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Abstract: River flow modeling plays a crucial role in water resource management and ensuring its
sustainability. Therefore, in recent years, in addition to the prediction of hydrological processes
through modeling, applicable and highly reliable methods have also been used to analyze the
sustainability of water resources. Artificial neural networks and deep learning-based hybrid models
have been used by scientists in river flow predictions. Therefore, in this study, we propose a hybrid
approach, integrating long-short-term memory (LSTM) networks and a genetic algorithm (GA) for
streamflow forecasting. The performance of the hybrid model and the benchmark model was taken
into account using daily flow data. For this purpose, the daily river flow time series of the Beyderesi-
Kilayak flow measurement station (FMS) from September 2000 to June 2019 and the data from Yazikoy
from December 2000 to June 2018 were used for flow measurements on the Euphrates River in Turkey.
To validate the performance of the model, the first 80% of the data were used for training, and
the remaining 20% were used for the testing of the two FMSs. Statistical methods such as linear
regression was used during the comparison process to assess the proposed method’s performance and
to demonstrate its superior predictive ability. The estimation results of the models were evaluated
with RMSE, MAE, MAPE, STD and R? statistical metrics. The comparison of daily streamflow
predictions results revealed that the LSTM-GA model provided promising accuracy results and
mainly presented higher performance than the benchmark model and the linear regression model.

Keywords: deep learning; genetic algorithm; recurrent neural network; long-short term memory;

streamflow; forecasting

1. Introduction

Water is one of the most crucial resources for the survival of all living creatures on
Earth. Since the amount of water on Earth is constant, the need for water increases in line
with the population rate. Therefore, planning and managing water resources as accurately
as possible has recently become one of the essential issues in hydrology.

Global warming, drought and their effects on the water level ultimately negatively
impact humans’ lives. Therefore, the existence and quality of water, which is necessary in
every aspect of human life, is crucial [1]. Increasing water demand due to drought, climate
change, unplanned consumption, industrialization and agricultural use puts pressure on
clean water resources. One of the critical measures required to ensure sustainability is
forecasting river flows.

Due to the importance of accurate analysis and infrastructure planning in water and
energy systems, the need for a higher temporal resolution in water supply and demand
analysis and modeling has increased. In recent years, researchers have increased their
work on artificial-intelligence-based models in order to determine stream flows stably.
Therefore, developing a suitable method to predict the flow rate is crucial and can mitigate
the consequences of water demand and supply [2].
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In recent years, artificial neural networks (ANN) have been applied in various hydro-
logical processes, such as hydrology, water resources and river engineering. A series of
ANN-based studies have presented an efficient approach for flow prediction, precipitation
and water quality predictions in terms of accuracy and applicability [3]. Studies have
consistently proven that due to the participation of natural variables, predicting flow is
a complex task, due to factors such as the complexity of the river system, non-linearity,
randomness and non-stationarity [4,5]. Nowadays, we often see neural networks imple-
mented to provide technological solutions in our daily life. ANNs have advantages, such
as their ability to model non-linearity, as well as their application in the areas of learning,
generalization, adaptation, data processing, and hardware. ANNSs are able to process the
most complex non-linear time series. Consequently, ANs prediction models could provide
better yields than statistical and physical methods. High-level programming languages
such as MATLAB, Python, NeuroSolutions, etc., are effective and successful used as a tool-
box [6]. A literature review reveals that it is possible to model flow models using artificial
intelligence (AI) models rather than physically-based models [7]. Models such as recurrent
neural networks (RNNs), particle swarm optimization (PSO), genetic algorithms (GAs),
and long short-term memory (LSTM) are among the universal computational models used
for flow prediction in the field of hydrology [8-10]. In addition, there are many difficulties
with these models, especially in river engineering applications [11]. Each method has
a particular form that can be used to learn a streamflow design and provide forecasts.
However, due to the complexity of flow data, accurate prediction has been a significant
challenge for decades (particularly as the forecasting time horizon rises). The literature
demonstrates that selecting a single model or method with an appropriate performance is
tough, and these methods depend on the study area’s location and conditions. Given all
the complexities associated with streamflow estimation, having sound knowledge of this
variable and an accurate analysis of its variations is inevitably required in order to gain a
hydrological understanding of catchment areas by combining models.

