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Abstract: The soil water retention curve (SWRC) is essential for assessing water flow and solute
transport in unsaturated media. The van Genuchten (VG) model is widely used to describe the SWRC;
however, estimation of its effective hydraulic parameters is often prone to error, especially when data
exist for only a limited range of matric potential. We developed a Metropolis-Hastings algorithm of
the Markov chain Monte Carlo (MH-MCMC) approach using R to estimate VG parameters, which
produces a numerical estimate of the joint posterior distribution of model parameters, including
fully-quantified uncertainties. When VG model parameters were obtained using complete range
of soil water content (SWC) data (i.e., from saturation to oven dryness), the MH-MCMC approach
returned similar accuracy as the widely used non-linear curve-fitting program RETC (RETention
Curve), but avoiding non-convergence issues. When VG model parameters were obtained using
5 SWC data measured at matric potential of around −60, −100, −200, −500, and −15,000 cm, the
MH-MCMC approach was more robust than the RETC program. The performance of MH-MCMC are
generally good (R2 > 0.95) for all 8 soils, whereas the RETC underperformed for coarse-textured soils.
The MH-MCMC approach was used to obtain VG model parameters for all 1871 soils in the National
Cooperative Soil Characterization dataset with SWC measured at matric potentials of −60 cm, −100
cm, −330 cm, and −15,000 cm; the results showed that the simulated SWC by MH-MCMC model
were highly consistent with the measured SWC at corresponding matric potential. Altogether, our
new MH-MCMC approach to solving the VG model is more robust to limited coverage of soil matric
potential when compared to the RETC procedures, making it an effective alternative to traditional
water retention solvers. We developed an MH-MCMC code in R for solving VG model parameters,
which can be found at the GitHub repository.

Keywords: soil water retention curve; van Genuchten; Bayes; Markov Chain Monte Carlo

1. Introduction

The relationship between volumetric soil water content (SWC, θ, L3·L−3) and matric
potential (h, -cm, taken negative for increasing suctions, same hereafter), i.e., the soil water
retention curve (SWRC), is critical for understanding the hydraulic characteristics of a soil.
The SWRC is a physical basis for deriving flow and storage properties of variably saturated
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porous media and, as such, is key to quantifying water (e.g., infiltration, evaporation, and
root and water uptake) and material (e.g., erosion, weathering, and solute transport) fluxes
in soils. Therefore, it is important to develop methods which can accurately describe the
SWRC for different soils.

The SWRC is typically determined under laboratory conditions where h or SWC are
measured and used to build an empirical retention curve. To date, no one measurement
device allows for full determination of water retention over all possible moisture contents;
thus it has become common to use multiple measurement methods to build a complete
SWRC [1]. For example, the SWRC is often determined using a porous plate apparatus,
in which SWC can be measured gravimetrically for discrete h values after pressure equi-
libration with the ceramic plate matrix [2,3]. However, because ceramic plate methods
have lower accuracy in the driest range (e.g., h < −4000 cm) [4], they can be supplemented
with methods that measure water potential in the vapor phase to derive h (e.g., dew point
methods) [5]. These values become the basis for extrapolating an accurate SWRC for a
given soil.

Many mathematical models have been developed for estimating the SWRC of soils. For
example: Brooks and Corey [6], van Genuchten [7], Fayer and Simmons [8], Webb [9], Khlosi
et al. [10], Fredlund and Xing [11], and Groenevelt and Grant [12] developed models to fit
the SWRC data from saturation to oven dryness. Among these models, the van Genuchten
model (hereafter called VG model) is most widely used because it well describes the SWRC
for a large range of soil types [13–15]. The VG model, however, is a complex non-linear
equation, involving several parameters (i.e., saturated water contents (θS), residual water
contents (θr), a parameter related to the inverse of the air entry pressure (α), and a metric
related to the pore-size distribution (n)) to simulate the SWRC curves, making it difficult to
obtain optimal solutions for those parameters through inverse modeling.

Modern computing capabilities have facilitated the use of several numerical solvers
and algorithms which improve empirically-derived solutions to optimize VG parameters.
The widely used RETC (RETention Curve) program [13] is a non-linear, least squares op-
timization algorithm for building soil water retention curves. Despite the success of the
RETC, the program often produces compounding uncertainties when seeking optimal
parameter solutions [14,15]. For example, when solving for SWRC parameters, Wang
et al. [16] suggests that RETC does not guarantee convergence to the global optimum
because it requires the prior soil information to initialize the VG model parameters. The
traditional numerical methods to solve for VG parameters usually produce uncertainty
and error, and make it difficult to obtain global parameter solutions [17]. Non-convergence,
returning extreme parameter values, and inefficient computation are also common prob-
lems when seeking solutions for the VG model parameters [14,15]. When combined with
the inevitable uncertainty from observational water retention data, the RETC program
can produce solver errors that are further manifested in optimization, and eventually, the
scientific inference from those results.

