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Abstract: The many hydrodynamic implications associated with the geomorphological evolution
of braided rivers are still not profoundly examined in both experimental and numerical analyses,
due to the generation of three-dimensional turbulence structures around sediment bars. In this
experimental research, the 3D velocity fields were measured through an acoustic Doppler velocimeter
during flume-scale laboratory experimental runs over an emerging sand bar model, to reproduce
the hydrodynamic conditions of real braided rivers, and the 3D Turbulent Kinetic Energy (TKE)
components were analyzed and discussed here in detail. Given the three-dimensionality of the
examined water flow in the proximity of the experimental bar, the statistical analysis of the octagonal
bursting events was applied to analyze and discuss the different flume-scale 3D turbulence structures.
The main novelty of this study is the proposal of the 3D Hole Size (3DHS) analysis, used for separating
the extreme events observed in the experimental runs from the low-intensity events.

Keywords: flume-scale analysis; ADV; flow-bar interaction; 3D turbulence; TKE; octagonal bursting
events; 3DHS

1. Introduction

Alluvial rivers characterized by high fluvial energy are typically affected by braiding
phenomena, and the emergence of sediment bars is considered the prominent origin of
complex morphologies associated with their formation [1,2]. The morphological variations
occurring in braided streams are closely related to bank erosion, as a direct consequence of
water flow—sediment transport interplay over time [3–6].

In this framework, the proper analysis of the main turbulence traits induced by the
presence of bars within braided rivers is crucial from both morphological and hydrody-
namic perspectives [7–12]. Among others, McSherry et al. [13] and Jalalabadi et al. [14] have
observed that bursting turbulent events can be effectively coupled to the classical threshold
shear stress theory for the prediction of particles entrainment mechanisms [15–17]. In
recent hydro-geomorphological numerical and experimental research, the study of the
coherent structures corresponding to emerging bars was analyzed for correlating sediment
transport to instantaneous bursting events [18–23]. In hydrodynamics, the study of the 2D
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turbulent flow structures in the vicinity of the wall is generally performed by applying the
well-known quadrant events analysis [24,25], whilst it is not sufficiently rigorous and satis-
factory when analyzing 3D water flows [26–29]. In these cases, Leary and Schmeeckle [30]
and Schobesberger et al. [31] have recently applied the so-called analysis of the octagonal
bursting events [32–34], also known as octant events analysis, for overpassing the classical
Reynolds stress approach [35,36].

The goal of the present experimental study is the analysis of the flume-scale 3D
turbulence traits observable in the proximity of an emerging bar model. The 3D Turbulent
Kinetic Energy (hereinafter indicated as TKE) components were evaluated here, and the
whole flow turbulence was then examined by analyzing the octagonal bursting events
approach. Following the study of Guan et al. [37] among others, the so-defined 3D Hole
Size (3DHS) method was proposed in this study for segregating the extreme events from
the low-intensity ones at the proximity of the examined emerging sand bar for the first time
in the analysis of the turbulence traits observed during flume-scale laboratory experiments.

2. Materials and Methods
2.1. Laboratory Experiments

As shown in Figure 1, the experimental runs were carried out in a 3 m wide, 1 m
deep, and 12 m long concrete flume located in the River Engineering Laboratory of the
Department of Water Resources Development and Management at the Roorkee Indian
Institute of Technology (India), under constant bed slope and discharge values of 0.005 and
0.25 m3 s−1, respectively. The x direction corresponds to the water flow direction.
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Figure 1. Overview of the laboratory flume employed in the present experimental study, with
detailed views of the ADV device, the emerging bar (purple ellipse), and the measuring grid (in blue)
composed of 10 cm × 10 cm cells. The black arrow denotes the flow direction. The measuring points
analyzed are indicated listed from 1 to 12.