Different hybrid models combining ANNs with various optimization techniques have
been developed with the aim of selecting the optimal parameters necessary for forecasting
different processes related to hydrology and other field of studies. Many deep learning
(DL) algorithms, such as RNNs, show great potential in streamflow forecasting. Specifically,
in order to use time series, RNN networks have strong learning capabilities. Furthermore,
RNN’s contain loops that carry information from the previous stage to the next stage in
the neural network, but the main problem with RNNs is the vanishing gradient and long
sequences dependency. Hochreiter and Schmidhuber [12] developed the LSTM method
to overcome the traditional problems of RNNs. LSTM can manage longer-term data
than RNNs and can deal with disadvantages of RNNs such as exploding and vanishing
gradients. Nowadays, LSTM-based methods have become popular in many fields. LSTM is
generally preferred in many sequential models that also contain image captioning, natural
language processing and motion detection [13-16]. Furthermore, unlike traditional ANN
models, the LSTM model includes entrance, exit and forgetting doors. The presence of
these gates prevents network crashes in the LSTM model and allows it to be reset at the
appropriate time [17,18]. LSTM is a common method used to predict diverse time series
such as groundwater grades, basin flow and meteorological problems [19,20].

Xu et al. [21] used an LSTM network targeting the time series data field for the flow
estimation of rivers. LSTM predictions were compared with support vector regression
(SVR) and multilayer perceptron (MLP) models. In addition, extended experiments were
conducted on the LSTM model and the factors affecting its performance were investigated.
It was observed that the LSTM demonstrated better performance. Kao et al. [22] developed
a hybrid model based on an LSTM network for stream estimations in the Shihmen Reservoir
basin in Taiwan. It appeared that both models generally provided appropriate multi-step
forward estimates, and that the new hybrid model not only effectively mimicked the long-
term dependence between precipitation and surface flow, but also gave more reliable and
accurate flooding predictions.
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Wang et al. [23] used daily rainfall and runoff data for the estimation of the impact
on a river basin. Models with principal component analysis (PCA) inputs showed better
robustness and accuracy performance than models with good manually filtered data.
Bai et al. [24] proposed an LSTM model using the stepped-frame approach for daily surface
flow estimation. It was observed that LSTM is a valuable approach and works well for
daily flow estimation.

Liu et al. [25] created an LSTM network-connected separation model for estimating
river flows. The performance of the model was evaluated using the Willmott index. Inputs
generated with monthly flow data gave close results between forecasted and observed
values. For long-term predictions, the model showed an increased performance.

Latifoglu and Nuralan [26] used singular spectrum analysis (SSA) and LSTM analysis
together, based on the literature, to make river flow estimates, using LSTM networks.
A performance analysis of the new model created using SSA for the prediction data
was conducted.

Ni et al. [27] are developing two hybrid models based on LSTM for monthly flow
and precipitation forecasting in a basin. Wavelet-LSTM (WLSTM) uses three wavelet
transformation algorithms for serial separation and implements a combined convolutional
neural network to remove convolutional LSTM (CLSTM) timer properties. LSTM was
found to be applicable to time series estimation. Fang et al. [28] recommended a local
spatial sequential long-term memory neural network (LSS-LSTM) for flood sensitivity
forecasting in Shangyou County, China. Using the flood sensitivity estimates of LSTM’s
deep learning technique for the forecast model, two optimizations were applied—data
boosting and bulk normalization—to further improve the performance of the suggested
method. The LSS-LSTM method shows satisfactory predictive performance in terms of
accuracy. Ibrahim et al. [29] categorized machine learning into three main categories,
together with the optimization techniques, and will next explore the various Al model used
for different hydrology fields, along with the most common optimization techniques. Some
advantages and disadvantages found through literature reviews were summarized for ease
of reference. Finally, future recommendations and overall conclusions drawn from the
results of the researchers were included in that study. Al-Saati et al. [30] forecasted monthly
streamflow at the downstream section of the Euphrates River by utilizing ARIMA time
series models. The results of the study indicated that the traditional Box—Jenkins model
was more accurate than the benchmark model in modeling the monthly streamflow of the
studied case. Ghaderpour et al. [31] applied least-squares wavelet software (LSWAVE)
to estimate the trends and seasonal components of sixty-year-long climate and discharge
time series and to study the impact of climate change on streamflow over time. The results
highlighted the potential of LSWAVE in analyzing climate and hydrological time series
without any need for interpolation, gap-filling or de-spiking. Chong et al. [32] used a
comparative method between wavelet transform (WT) and Fourier transform (FT) analyses
to perform a time series frequency analysis and assessment for stream flow over the Johor
River. The results indicated that the wavelet analysis was more suitable than the Fourier
analysis as it exhibited good extraction of the time and frequency characteristics, especially
for a nonstationary data series.