A popular and promising Bayesian method, the so-called Markov Chain Monte Carlo
(MCMC) approach, is now widely used for a variety of inverse problems in applied
mathematics [18] and recently in hydrological simulations [19,20]. Thus, MCMC methods
are likely to become useful for solving VG parameters. For example, Carsel et al. [21] used
a Monte Carlo approach to characterize input parameters for the pesticide root zone model
(PRZM), which then simulated the leaching potential of pesticides. Duan and Gupta [22]
presented a shuffled complex evolution algorithm (SCE-UA) to consistently locate the
global optimum of a conceptual rainfall-runoff model. Subsequently, an MCMC method
was combined with the SCE-UA approach, which drastically improved its computational
efficiency [23]. Shi et al. [15] used an adaptive Metropolis MCMC to estimate the parameters
of VG model for a silt soil from QingDao, China, and found the adaptive Metropolis MCMC
approach to be an effective approach in solving VG model parameters, yet this analysis
was restricted to one silt soil from QingDao, China.
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The MCMC approach has been successfully used to obtain parameters for the VG
model; however, it is unclear whether the MCMC approach is accurate and robust when
applied to a wide range of soils. Additionally, the performance of the MCMC approach in
estimating VG parameters is unclear when only a limited number of measurements are
available (e.g., with h values between −15,000 and −60 cm). To explore these questions,
the objectives of this study were: (1) to develop an MCMC program using R which can
be used to characterize the entire SWRC using measurements from saturation to dryness;
(2) to investigate the performance of the developed MCMC program if only data between
−15,306 cm and −50 cm were used; (3) to obtain the optimal solutions for the VG model
parameters for all 1871 soils from the National Cooperative Soil Characterization (NCSS)
dataset.

2. Materials and Methods
2.1. Soil Water Content under Certain Matric Potential Gradient

Soil water content data from saturation to air dry matric potential gradient of 8 soils
were used derived from Lu et al. [24,25]. The soil samples were collected from China and
USA, covered a wide range of soil texture, from sand to silt loam. SWC between 0 and
−15,000 cm matric potential range were obtained using the pressure plate method, and
SWC beyond −15,000 cm matric potential were obtained using the Dewpoint Potential
Meter (Model WP4-T, Decagon Device, Pullman, WA, USA). For more detailed information
about the soil properties and SWC measurements, please refer to Lu et al. [24,25].

Soil water content at matric potential of 0 cm, −60 cm, −100 cm, −330 cm, and
−15,000 cm from the NCSS database were used to train and test the MCMC model in
this study. The NCSS includes more than 100,000 samples data from the Kellogg Soil
Survey Laboratory and cooperating universities, which contains measurements of soil
texture, organic carbon content, bulk density, and SWC under specified matric potential
from American soils. A Microsoft Access NCSS database can be accessed through https:
//ncsslabdatamart.sc.egov.usda.gov/ (accessed on 17 June 2022). In addition to commonly
requested data, the Access database includes metadata tables that describe the column
headings of the laboratory data tables. Only soil samples with SWC at 0 cm, −60 cm,
−100 cm, −330 cm, and −15,000 cm were used in this study. The original water content
data were measured gravimetrically and were converted to volumetric water content values
by the corresponding bulk density. In addition, we also filtered the data for outliers, and
excluded data with organic carbon content larger than 10% and soil with andic properties
because they behaved differently from mineral soil. After filtering, there were 1871 data
points, distributed into 12 United States Department of Agriculture (USDA) soil texture
groups, which were used in this study (Figure 1a,b, light-blue points). Sand clay and silt soil
samples were relatively scarce, but all other soil textures have extensive data (Figure 1c,d).

Another subset of the unsaturated soil hydraulic properties database (UNSODA) was
used in this study to evaluate the performance of our MCMC model. UNSODA contains
water retention, hydraulic conductivity, soil water diffusivity, basic soil properties (e.g.,
particle-size distribution, bulk density, organic matter content), and additional information
regarding the soil and the experimental procedures. UNSODA was used to support the
Rosetta model [26]. The Rosetta install software package has a testing subset of UNSODA
(555 samples, Figure 1, red points); this subset was used in this study to evaluate the
performance of our MCMC model.

https://ncsslabdatamart.sc.egov.usda.gov/
https://ncsslabdatamart.sc.egov.usda.gov/
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Figure 1. (a) Textural distribution of 1871 samples from the National Cooperative Soil Characteriza-
tion database (NCSS, blue dots) and 555 samples from the Unsaturated Soil Hydraulic Properties
Database (UNSODA, red dots) used in this study according to the United States Department of
Agriculture (USDA) soil texture system. (b) Locations of the samples from NCSS database; note
that samples from UNSODA were not shown due to lacking latitude and longitude information.
(c) Number of soil samples in the UNSODA dataset. (d) Number of soil samples in the NCSS dataset.
C—clay, CL—clay loam, L—loam, LS—loamy sand, S—sand, SC—sandy clay, SCL—sandy clay loam,
Si—silt, SiC—silty clay, SiCL—silty clay loam, SiL—silt loam, SL—sandy loam.