In the present experimental study, the 3D velocity components over x, y, and z direc-
tions in the proximity of the examined emerging sand bar [38–43], respectively indicated
as streamwise (u), spanwise (v), and vertical (w) velocity components, were measured by
using a 4-beam down-looking acoustic Doppler velocimeter (ADV) device [44–48] with an
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acquisition frequency of 20 Hz. The time-series data having a signal average Correlation
coefficient—the average correlation between acoustic wave signals recorded by each couple
of ADV beams—of less than 0.70 were excluded from the further data processing [49–52].
Due to the massive presence of sediment particles during the runs, all the experiments
were carried out in clear water conditions. The shear stress in the flume is kept below the
critical shear stress.

The results of the error analysis of ADV measurements are shown in Table 1.

Table 1. Values of errors ADV measurements (in mm s−1).

Flow Velocity Range (mm s−1) ADV Error Range (mm s−1)

±50 ±0.88
±100 ±0.83
±200 ±1.01

The results of the previous analysis indicate that the velocity errors in ADV mea-
surement lie in the typical range of flume-scale experimental analysis, as highlighted by
Nikou et al. [51].

Aiming at reducing as much as possible the well-known fluid dynamic end-wall
effects on the turbulent water flow behaviour in the proximity of the examined emerging
sand bar [50,51], the concrete flume’s width was increased in the central region, as shown
in Figure 1.

The bed of the experimental concrete flume was composed of uniform grading sand,
having a value of d50 equal to 0.25 mm, with d50 indicating the so-called mass-median-
diameter of the sediments’ particle size distribution, as shown by many previous studies of
ecohydraulic, environmental, and river engineering interest [53–61]. At each experimental
run, the 3D velocity components were measured at 24 different points belonging to a
measuring grid composed of 10 cm × 10 cm cells, and only 12 measuring points were
selected for the further experimental analyses, named from “1” to “12”.

In more detail, the experimental emerging sand bar was kept at a constant depth of
32 cm for all runs, while the submergence ratio, defined as the ratio of the bar height to the
water level, was different at each run. The bed elevation measurements were computed
aiming at assuring that positive values indicate the depositional region while negative
values indicate the scouring. In the present study case, the only experimental run 1R was
performed with no emerging bar in the flume.

The experimental flume-scale conditions adopted in the present flume-scale study are
indicated in Table 2.

Table 2. Details of the experimental runs performed in this study: l (cm), b (cm). and hb (cm) are the
major and the minor dimension, and the height from the flume bed of the emerging sand bar model,
respectively, while hb/h is the submergence ratio.

Experimental Run hb/h b × l × hb

1R - -
2R 0.25 80 × 130 × 8
3R 0.31 80 × 130 × 10
4R 0.41 80 × 130 × 13
5R 0.47 80 × 130 × 15
6R 0.53 80 × 130 × 17
7R 0.59 80 × 130 × 19
8R 0.66 80 × 130 × 21
9R 0.72 80 × 130 × 23

10R 0.81 80 × 130 × 26
11R 0.88 80 × 130 × 28
12R 0.90 80 × 130 × 29
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Since the hydrodynamic effect of turbulence bursting events is prevailing close to the
experimental flume bed [62–64], the 3D velocity components were measured at the near-bed
flume region, along 15 relative depths z/h, where z is the elevation of each measuring point
on the emerging sand bar from the flume bed and h is the measured water level: 0.031,
0.038, 0.047, 0.056, 0.063, 0.069, 0.071, 0.073, 0.075, 0.078, 0.081, 0.083, 0.087, 0.093, and 0.097.

2.2. Experimental TKE Analysis

In the present experimental study case, the so-defined total TKE was computed by
applying the following equation [65]:

TKE =
1
2

(
u′2 + v′2 + w′2

)
, (1)

where u′, v′, and w′ are the so-called 3D velocity fluctuation components over x, y, and z
axes, respectively.

The three-dimensional TKE components in x, y, and z directions were then obtained
as follows:

TKEx =
1
2

u′2, (2)

TKEy =
1
2

v′2, (3)

and
TKEz =

1
2

w′2. (4)

In Equations (1)–(4) the horizontal top bars indicate Reynolds-type time-average
values of the 3D velocity fluctuation components.