LSTM has many parameters that need to be optimized, such as the window size,
neurons per layer and number of layers. However, computation and time limitations
make it impossible to reach the optimum global region and find the optimum values of
parameters. In addition, LSTM network performance sometimes gives unsatisfied results
due to the random selection of initialization parameters. Finally, streamflow data that
are chaotic and require complex learning algorithms are highly skewed, with several
small and large values. In this context, the main contribution is to find the optimum
parameters of the LSTM network in order to increase its learning capability. The operation
of population-based algorithms with a set of solutions can usually allow to determine the
global optimum region quickly. Therefore, in this study these aspects of the LSTM model,
which significantly affect the streamflow forecasting model’s performance, are addressed



Water 2022, 14, 80

40f 15

using a population-based GA algorithm. The aim of this study is to suggest the LSTM
method that could be used with correct initial weights for decreasing the prediction error
of the stream flow. The GA technique is applied to obtain the best solution and optimize
the prediction efficiency. The proposed method combined a GA, with its searching ability,
and LSTM, with its learning ability through its hidden layers. While GA is responsible for
choosing the optimal initial weights, LSTM is responsible for learning [33]. The article is
arranged as follows.

In Section 1, general descriptions and a review of studies related to hybrid model
predictions and single model mechanisms are provided. Section 2 describes the study
region, the dataset, pre-processing design and methods. In this section, the structures of
the LSTM model, the GA algorithm and the GA-LSTM model are defined. LSTM was
applied to learn current streamflow data from the long-term data and GA was applied
to optimize the parameters of LSTM. The experimental analysis results are discussed in
Section 3. Conclusions are drawn and recommendations for future studies are made in the
subsequent section.

2. Materials and Methods
2.1. Study Region

The Euphrates River is the longest in western Asia and has Turkey’s highest productiv-
ity and water potential. The majority of the river located in the Turkish territory determines
the border of Adiyaman and Gaziantep provinces and passes through Syrian territory and
joins in the Persian Gulf. The most critical water resources of the Euphrates are the Tohma,
Peri, Karasu, Munzur, Calt1 and Murat streams. Its total length reaches 2800 km within the
borders of Turkey (Figure 1). The river regime is more regular than the other streams in
Turkey. It carries an average of 30 billion m® of water annually. It receives 80% of the water
it carries from above the Keban dam [34].

0 _ 40 60
-:—;EEAO Kilometers

Figure 1. Euphrates River map and FMSs.

2.2. Datasets and Pre-Processing

Long-term 20-year streamflow data were obtained from daily flow measurement
stations (FMSs) Beyderesi-Kilayak (E21A31) and Yazikoy (E21A24), shown in Figure 1,
which were selected according to the conditions of being on different branches (further
upstream) of the Euphrates. These differences are useful in the prediction of river flow
regimes. The locations of the stations on the Euphrates River are given with geographical
coordinates in Table 1.
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Table 1. Two flow measurement stations located along the Euphrates River.

Coordinates y
. Percentage o . .
FMS River-FMS Eallst Nolrth Missing Data (Year) Elevation (m) Observation (Year)
(O II) (O II)
2124 Yazikoy 3726 35 38 40 23 11% 1193 2000-2018
2131 Kilayak 381238 381947 None 892 2000-2019