2.2. The van Genuchten (VG) Model

The VG model to describe the SWRC can be explained by Equation (1):

θ(h) = θr +
θs − θr[

1 + (αh)n](1− 1
n )

(1)

where θ(h) is the measured volumetric water content (L3·L−3) at the suction h (-cm, taken
negative for increasing suctions). The parameters θs and θr are saturated and residual water
contents, respectively (L3·L−3). α is a positive value (in unit of cm−1), related to the inverse
of the air entry pressure, and n (>1, unitless) is a metric related to the pore-size distribution.
Both α and n determined the shape of the SWCR [7,13] (Figure A1).

2.3. Markov Chain Monte Carlo (MCMC) Approach

Bayesian methods have two important advantages over traditional model curve-
fitting approaches: first, they allow virtually infinite flexibility in deviating from the
distributional assumptions of typical statistical methods; second, they provide robust
estimates of uncertainty. Practical application of Bayesian methods is challenged by the
need to compute high-dimensional integrals associated with the interactions of many
probability distribution functions. To a large extent, this has been solved by the advent of
Markov Chain Monte Carlo (MCMC) methods, which leverage dramatic recent increases
in computing power to estimate these integrals numerically [18,27].
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2.4. Obtaining Parameters of VG Model Using the MH-MCMC Approach

When using the MCMC approach to obtain the posterior distribution of the VG
model parameters, the model could be written as Equation (2). According to previous
studies [15,27–29], we assumed a uniform distribution for the prior distribution of every
parameter, and the bounds of the parameters were set up according to the distribution of
VG model parameters (θs, θr, α, and n) from the UNSODA (Table 1 and Figure 2).

θ = f (θs, θr, α, n, h) (2)

Table 1. Distributions of the parameters for using the MCMC modeling to simulate the soil water
content curve. UNSODA: the unsaturated soil hydraulic properties database.

Parameters Prior Note

θs 0.30–0.80 Adjusted based on UNSODA (Figure 2) and ref. [15]
θr 0.0003–0.30 Adjusted based on UNSODA (Figure 2) and ref. [15]
α 0.0001–1.0 Adjusted based on UNSODA (Figure 2) and ref. [15]
n 1.0–10 Adjusted based on UNSODA (Figure 2) and ref. [15]

Water 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

2.3. Markov Chain Monte Carlo (MCMC) Approach 

Bayesian methods have two important advantages over traditional model curve-fit-

ting approaches: first, they allow virtually infinite flexibility in deviating from the distri-

butional assumptions of typical statistical methods; second, they provide robust estimates 

of uncertainty. Practical application of Bayesian methods is challenged by the need to 

compute high-dimensional integrals associated with the interactions of many probability 

distribution functions. To a large extent, this has been solved by the advent of Markov 

Chain Monte Carlo (MCMC) methods, which leverage dramatic recent increases in com-

puting power to estimate these integrals numerically [18,27]. 

2.4. Obtaining Parameters of VG Model Using the MH-MCMC Approach 

When using the MCMC approach to obtain the posterior distribution of the VG 

model parameters, the model could be written as Equation (2). According to previous 

studies [15,27–29], we assumed a uniform distribution for the prior distribution of every 

parameter, and the bounds of the parameters were set up according to the distribution of 

VG model parameters (𝜃𝑠, 𝜃𝑟, α, and n) from the UNSODA (Table 1 and Figure 2). 

𝜃 =  𝑓(𝜃𝑠, 𝜃𝑟 , α, 𝑛, ℎ) (2) 

Table 1. Distributions of the parameters for using the MCMC modeling to simulate the soil water 

content curve. UNSODA: the unsaturated soil hydraulic properties database. 

Parameters Prior Note 

𝜃𝑠 0.30–0.80 Adjusted based on UNSODA (Figure 2) and ref. [15] 

𝜃𝑟 0.0003–0.30 Adjusted based on UNSODA (Figure 2) and ref. [15] 

𝛼 0.0001–1.0 Adjusted based on UNSODA (Figure 2) and ref. [15] 

n 1.0–10 Adjusted based on UNSODA (Figure 2) and ref. [15] 

 

Figure 2. Distribution of (a) 𝜃𝑠, (b) 𝜃𝑟, (c) n, and (d) 𝛼 for the van Genuchten water retention curve 

model parameters from the unsaturated soil hydraulic properties database (UNSODA) predicted 

by the ROSETTA model [26]. The vertical lines in each panel are low and high bounds of uniform 

prior used in this study; the gray lines in the x-axis show the data density of each parameter (total 

n = 554). 