2.3. Analysis of Octagonal Bursting Events

In the present experimental study, the 3D flow structures induced by the experimental
emerging sand bar were analyzed by applying the so-called octagonal bursting events
approach [66], based on the sign of the experimental three-dimensional velocity fluctuations
components [67–69].

The occurrence probabilities associated with each octagonal bursting event Pζ = nζ/N
in the single octant ζ, where nζ is the total amount of bursting events associated with each
octant ζ, and N represents the total extension of the single examined ADV signal for all
octants [70–75].

The detailed schematic overview of the eight classes of occurrence probabilities associ-
ated with the octagonal turbulence bursting events, namely from P1 to P8, is shown in the
following Figure 2.

2.4. Analysis of Three-Dimensional Hole Size (3DHS)

As remarked by Di Bernardino [76] among others, low-intensity octagonal turbulence
bursting events do not furnish any contribution to the turbulent burst, then it is possible
applying the concept of Hole size analysis, used in fluid dynamics for the experimental
analysis of 2D bursting events [77–79], in regions where the water flow is highly three-
dimensional. In these cases, the combination of the Hole Size approach with octagonal
turbulence bursting events analysis is extremely useful for distinguishing the extreme
octagonal events from the low-intensity ones. Therefore, the three-dimensional Hole Size
(3DHS) analysis is a novel threshold method proposed in the present experimental study
for stretching the capabilities of the 2D Hole size analysis to the study of the 3D octagonal
turbulence bursting events [80,81].
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Figure 2. Schematic overview of the occurrence probability (from P1 to P8) associated with the octants ζ.

In analogy with the 2D Hole size [82–87], the 3DHS analysis was employed here for
extracting from all the ADV time-series velocity signals the 3D turbulent velocity values
higher than H times the product of the root mean square of the three velocity fluctuation
components: |u′ v′ w′| > H u′v′w.

3. Results and Discussion
3.1. Experimental TKE Analysis

The depth-averaged contour maps of TKE components over x, y, and z directions
are shown in detail in Figures 3–7 for the experimental runs 1R, 2R, 4R, 6R, and 10R,
respectively. In all Figures, L is the total length of the reference grid in the x direction, while
the origin of the x and y axes is located at the bar bottom, at its center.

It emerges from the observation of Figure 3a–c that, for 1R run, no defined turbulence
pattern can be recognized, and extremely low TKE values over x, y, and z directions
were observed. This is due to the absence of the emerging sand bar. In more detail,
TKEx and TKEy contour maps showed very poor fixed patterns, with decreasing values at
growing transverse distances y/L. As indicated in Figure 4a–c, high-value TKEx and TKEy
contours were retrieved near the upstream end of the examined emerging sand bar at the
experimental run 2R, with a decreasing behavior towards its downstream end, while TKEz
contours do not furnish any fixed turbulence structure. Also, it was possible observing
from the direct comparison of Figures 5–7 that the values of the TKE components in the
three directions increase with hb/h, indicating that the augmentation in the height of the
examined emerging sand bar induced high turbulence production trends.
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3.2. Analysis of Octagonal Bursting Events

The following Figures 8–11 illustrate the contour maps of depth-averaged occurrence
probabilities associated with each octagonal bursting event, for the experimental runs 2R,
4R, 6R, and 10R, respectively.
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From the comparative analysis of Figures 8–11, it was detected that the even octagonal
bursting events (P2, P4, P6, and P8) were dominant in the case of transverse distances
y/L ≤ 0.2, while the odd octagonal bursting events (P1, P3, P5, and P7) play a crucial role
for values of y/L > 0.2.

In addition, it was possible to observe that the peak occurrence probabilities associated
with both even and odd octagonal bursting events appeared in the three-dimensional water
flow region located between x/L ≤ 0.4 and 0.6 < x/L ≤ 1.0, and between y/L ≤ 0.2 and
y/L > 0.2.