River flow increases significantly in the downstream direction due to surface, subsur-
face and karst groundwater contributions. As shown in Figure 2, during the observation
period, the lowest and highest flows of both stations upstream of the river were 0.44 m3/s
and 37.8 m3/s, respectively. Considering the streamflow at Yazikdy FMS, the lowest stream-
flow was observed to be 1.61 m3/s in 2014 and the highest streamflow was observed to
be 37.6 m?/s in 2015. Considering the daily streamflow at the Kilayak FMS, the lowest
streamflow was observed in 2016 at 0.44 m®/s and the highest streamflow was observed
to be 37.8 m®/s in 2010. The highest streamflow was observed for both stations in the
March-May period.
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Figure 2. Training (blue) and test data (red) of daily streamflow for (a) Kilayak and (b) Yazikoy stations.
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In order to analyze the performance of the hybrid model, initially, Spyder (Python 3.8)
was used. In this study, we used the Keras library for training processes and the Deep
library to estimate the GA selections. The dataset was directly related to streamflow values
for each day. The training process for the proposed method involved 100 epochs for LSTM
and a batch size of 8; the optimizer was ADAM and the loss function was MAE. For
GA-based selection: the initial population size was 4, the crossover rate was 0.6 and the
mutation rate was 0.4 and the number of generations was 10. The performance study
used daily flow measurement station data obtained from EIEI (Electrical Works Survey
Administration General Directorate). In total, the data consisted of 7304 training days. The
data set consisted of a training dataset with 80% of the data and a test dataset with 20%.
Furthermore, the hybrid model had two hidden layers. Each layer had 22 memory cells.

The training data were used to examine the indicators in the model and test data
were applied for the performance analysis of the comparison and hybrid model. However,
the problem of the lack of hydrological data, especially the river flow data, is one of the
most crucial problems faced by hydrologists worldwide. These problems arise for many
reasons, including technical reasons, and sometimes as a result of unstable situations in a
region as a result of conflict or war. Consequently, some historical hydrological data may be
available on a river, which may not provide a time series of sufficient flow for the purposes
of modern hydrological studies for that river. For this reason, in the selection of data and
stations, attention was paid to ensure that data observations were not short- or long-term,
but continuous or as little interrupted as possible. In addition, as mentioned above, the
features of being in different branches of the river are among the factors to be considered.
With these features, E21A31 and E21A24 stations were used to create the datasets for this
study. The timespan of the dataset was from September 2000 to June 2019 for Kilayak FMS
and the timespan of the dataset was from December 2000 to June 2018. Each record in the
dataset contained the streamflow values for daily streamflow.

2.3. Methods
2.3.1. Long-Short-Term-Memory Network

These networks are a specialized version of the recurrent neural network structures
that have the ability to recall long-term dependencies while learning the relationships
among items. These types of networks are also known for being durable when carrying
information over long sequences. LSTM structures are powered by cell states that allow
LSTM to transmit information through successor layers. The internal structure of LSTM
is composed of three major parts—the input gate, output gate and forget gate—which
performs specific operations on cell states. The first submodule, the forget gate, gets rid of
the cell state’s irrelevant data. On the other hand, an input gate with a sigmoid (o) function
decides its current information update. Lastly, picking the beneficial information from
the overall structure (Figure 3) and exposing it as output data is completed by the output
gate [35]. The gates allow the information to be transferred to the next cell state. If the layer
generates zero, this means, “do not let any information pass to the next step,” whereas
having the value of one as a result of the layer means “let all information pass to the next
step” [36].

In Figure 3, three different gates (input gate, forget gate, output gate) and the memory
cell of the LSTM cell are depicted. Gate and memory squares indicate matrix multiplication
in Equations (1)—-(4). Weight(w) and bias(b) are the current values of gates and u indicates a
recurrent connection matrix. The slightly distorted ‘s’-shaped cell indicates the sigmoid
function indicated in Equation (5), the ‘tanh’ cell indicates the hyperbolic tangent function
in Equation (6), the cell with a circle sign indicates the Hadamard product of input matrices,
and finally the cell with plus sign indicates the matrix addition operation.
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It is possible to add LSTM networks consecutively to create more complex structures.
Through this addition process, LSTM can store both the previous records of the first LSTM
group and future records of the second LSTM group and make predictions using both types
of data. This kind of model can be useful to fill gaps in data such as a missing word in
a sentence.

2.3.2. Genetic Algorithm

Genetic algorithms (GAs) are inspired by the evolutionary development mechanisms
of living things [37]. A GA is a metaheuristic algorithm developed to find the global
optimum in the search space. Since it works with a set of solutions, it has the ability to reach
the optimal value. Therefore, even in multidimensional problems with a large search space
and a large number of variables, the success rate, in terms of obtaining optimal results in
acceptable times, is quite high. Operations such as crossover, mutation, evaluation and
selection are used to generate optimal new solutions for the fitness function of the problem.