Figure 2. Distribution of (a) θs, (b) θr, (c) n, and (d) α for the van Genuchten water retention curve
model parameters from the unsaturated soil hydraulic properties database (UNSODA) predicted by
the ROSETTA model [26]. The vertical lines in each panel are low and high bounds of uniform prior
used in this study; the gray lines in the x-axis show the data density of each parameter (total n = 554).

The Markov Chain stationary distribution (π) and its transfer matrix (Q) are critical
foundations for the MCMC method. Many stochastic simulation methods, including
Metropolis–Hastings-MCMC (MH-MCMC) [28,29], adapted MH-MCMC [27], and Gibbs
sampling [30] have been developed to resolve this problem. We used the MH-MCMC
approach to generate the posterior distribution of all four parameters (θs, θr, α, and n) of
the VG model because MH-MCMC has been successfully used to solve hydrology-related
studies. For a detailed description about MH-MCMC, please refer to [28,29]. The sampling
process of the MH-MCMC algorithm can be described as follows:

(1) Initiating the model parameters, as MH-MCMC is not sensitive to the initial condition,
we therefore set a same values for all soil samples, i.e., set θs = 0.56, θr = 0.18, α = 0.049,
and n = 1.5 as initial values for the VG model parameters.
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(2) Based on the model and the measured SWC under different pressure heads to get an
initial estimate of θ and h.

(3) Generating an arbitrary Markov Chain stationary distribution π (x) and its transfer
matrix Q. Sample from any simple probability distribution to get the initial state value,
x0.

(4) Set accept rate = min
{

π(j)Q(j,i)
π(i)Q(i,j) , 1

}
.

(5) Sample from the conditional probability distribution Q(x|xt) , get x∗; sample from

the uniform distribution µ ∼ U [0, 1]; if µ < α(xt, x∗) = min
{

π(j)Q(j,i)
π(i)Q(i,j) , 1

}
, accept

α(xt, x∗), i.e., xt+1 = x∗; and otherwise, reject transformation, i.e., xt+1 = xt.

The sample set (xn1 , xn1+1, . . . , xn1+n2−1) is corresponding to the stationary dis-
tribution; repeat this process for all four parameters (θs, θr, α, and n), and we can get
the parameters for the VG equation for each soil sample. We conducted 10,000 itera-
tions of sampling and discarded the first 2000 iterations as the burn-in period. We se-
lected the burn-in amount and evaluated convergence by visual inspection of the MCMC
chains. The MH-MCMC program and statistical analyses of the output were conducted
using R (Version 4.2.0, R Core Team, 2019). Details on the MH-MCMC algorithm were
described in the source code, which are available at the following GitHub repository
(https://github.com/jinshijian/SWRC_MCMC, accessed on 17 June 2022).

We used the MH-MCMC approach to obtain VG model parameters for all 8 soil
samples in the Lu et al. dataset [24,25], and detailed information for those 8 soil samples
can be found in Table A1. We first used MH-MCMC approach to obtain parameters of
the VG model (θs, θr, α, and n) based on all available SWC measurements (15 to 24 SWC
measurements from saturation to oven dryness condition, see Table 2). We also used the
MH-MCMC approach to obtain VG parameters based on SWC measured at matric potential
approximated to −60, −100, −200, −500, and −15,000 cm (Table A1).

Table 2. Summary of adjusted R2, root mean square error (RMSE), mean error (ME), and number
of samples when comparing the van Genuchten (VG) model’s predicted and measured soil water
content for 8 soils from ref. [24,25].

Soil Adjusted R2 RMSE ME Adjusted R2 RMSE ME Samples
All SWC Measurements Were Used to Parameterize the VG Model

MCMC RETC

I (Sand) 0.997 0.006 <0.0001 0.998 0.006 0.0007 19
II (Sandy loam) 0.985 0.018 −0.002 0.985 0.018 <0.0001 19
III (Loam) 0.991 0.016 −0.001 0.991 0.016 <0.0001 19
IV (Silt loam) 0.993 0.013 −0.005 0.995 0.012 <0.0001 17
V (Silt clay loam) 0.995 0.010 −0.003 0.996 0.009 0.0002 19
VI (Silt loam) 0.991 0.013 −0.005 0.992 0.012 <0.0001 15
VII (Silt clay loam) 0.992 0.013 −0.006 0.993 0.013 <0.0001 16
VIII (Silt loam) 0.991 0.015 −0.003 0.993 0.013 0.0001 24

Only 5 SWC measurements were used to parameterize the VG model (but all data were used for model
performance evaluation)