3.3. Analysis of Three-Dimensional Hole Size (3DHS)

Figures 12–15 display, respectively, the variations in the occurrence probabilities of the
octagonal bursting events (P1–P8) as a function of 3DHS at the measuring points “2”, “4”,
“6”, and “10” for the experimental runs 2R, 4R, 6R, and 10R.
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values for the experimental run 2R: P1 (filled circles), P2 (unfilled circles), P3 (filled squares), P4
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diamonds). Continuous lines indicate odd octagonal events, while dashed lines denote even events.
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values for the experimental run 4R: P1 (filled circles), P2 (unfilled circles), P3 (filled squares), P4

(unfilled squares), P5 (filled triangles), P6 (unfilled triangles), P7 (filled diamonds), and P8 (unfilled
diamonds). Continuous lines indicate odd octagonal events, while dashed lines denote even events.

As reported in Figure 12, the depth-averaged occurrence probability corresponding to
even octagonal bursting events is noticeably larger (at least two times) than that associated
with odd ones at the measuring points “2” and “4”, placed near the upstream end of the
emerging sand bar, while it decreases with 3DHS values systematically. On the contrary,
nearby the downstream end of the experimental bar, at the measuring points “6” and “10”,
the depth-averaged occurrence probabilities corresponding to the odd octagonal turbulence
bursting events were higher than those observed in the case of even bursting events [88–94].

From the analysis of Figures 13–15, it was possible to detect that the depth-averaged
occurrence probabilities associated with even octagonal bursting turbulence events grew
with increasing hb/h values at the upstream end of the examined bar, and the same
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hydrodynamic pattern was recognized in the odd events close to the downstream end of
the emerging sand bar [95–99].

The potential of the 3D water turbulence analysis reported in the present experimental
study can be certainly increased through the support of the most advanced reinforcement
and deep learning approaches, widely employed in recent ecohydraulic studies dealing
with water resources management [100–103].
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contrary, nearby the downstream end of the experimental bar, at the measuring points 

“6” and “10”, the depth-averaged occurrence probabilities corresponding to the odd oc-

tagonal turbulence bursting events were higher than those observed in the case of even 

bursting events [88–94]. 

From the analysis of Figures 13–15, it was possible to detect that the depth-averaged 

occurrence probabilities associated with even octagonal bursting turbulence events grew 

with increasing hb/h values at the upstream end of the examined bar, and the same hydro-

dynamic pattern was recognized in the odd events close to the downstream end of the 

emerging sand bar [95–99]. 

The potential of the 3D water turbulence analysis reported in the present experi-

mental study can be certainly increased through the support of the most advanced 

Figure 15. Depth-averaged occurrence probabilities of the octagonal bursting events with 3DHS
values for the experimental run 10R: P1 (filled circles), P2 (unfilled circles), P3 (filled squares), P4

(unfilled squares), P5 (filled triangles), P6 (unfilled triangles), P7 (filled diamonds), and P8 (unfilled
diamonds). Continuous lines indicate odd octagonal events, while dashed lines denote even events.

4. Conclusions

The present experimental research represents an extremely useful insight into the
comprehension of the hydrodynamic interaction between local streambed elevation changes
and 3D turbulent bursting events observed in the vicinity of the emerging sand bar.

An innovative threshold method based on the so-defined 3D Hole Size (3DHS) analysis
was proposed here to study the 3D water flow structures observed over the examined
emerging sand bar, obtained by extending the theoretical background of the well-known
2D Hole Size approach [104–107].

The experimental outcomes of the analysis performed in this work well indicate
that the three-dimensional water flow fields induced by the presence of the emerging bar
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produced high values of even and odd octagonal bursting events near the upstream and
the downstream end of the experimental bar model, respectively. Following the 3DHS
methodology, it was observed that the occurrence probability of dominant events further
increases with increasing 3DHS and hb/h values. The main goal of furnishing a useful
and simple tool for both hydrodynamic and environmental researchers for the analysis
of 3D turbulence over braided rivers was accomplished through the present flume-scale
experimental study.
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