These values are improved by
the RF method to 0.6, 0.57, 0.61, and 0.57, respectively.
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Figure 7. Nash–Sutcliffe efficiency (NSE) for lead times 1–4.

Figure 8 shows the values of RMSE for all months and lead times 1–4. As it can be
observed in Figure 8, the values of RMSE for the RF and ANN are lower than those for the
other NMME models. This is true for approximately all months and lead times. However,
the values of RMSE for the RF algorithm (for all months and lead times) are lower than
those for the ANN and also the NMME models. As shown in Figure 8, the maximum values
of RMSE for the NMME models are 47.64 (for CCSM4 and month 8), 46.81 (for CCSM4
and month 6), 46.24 (for CCSM4 and month 5), and 47.1 (for CCSM4 and month 4) for lead
times 1–4, respectively. These values are improved by the RF method to 24.83, 25.79, 24.5,
and 25.8, respectively.

Figure 9 shows the values of correlation coefficient for all months and lead times 1–4.
As it can be observed in Figure 9, the correlation coefficient values for the RF and ANN are
higher than those for the other NMME models. This is true for approximately all months
and lead times. However, the values of correlation coefficient for the RF algorithm (for all
months and lead times) are higher than those for the ANN and also the NMME models.
As shown in Figure 9, the lowest values of correlation coefficient for the NMME models
are 0.41 (for CCSM4 and month 8), 0.27 (for CanCM4i and month 9), 0.3 (for CanCM4i
and month 8), and 0.26 (for CanCM4i and month 7) for lead times 1–4, respectively. These
values are improved to 0.77 (RF), 0.81 (RF), 0.81 (ANN), and 0.82 (RF), respectively.
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4.2. Seasonal Forecasts

In this section, the skills of the proposed algorithm are evaluated for seasonal fore-
casts including: DJF (winter), MAM (spring), JJA (summer), and SON (autumn). For this
purpose, the lead 1 data of three consecutive months were considered in order to gen-
erate the seasonal data. Similar calculations can be performed for the other lead times.
Figure 10 depicts the values of RMSE for all seasons and for the test data (2008–2016).
Except SON, whereby ANN has lower RMSE than RF, for other seasons, RF outperforms
ANN. Furthermore, in comparison to four NMME models, the RMSE of ANN and RF
is lower.
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Figure 10. Seasonal RMSE for the models.

Figure 11 depicts the values of NSE for all seasons and for test data. Except SON,
for which ANN has a larger NSE than RF, RF outperforms ANN. Moreover, in comparison
with four NMME models, the values of NSE for ANN and RF are larger.

Figure 12 depicts the values of correlation coefficient for all seasons and for test data.
Except SON, for which ANN has a larger correlation coefficient than RF, for other seasons,
RF outperforms ANN. Furthermore, in comparison with four NMME models, the values of
correlation coefficient for ANN and RF are larger.

To indicate the performance pattern of the models, during the DJF season, the values
of RMSE are plotted for test data in Figure 13. As it can be observed in Figure 13a, the RF
algorithm has the best performance among the other models. After the RF algorithm, based
on Figure 13b, the ANN algorithm has better performance in comparison with the NMME
models. Moreover, it can be inferred that in the raw (NMME) model data, the maximum
error occurs in the mountainous areas of Zagros and Alborz and lands in the east and
south of the region. However, the ANN and RF methods are able to reduce the error
over high-elevation lands, while the ability of the RF method to reduce the error is larger
than that for the ANN. However, in both methods, the error increased slightly in some
lowland areas.
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Figure 11. Seasonal NSE for the models.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Correlation

DJF

JJA

MAM

SON

S
e

a
s
o

n
s

CanCM4i

CCSM4

NASA

NEMO

NN

RF

Figure 12. Seasonal correlation coefficient for the models.
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Figure 13. The values of RMSE during the DJF for test data: (d–f) have the same range of RMSE in
the color bar, unlike the other models in (a–c).

5. Conclusions

In this paper, a multi-model ensemble approach was proposed for the monthly fore-
casting of precipitation using ANN and RF algorithms for southwest Asia. For this purpose,
the outputs of four NMME models GEM-NEMO, NASA-GEOSS2S, CanCM4i, and COLA-
RSMAS-CCSM4 were post-processed using the ERA5 data as a reference. The period
1982–2007 was used for learning the ANN and RF, while the data from period 2008–2016
were used for testing the algorithms. Since each model contains of nine different lead
time, for each month of year, we had nine different datasets. In this paper, we trained
108 ANN and RF models for each lead time and month separately. Four performance
evaluation criteria (root mean squared error (RMS), correlation coefficient, Nash–Sutcliffe
efficiency (NSE), and Kling–Gupta efficiency (KGE), were calculated for each of 108 models
along with NMME models. The results indicate that, approximately, the output of ANN
and RF outperforms the NMME models for all months and lead times. Specifically, RF
outperforms the ANN and the other four NMME models for all months and all lead times.
The proposed algorithms and approach can be used for monthly forecasting precipitation in
southwest Asia, but can also be modified for the monthly forecasting of, e.g., temperature
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and other variables. Moreover, other machine learning techniques could be applied to
improve the accuracy of the proposed multi-model approach. The results of this research
show that despite the vastness of the studied area and the different climates contained
therein, machine learning methods can be used for post-processing and improving forecasts
in a multi-model ensemble approach.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN artificial neural network
DJF December, January, February (winter)
ERA5 ECMWF re-analysis dataset 5
JJA June, July, August (summer)
KGE Kling–Gupta efficiency coefficient
MAM March, April, May (spring)
NMME North American multi-model ensemble
NSE Nash–Sutcliffe efficiency coefficient
RF Random forest
RMSE Root mean squared error
SON September, October, November (autumn)
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