MCMC RETC

I (Sand) 0.950 0.027 0.013 0.872 0.044 −0.0454 19
II (Sandy loam) 0.956 0.031 0.006 0.900 0.046 0.0182 19
III (Loam) 0.970 0.029 0.007 0.988 0.018 0.0026 19
IV (Silt loam) 0.952 0.037 0.005 0.972 0.028 0.0129 17
V (Silt clay loam) 0.978 0.021 0.002 0.994 0.011 0.0032 19
VI (Silt loam) 0.985 0.017 0.004 0.963 0.026 0.0141 15
VII (Silt clay loam) 0.968 0.027 0.002 0.911 0.045 0.0246 16
VIII (Silt loam) 0.971 0.027 0.018 0.993 0.014 0.0136 24

https://github.com/jinshijian/SWRC_MCMC
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For the 1871 soils in the NCSS dataset, only SWC at matric potential of 0, −60, −100,
−330, and −15,000 cm were available. We also used the MH-MCMC approach to obtain
the parameters of VG model using SWC at matric potential of −60, −100, −330, and
−15,000 cm. SWC at matric potential of 0 cm (saturated SWC) were not used in the
MH-MCMC process but were compared with the θs from the MH-MCMC to evaluate its
performance.

2.5. Obtaining Parameters of VG Model Using the RETC Program

As a comparison, we also used the RETC program (version 6.02) to determine the
best parameter of VG model for the Lu et al. dataset [24,25]. For instruction about RETC
usage, please refer to [13]. Same as the MH-MCMC approach, we used the RETC program
to characterize the SWRC for 8 soils from Lu et al.’s dataset [24,25] using all measurements
from saturation to dryness. As well, we only used 5 measurements at matric potential of
around −60, −100, −200, −500, and −15,000 cm (Table A1).

2.6. Model Evaluation

The performance of both the MCMC approach and the RETC program were evaluated
by comparing the simulated soil water retention curve and measured data. The distribution,
the random walk trace, and the auto-correlation of posteriori estimates of each parameter
(θs, θr, α, and n) were also used to evaluate the performance of the MH-MCMC approach.
In addition, the adj R2 (Equation (3)), Root Mean Square Error (RMSE, Equation (4)), and
mean error (ME, Equation (5)) were used to evaluate the model performance:

adj R2 = 1−
[(

1− R2)(n− 1)
n− k− 1

]
(3)

where R2, n, and k are the coefficient of determination, the total number of observations,
and the total number of independent variables in the model, respectively. In this study, the
adj R2 was used to quantify the variability in the measured θ(h) as explained by the VG
model, which was parameterized using the MH-MCMC approach:

ME =
∑n

i = 1(ŷi − yi)

n
(4)

RMSE =

√
∑n

i = 1(yi − ŷi)
2

n
(5)

where ŷi represents the ith predicted θ(h) value and yi represents the ith measured θ(h)
value. ME is the averaged difference between predicted and measured θ(h). Therefore,
when ME ≈ 0, the predicted θ(h) is not different from the measured θ(h), whereas ME > 0
and ME < 0 indicate that the predicted θ(h) were overestimated and underestimated com-
pared with the measured θ(h), respectively. Smaller RMSE values indicated better model
performance.

All data analysis were also conducted under R [31], and we prepared an R markdown
file to reproduce all the analysis in this study (‘Analysis_manuscript.Rmd’ in the GitHub
repository: https://github.com/jinshijian/SWRC_MCMC, accessed on 17 June 2022). For
more details, please see the “Data and code availability” section below.

3. Results
3.1. Fitted Soil Water Retention Curve by the MH-MCMC Approach and the RETC Program

The results showed that when the complete SWC measurements from saturation to
oven dryness were used, both the MH-MCMC approach and the RETC program reasonably
simulated the parameters for the VG model, as the fitted curve matched well with the
measured data (Figure 3a). Adjusted R2, RMSE, and ME from the RETC program are
similar to that from the MH-MCMC approach (Table 2). Importantly, for soil V (a silt clay

https://github.com/jinshijian/SWRC_MCMC
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loam soil) and soil VIII (a silt loam soil), the RETC program was unable to obtain θr values
due to extremely small estimates, and 0 values were used for θr in the RETC program
(Table A2). When using the MH-MCMC approach, however, we were able to obtain θr
values for soil V and soil VIII (Table A2). MH-MCMC approach showed similar accuracy as
the RETC program (i.e., adjusted R2, RMSE, and ME are similar, see Table 2), but avoiding
extreme small value for θr, indicating that the MH-MCMC approach developed here is at
least as accurate as the RETC program.
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The random walk trace plot of θS, θr, α, and n (Figure 3b–e) indicate convergence in
the same direction, albeit with large variations in parameter estimates. A histogram of
posteriori estimates of θS, θr, α, and n (Figure A2) were generally normal distributions. All
parameters’ auto-correlation decreased as lag-time increased (Figure A3), indicating that
the MH-MCMC simulation performs efficiently through the calculations. Our results also
showed that with uniform prior distributions of the parameters, the MCMC approach is
robust to simulations for all 8 soil types from Lu et al. [24,25] (Figure 3).