A GA is a population-based optimization algorithm. The candidate solutions that
make up the population are the chromosomes in the algorithm [38]. These chromosomes
turn into solution candidates that represent better results through various evolutionary
processes such as selection, crossover and mutation.

The initial population consists of random candidate solutions. There are no specific
criteria for the size of the population. However, it is considered that many individuals
in the population do not affect the quality of the solution. The fitness function value
indicates the solution quality of each individual. Individuals to be transferred to the next
generation are determined according to their fitness function values. In addition, the
crossover is usually performed with genes from two- parent chromosomes. This process is
applied by replacing the genes from the starting point of the chromosomes up to a point
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to be determined. The mutation process increases the diversity of chromosomes in the
population and provides new solution candidates. Mutation refers the changing of one or
more genes of an individual to become a different individual. These processes are shown
in Figure 4.

INITIAL POPULATION

GENETIC
ALGORITHM

REPRODUCTION

CROSSOVER

Figure 4. Basic process of a genetic algorithms.

The standard procedure of a GA is to run until an acceptable fitness value is reached
or criteria such as a predetermined processing time or number of generations are met. The
chromosomes (candidate solutions) used in the evolutionary process are strings that hold
variables with discrete or continuous values of the solution they represent [39]. Furthermore,
the fitness function is the objective function that measures the quality of chromosomes.

2.3.3. Proposed Method

In an LSTM network, in which historical information is essential, the time window is
in a critical position. In this study, in order to increase the success of the LSTM network,
which is frequently used in river flow time-series predictions, a hybrid model is created by
integrating GA optimization into the LSTM network to find the optimum window size and
number unit parameters. The success of the model was calculated by comparing its results
with those of the non-hybrid model. In order for the comparison data to be healthy and
consistent, first of all, the benchmark LSTM model was tested with different parameters
and the testing parameters of the best estimation results were taken as a reference. Figure 5
shows the flow of the hybrid model in our study. Accordingly, firstly, the dataset was
divided into two groups as test and train. Then, to find the optimum window size and
number unit values, GA optimization was run with randomly selected initial population,
gene length and number generation values, and the LSTM model was trained and tested
for each chromosome until the best individual was found. Afterwards, the results obtained
with the optimum window size and number unit values were recorded to be compared
with the benchmark model. RMSE was used to calculate the suitability of the chromosomes
when creating the GA. The optimal solution was determined by the architectural factors
that returned the smallest RMSE.
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3. Results and Discussion

In this section, the performance of the LSTM, the hybrid model and linear regression
was analyzed. Test data of streamflow from long-term annual measurements are plotted
in Figure 6. It can be seen that the results of the linear regression above only occur when
the LSTM performance is analyzed. However, this method inverted to be much more
advantageous considering the proposed model’s accuracy, stability and margin of error. The
model’s performance was analyzed with 1460 test data for Kilayak FMS and 1357 test data
for Yazikoy FMS. The performance of the hybrid model against linear regression seems to be
quite successful when the statistical metrics given in Table 2 are examined. Additionally, our
aim is to support the results of the statistical measurements of the hybrid and benchmark
model included in the study.

The scatter plots for the GA-LSTM, LSTM and linear regression model for the test
data are indicated in Figure 6 to examine the coefficient of determination between the
actual and predicted streamflow data. The proposed GA-LSTM method results are close
to the actual streamflow data for Kilayak and Yazikoy, although the Yazikoy is normally
further upstream. GA-LSTM showed highly successful predictions with an R? of 0.9689. In
the statistical measurement performances of the study, mean absolute deviation (MAD),
mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE) and standard deviation (STD) were utilized.
These evaluation methods have been widely used in various works and are provided as
measurement tools for estimating daily flow values and determining the effectiveness
of the model [40,41]. Table 2 shows the statistical measurements of the model results.
Furthermore, Table 2 indicates that the proposed model performs better when the error
measures are examined. A residual which is also referred as the ‘error value’ can be
defined as the difference between the actual data point and the predicted data point. Itis a
measure of a line of fit for the given regression line and is important for showing model
performance. In this context, it is analyzed by its magnitude and whether it forms a pattern
when determining the quality of a model. The proposed GA-LSTM method’s residual
performance is shown in Figure 7. It is clear that the residual values are too small and that
they formed a group.
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Figure 6. Benchmarked model (a), proposed model (b) and linear regression model (c) results.