3.2. Model Performance if Only 5 Measurements between −60 and −15,000 cm Were Used in the
MH-MCMC Approach and the RETC Program

We tested the performance of the RETC program and MH-MCMC approach when
only 5 data points (h = −60, −100, −200, −500, and −15,000 cm) were used (Table A1 and
red crosses in Figure A4a). Compared with the outputs when all measurements were used
to obtain the parameters of the VG model, the accuracy of the RETC program significantly
decreased for soil I (a sandy soil), soil II (a sandy loam soil), and soil VII (a silt clay loam
soil) when only these 5 measurements were used (Table 2). For example, the adjusted RETC
R2 significantly decreased, while RMSE and ME increased, especially for soil I (sand), the α
value was 1.2765 (Table A2), beyond the range (0–1) of the defined α parameter of the VG
model (Figures A4–A6, Tables 2 and A2).

Compared with using all SWC measurements, if only 5 data points (h = −60, −100,
−200, −500, and −15,000 cm) were used to parameterize the VG model, the MH-MCMC
model performance of the soil I (sand) decreased the most, with adjusted R2 values which
decreased from 0.997 to 0.950, RMSE which increased from 0.006 to 0.027, and ME which
increased from 0.000 to 0.013 (Table 2). However, even for this worst case scenario, the
MH-MCMC approach obtains reliable results for the VG model parameters. Therefore,
when fewer measurements were available, the results in this study suggest that MH-MCMC
is still a robust way to obtain the parameters of the VG model.

3.3. Model Performance over All 1871 Soils in the NCSS Dataset

As soils from the NCSS dataset only have SWC measured at matric potential between
0 and −15,000 cm, we therefore used the MH-MCMC approach to obtain the VG model
parameters based on SWC at metric potential of −60, −100, −330, and −15,000 for all 1871
soils in the NCSS dataset. The random walk trace plot, histogram of posteriori estimates,
and the auto-correlation of θS, θr, α, and n indicate that the MH-MCMC method performs
well for all soils. The simulated SWC at h = −60 cm, −100 cm, −330 cm, and −15,000 cm
were highly consistent with the measured SWC at corresponding matric potential (Figure 4).
The simulated θs for the NCSS database matched well with the distribution of measured
θs (Figure 5a). The distribution of simulated θr from the NCSS database was skewed left
compared with the SWC at metric potential of −15,000 cm (Figure 5b), indicating that
1) many soils may still retain a non-trivial amount of water at permanent wilting point
(h = −15,000 cm), and that 2) it may be pragmatic to extend measured retention values
closer to θr, or fully dried SWC. The distribution of 1871 simulated n and α values matched
well with the predicted n and α values from the UNSODA dataset (Figure 5c,d). All the
above comparisons suggested that the MH-MCMC approach developed in this study were
able to obtain the VG model parameters for all the 1871 soils in the NCSS dataset.
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Figure 4. Scatter plot showing the relationship between predicted and measured soil water content
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measured soil water content. The blue lines are regression lines and the dashed red lines are 1:1 lines.
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Water 2022, 14, 1968 11 of 20

4. Discussion

Solving the VG model (and its 4 parameters) with limited measurements (sometimes
sample size≤ 5) could introduce parameter uncertainty for various reasons. First, uncertainties
may arise from the VG model itself, in the process when describing the SWRC using a relatively
simple equation with several parameters which could introduce uncertainties. Second, inherent
errors in the collection and measurement of water retention data adds to this compounding
uncertainty during model calibration. Finally, standard laboratory water retention methods are
generally limited to matric potential between 0 and −15,000 cm [1]. For example, soils from
the NCSS dataset (http://ncsslabdatamart.sc.egov.usda.gov/, accessed on 17 June 2022) only
measured SWC at matric potential of 0,−60,−100,−330, and−15,000 cm.

Non-convergence and extreme parameters’ outputs are common problems when
seeking solutions for the VG model parameters using the RETC [12,14,15]. In this study,
based on 8 soils from Lu et al.’s dataset [32,33], we find that θr cannot be obtained for soil V
(a silt loam soil) and soil VIII (a silt clay loam soil) due to extremely small estimates when
using the RETC program (Table A2). In this case, the RETC program assumed these low θr
values to be zero, whereas MH-MCMC derived values were 0.03 and 0.02 for the silt loam
and silty clay loam, respectively. However, this discrepancy of 2–3% water content could
be hydrologically significant for storage and flow properties, especially when scaled across
a soil profile. When only SWC at around matric potential of −60, −100, −200, −500, and
−15,000 cm were used, soil I in Lu et al.’s dataset [32,33] in the RETC method produced α
> 1.0, which is beyond the range (0–1) of the defined α parameter of the VG model. Both
issues were well resolved by the MH-MCMC approach developed in this study. The results
show that the MH-MCMC approach had superior performance compared to the RETC
program in obtaining VG parameters for soils of variable texture.