Table 2. Performance measures (All values are in m3/s).

Station Model RMSE MAE MAPE STD. DEV. R2
GA-LSTM 0.9302 0.2997 8.9736 0.2152 0.8667
LSTM 1.2668 0.3976 11.5119 0.3359 0.7831
Kilayak L
mnear 1.3755 0.3318 12.7401 0.3431 0.7493
Regression
GA-LSTM 0.7795 0.2865 5.2819 0.0973 0.9689
Yaziksy II:STM 14316 0.6615 17.2010 0.1913 0.9060
mnear 1.6287 0.7935 19.2052 0.1610 0.9024

Regression
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In the comparison estimations of these three models, In Table 2, in Kilayak FMS the
estimated MAE of the LSTM was 0.3976, whereas the estimated MAE of the proposed
model was 0.2997, the estimated MAE of the linear regression was 0.3318. The estimation
result provided a 75.37% and 90.32% improvement over the benchmark model and linear
regression, respectively. The RMSE of the proposed model was found to be 0.9302, whereas
that of LSTM was 1.2668 and that of linear regression was 1.3755. The increase in the RMSE
value was observed to be 73.42% (benchmark) and 67.62% (linear regression). The MAPE
values were found to be 11.5119, 8.9736 and 12.7401 for the benchmark, the proposed model
and the linear regression model, respectively. When these values are examined, the increase
is seen to be 77.95% over the benchmark and 70.43% over linear regression. The standard
deviation values were examined and these values were found to be 0.3359, 0.2152 and
0.3431 for the comparison, suggested and linear models, respectively, and improvements of
64.06% and 62.72% were observed. Finally, according to coefficient of determination (R?),
that of the proposed model is found to be 0.8667, whereas that of LSTM was 0.7831 and
that of linear regression was 0.7493.

In Yazikdy FMS, the estimated MAE of the LSTM was 0.6615, whereas the estimated
MAE of the proposed model was 0.2865 and the estimated MAE of the linear regression
was 0.7935. The estimation results provided a 43.31% and 36.10% improvement over the
benchmark model and linear regression, respectively. The RMSE of the proposed model
was found to be 0.7795, whereas that of LSTM was 1.4316 and that of linear regression was
1.6287. The increase in RMSE value was observed to be 54.44% over the benchmark model
and the increase in value was observed to be 47.86% over linear regression. The MAPE
values were found to be 17.2010, 5.2819 and 19.2052 for the benchmark, the proposed
model and the linear regression model, respectively. When these values are examined,
the increase was found to be 30.70% and 27.50% over the benchmark model and linear
regression, respectively. The standard deviation values were examined; these values were
found to be 0.1913, 0.0973 and 0.1610 for the comparison, suggested and linear models,
respectively, and improvements of 50.86% and 60.43% were observed. Finally, the coefficient
of determination (R?) of the proposed model was found to be 0.9689, whereas that of LSTM
was 0.9060 and that of linear regression was 0.9024.

The hybrid model performed better than the LSTM, revealing the importance of the
time window the proper and correct setting of the parameters in order to achieve superior
performance. As our results show, there is no need to make large windows for LSTM-based
models. However, in MLP models, this proportionally increases the accuracy of the model.
Most often, the window is selected depending on the behavior of the predicted signal.
It is necessary to choose the size of the window so that one complete cycle of the signal
behavior, or a period of time in which the classified signal completely interferes, can fit
into this window. Everything described in the study was achieved perfectly, although we
tried many possible combinations. Furthermore, the size of the window depends on the
sampling frequency or aggregation over time. For example, a 30-min signal can be fit into
a window of 60 units if the signal aggregation is performed for 30 s, or in a window of
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15 units in size if the aggregation is performed for 2 min. The growth and diversification of
learning algorithms make it difficult to search for suitable parameter sets. However, our
results indicate that the new hybrid model created herein will provide an effective guide
for algorithms and similar data.

The LSTM network is an essential function in determining the performance of predic-
tion models. Combining models such as GA and LSTM seems to provide advantages in
time series prediction problems such as river flow predictions. This advantage becomes
apparent when the optimization and generation of other units are completed. The proposed
hybrid model learned to find the optimal level of river flows and was able to predict the
next day’s flow value. This situation is demonstrated by its significant performance when
compared to the benchmark model.

This research proves that one can effectively find an optimal result using the GA
technique. Experimental results supported this situation and determined the superiority of
the proposed hybrid model over the comparison model.

Recently, a number of existing literature studies have been considered the classification
of streamflow forecasting using neural networks models.

Thapa et al. [42] developed a deep learning long-short-term memory (LSTM)-based
model in the Himalayan basin for snowmelt-based discharge modeling. Fu et al. [43]
applied the deep learning method for daily flow simulation, and used data from previous
years for flow prediction. The model was carried out according to several perspectives. At
the end of the study, it was found that the LSTM model was advantageous in processing
constant flow data in the dry season and gave satisfying results in capturing data features
in rapidly fluctuating flow data in rainy seasons. Luo et al. [44] built a new hybrid model
based on the long-short-term memory approach for predicting streamflow. In this study,
the linear regression model, which is one of the classical methods, was used to show how
successful the performance between the benchmark model and the hybrid model was. The
results obtained via linear regression are shown in Figure 6 as a plotting graph, along with
other outputs. When the statistical measurement metrics are examined in Table 2, it is
observed that the linear regression approach was weak in both stations, compared to the
LSTM. The results have shown that the hybrid model has better performance than the
benchmarked model, providing forecast precision.

This study proves that in LSTM-based estimation processes, the use of a GA helps
to determine the critical points of window size and the number of units, strengthens the
model and improves the results considerably. This hybrid deep learning model is one of
the most optimal solutions for solving complex and large-scale data problems.

4. Conclusions

In conclusion, a hybrid method that integrated a GA and LSTM is suggested to forecast
streamflow data. The proposed method’s performance was tested on streamflow data from
the Euphrates River in western Asia. The results achieved with the GA-LSTM method
were equated with the primary LSTM method results. Although the basic LSTM shows
robust learning capability for time series, its performance sometimes gives unsatisfactory
results due to the random selection of initialization parameters. Due to the operation of
population-based algorithms with a set of solutions, GA algorithms usually quickly identify
the global optimum region. Therefore, a GA was used to search for suitable values of LSTM
parameters in this study. Statistical measurement performances such as MSE, RMSE, MAE
and MAPE are essential parameters to evaluate the method’s performance, especially for
forecasting measures. In this context, the measures mentioned above were used to evaluate
the proposed method. The obtained results showed that the prediction error of the stream
flow data was more successfully decreased with the proposed GA-LSTM approach than
the benchmark model. Consequently, it was found that our approach had low measures,
and these results were statistically significant. In addition, the achieved results indicate
that our approach can successfully improve the predictive performance of the basic LSTM.
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Furthermore, the data had low standard deviation values in this study. The low
standard deviation indicates that the measurement performances values were close to each
other, which means that the results are reliable. In addition, the coefficient of determination
(R?) was utilized to measure the proposed model’s performance. The results given in
Table 2 indicate how well the model fit the data. In general, the high number of parameters
to be determined and the starting of the training of the network from a random point
were the negative factors. A long computational time is often required to access the region
of the global optimum due to high probability-based search strategies for population-
based algorithms. In this context, future studies are planned to train the LSTM network
using other meta-heuristic searching techniques and to examine its performance on related
problems. On the other hand, new regions which have different streamflow characteristics
can be analyzed by using the GA-LSTM method. Thus, future research directions can be
determined by observing data with different characteristics.
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Abbreviations

LSTM Long-Short-Term Memory
ANN Artificial Neural Network
RNN Recurrent Neural Network
PSO Particle Swarm Optimization
DL Deep Learning

MLP Multi-Layered Perceptron
SVR Support Vector Regression
PCA Principal Component Analysis
SSA Singular Spectrum Analysis

WLSTM  Wavelet Long-Short-Term Memory Networks
LSSLSTM  Local Spatial Sequential Long-Short Term Memory Networks

LSS Least-Squares Spectrum
LSWAVE  Least-Squares Wavelet Software
WT Wavelet Transform
FT Fourier Transform
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