Measuring the SWRC is usually compromised by time and labor, as such, reliable
pedotransfer functions (PTFs) can be useful tools to predict the SWRC based on relatively
easy-to-measure soil properties (e.g., soil texture and bulk density). One critical point in
improving PTFs is not from new statistical methods but rather from quality data sources [32,
33]. In this sense, the VG model parameters from the 1871 soils in the NCSS dataset provide
valuable sources for the future development of PTFs to predict the SWRC. Furthermore,
the MH-MCMC approach developed in this study is robust in obtaining VG parameters to
different soil types and even outperforms traditional least squares-based methods when
retention data are limited to −15,000 cm < h < −60 cm. Thus, this new approach could
be used to expand the database of VG model parameters in the future. In addition, Jian
et al. [34] showed that the widely used ROSETTA model significantly over predicted the
near-saturated hydraulic conductivity in urban soils. The MH-MCMC approach developed
in this study may be appropriate for characterizing a wide range of soil textures and, as a
result, it may help build water retention functions for understudied urban soils.

Even though the newly developed MH-MCMC approach is more robust to solve the
VG model when compared to the RETC procedures, it is important to note that the MCMC
method has its inherent drawbacks: (1) The sampling points are not independent of each
other; the MCMC approach usually takes one sample per N point to alleviate this problem,
but it does not solve the problem in and of itself [35]. (2) The mixing time may be very
long, i.e., the model may go back and forth in the initial state, within a certain distribution.
When the peaks and valleys of the two distributions are too low, the probability of sampling
points reaching the peaks and valleys is very low. This can result in the MCMC not
being able to sample points that can well characterize the target probability distribution—
meaning sampling failure [36]. (3) Even if the sampling is successful, it is difficult to know
exactly which moment has reached the stationary distribution [37]. Instead, by periodically
adopting the distribution at the current moment, the probability distribution of its sampling
is obtained and compared with the target probability distribution to determine how similar
the two distributions are, and confirm that a stationary distribution has been reached. For
the above reasons, MCMC users should proceed with caution and pay close attention to
data quality and parameter posterior distributions before accepting solver solutions.

http://ncsslabdatamart.sc.egov.usda.gov/
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5. Conclusions

We developed an MH-MCMC code in R for solving VG model parameters, and this
MH-MCMC approach performs well across a wide range of soil textures. The results
showed that the MH-MCMC approach had good performance when only 5 SWC measured
at matric potential of −60cm and −15,000 cm were used to optimize the VG model pa-
rameters. The MH-MCMC approach was then used to obtain VG model parameters for
1871 soils in the NCSS dataset. The MH-MCMC code developed in this study provides
a useful tool for future usage of solving VG model parameters based on the SWC mea-
surements. The VG model parameters of the 1871 soils in the NCSS dataset likely provide
useful information for the future PTF development.
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Appendix A

Table A1. Soil texture, volumetric soil water content at selected matric potential of around −60,
−100, −200, −500, and −15,000 cm for 8 soils in Lu et al.’s dataset [24,25]. For detailed soil proper-
ties and soil water content from saturation to oven dryness conditions, please refer to [24,25] and
Lu_2008_2013_Data.csv in the GitHub repository: https://github.com/jinshijian/SWRC_MCMC
(accessed on 17 June 2022).

Soil Texture Suction Matric (cm) Volumetric Soil Water Content

I Sand

−60 0.0446

−102 0.0304

−142.9 0.0336

−403.1 0.0208

−15,306 0.0112

https://github.com/jinshijian/SWRC_MCMC
https://github.com/jinshijian/SWRC_MCMC
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Table A1. Cont.

Soil Texture Suction Matric (cm) Volumetric Soil Water Content

II Sandy loam

−51 0.2580

−102 0.1889

−295.9 0.1213

−510.2 0.1072

−15,101.9 0.0536

III Loam

−61.2 0.4316

−102 0.3978

−214.3 0.2041

−510.2 0.1105

−15,306 0.0442

IV Silt loam

−71.4 0.4569

−102 0.4154

−204.1 0.3283

−510.2 0.2365

−15,306 0.1018

V Silt clay loam

−61.2 0.4141

−102 0.3780

−214.3 0.3315

−510.2 0.2696

−15,306 0.1342

VI Silt loam

−51 0.4615

−102 0.4229

−295.9 0.2753

−510.2 0.2208

−15,101.9 0.0998

VII Silt clay loam

−51 0.5306

−102 0.5095

−295.9 0.3643

−510.2 0.3208

−15,101.9 0.1690

VIII Silt loam

−50 0.4920

−95.2 0.4680

−203.9 0.4104

−407.9 0.3672

−15,116.4 0.1764
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Table A2. Parameters of van Genuchten model obtained by the Metropolis–Hastings Markov Chain
Monte Carlo approach and RETC program.

MH-MCMC Approach RETC Program

Soil θr θS α n θr θS α n

All measurements were used to obtain VG model parameters

I 0.0196 0.3870 0.0432 3.7672 0.0206 0.3850 0.0422 3.9701

II 0.0330 0.4532 0.0426 1.5655 0.0339 0.4489 0.0391 1.5755

III 0.0401 0.4770 0.0084 2.2000 0.0418 0.4748 0.0079 2.2908

IV 0.0323 0.5216 0.0170 1.3622 0.0369 0.5141 0.0132 1.3842

V 0.0255 0.5443 0.0461 1.2501 0.0000 * 0.5378 0.0443 1.2197

VI 0.0333 0.6269 0.0324 1.4044 0.0377 0.5671 0.0185 1.4390

VII 0.0300 0.6719 0.0362 1.2676 0.0119 0.7238 0.0552 1.2370

VIII 0.0213 0.5500 0.0159 1.2521 0.0000 * 0.5456 0.0144 1.2305

Only 5 measurements at −60, −100, −200, −500, −15,000 cm matric potential were used to obtain VG model parameters

I 0.0235 0.5527 0.0587 3.7686 0.0101 0.4520 1.2765 1.5937

II 0.0569 0.5258 0.0591 1.7282 0.0461 0.8492 0.1995 1.5714

III 0.0475 0.5538 0.0120 2.1971 0.0528 0.4632 0.0071 2.7770

IV 0.0641 0.6305 0.0278 1.4721 0.0734 0.5900 0.0173 1.5191

V 0.0835 0.5568 0.0429 1.3388 0.0481 0.4980 0.0233 1.2816

VI 0.0673 0.5917 0.0237 1.5001 0.0948 0.4855 0.0067 1.9176

VII 0.1047 0.6420 0.0227 1.4061 0.1593 0.5564 0.0061 1.7973

VIII 0.0770 0.6189 0.0431 1.2510 0.0506 0.5308 0.0111 1.2615

* The RETC program was unable to simulate θr, therefore 0 value was used in the program.
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changing α value affects the soil water retention curve (b).
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Figure A4. (a) Comparison between measured and predicted soil water content using Metropolis–
Hastings Markov Chain Monte Carlo (MH-MCMC) approach, (b–e) Sampling processes of parameters
θs, θr, α, and n, respectively. Note that only soil water content between matric potential gradient of
−50 to −16,000 cm (red crosses in (a) were used during the MH-MCMC simulation.



Water 2022, 14, 1968 18 of 20Water 2022, 14, x FOR PEER REVIEW 19 of 21 
 

 

 

Figure A5. Relationship between measured volumetric soil water content (SWC, L3·L−3) and pre-

dicted SWC (L3·L−3) for 8 soils from Lu et al. [24,25]. The predicted SWC were from the van Genuch-

ten model parameterized using Metropolis–Hastings Markov Chain Monte Carlo approach. Panels 

I-VIII corresponding to soil I to soil VIII in Lu et al. [24,25] and Table A1; The black lines are 1:1 lines 

and the blue lines are regression lines. 

 

Figure A6. Relationship between measured volumetric soil water content (SWC, L3·L−3) and pre-

dicted volumetric soil water content (L3·L−3) for 8 soils from Lu et al. [24,25]. The predicted SWC 

were from the van Genuchten model parameterized using Metropolis–Hastings Markov Chain 

Monte Carlo approach with only 5 data points (shown as the red crosses in Figure A4). Panels I-VIII 

corresponding to soil I to soil VIII in Lu et al. [24,25] and Table A1; The black lines are 1:1 lines and 

the blue lines are regression lines. 

References 

1. Schelle, H.; Heise, L.; Jänicke, K.; Durner, W. Water Retention Characteristics of Soils over the Whole Moisture Range: A Comparison of 
Laboratory Methods. Eur. J. Soil Sci. 2013, 64, 814–821. https://doi.org/10.1111/EJSS.12108. 

Figure A5. Relationship between measured volumetric soil water content (SWC, L3·L−3) and pre-
dicted SWC (L3·L−3) for 8 soils from Lu et al. [24,25]. The predicted SWC were from the van
Genuchten model parameterized using Metropolis–Hastings Markov Chain Monte Carlo approach.
Panels I-VIII corresponding to soil I to soil VIII in Lu et al. [24,25] and Table A1; The black lines are
1:1 lines and the blue lines are regression lines.
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Carlo approach with only 5 data points (shown as the red crosses in Figure A4). Panels I-VIII corre-
sponding to soil I to soil VIII in Lu et al. [24,25] and Table A1; The black lines are 1:1 lines and the
blue lines are regression lines.
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