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Abstract: The trend to a hotter and drier climate, with more extended droughts, has been observed
in recent decades in southern Australia and is projected to continue under climate change. This
paper reviews studies on the projected impacts of climate change on groundwater and associated
environmental assets in southern Australia, and describes groundwater planning frameworks and
management responses. High-risk areas are spatially patchy due to highly saline groundwater or
low-transmissivity aquifers. The proportional reduction in rainfall is amplified in the groundwater
recharge and some groundwater discharge fluxes. This leads to issues of deteriorating groundwater-
dependent ecosystems, streamflow depletion, reduced submarine discharge, groundwater inundation
and intrusion in coastal regions and reduced groundwater supply for extraction. Recent water reforms
in Australia support the mitigation of these impacts, but groundwater adaptation is still at its infancy.
Risk management is being incorporated in regional water and groundwater management plans
to support a shift to a more sustainable level of use and more climate-resilient water resources in
affected areas. The emerging strategies of groundwater trade and managed aquifer recharge are
described, as is the need for a national water-focused climate change planning process.

Keywords: climate change; groundwater supply and use; environmental impact; groundwater
planning; uncertainty and risk; adaptive management

1. Introduction

The impacts of climate change on groundwater have been receiving increasing inter-
national interest over the last twenty years, as seen in scientific reviews [1–9]. The potential
impacts include exacerbating water scarcity [10–14], flooding, ref. [15] sea water intru-
sion [16] and deteriorating groundwater-dependent ecosystems [17]. The impacts on water
scarcity are of a particular concern for areas where groundwater is an important water
source. Examples include arid and semi-arid regions already under stress from existing ex-
traction, such as the southern USA [12], Middle East and northern Africa [13] and southern
Europe [14]. The management options for water scarcity are generally known, but climate
change may accelerate the need for policy and management changes.

This paper describes how climate change is affecting groundwater in southern Aus-
tralia, its potential contribution to water scarcity and the steps being taken to manage the
issue. South-western Australia has been experiencing a drying climate for last forty years,
and south-eastern Australia has been in drought for much of the last twenty years [18].
Climate modelling is indicating that this trend will continue [19]. Climate change affects the
groundwater balance both directly through changes in rainfall magnitude and patterns and
temperature and indirectly through sea level rise, demand for groundwater and changes
in land and water management [4]. There have already been major impacts on water
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resources in the Perth region in south-western Australia [20]. A continuation of this drying
climate will affect both future surface water and groundwater [21–24].

The prediction of future impacts on groundwater systems from the climate is ham-
pered by uncertainty related to future rainfall projections (and carbon emissions and
warming scenarios) and its impact on groundwater recharge and groundwater demand,
as well as the uncertainty associated with hydrogeological properties. Groundwater man-
agement therefore needs to occur within a risk framework to ensure the management
objectives are still met despite this uncertainty [25,26]. Since uncertainty and risk are key
issues for the paper, this paper is divided into five sections, structured around risk:

i. The Australian context on groundwater and trends and projections for future climate
and runoff in southern Australia;

ii. Water planning in Australia, with an emphasis on climate change and groundwater;
iii. Risk assessment: impact of climate change on groundwater recharge;
iv. Risk assessment: impacts on groundwater and the associated values from climate

change; and
v. Risk management: groundwater management already being taken or planned to be

taken in order to meet the water resource objectives.

The terms for risk can vary greatly from one domain to another. The terms used in this
paper are mostly consistent with the Australian and New Zealand (ANZ) standard [27].

2. The Australian Context
2.1. Historical Climate Trends and Future Climate Projections

Australia has been experiencing a range of long-term trends in climate and sea lev-
els [18], specifically:

i. Australia’s climate has warmed by 1.4 ◦C since 1910, leading to an increase in the
frequency of extreme heat events;

ii. Sea levels are rising around Australia;
iii. May–July rainfall has decreased by 20% in the south-west of Australia since 1970;
iv. April–October rainfall in the south-east of Australia has declined by 12% since the

late 1990s (this includes the 1997–2009 Millennium Drought);
v. High extreme rainfall has become more intense, particularly the shorter (sub-daily)

duration and longer return period rainfall, and particularly in northern Australia; and
vi. Streamflow in southern Australia has declined significantly.

Australia’s national climate projections at www.climatechangeinaustralia.gov.au (ac-
cessed 10 December, 2021) indicate that over the coming decades Australia will experience:

i. A further increase in temperatures, with more extremely hot days and fewer extremely
cool days;

ii. Ongoing sea level rise;
iii. A decrease in cool-season rainfall across southern Australia, with more time spent

in drought;
iv. More intense heavy rainfall throughout Australia, particularly for short-duration

extreme rainfall events; and
v. Fewer tropical cyclones, but a greater proportion of high-intensity storms, with ongo-

ing large variations from year to year.

The projected climate for southern Australia largely reflects historical trends. For
example, the projected reduction in June to August rainfall in 2090 by 32 ± 11% relative
to that in 1990 [19] is similar to the reduction in May to July rainfall across south-western
Australia [18]. Moreover, the projection for June to August rainfall for the Murray–Darling
Basin in south-eastern Australia in 2090 being less than that in 1990 by 16 ± 22% [19]
reflects the reduction in April to October rainfall for 1999–2018 over south-eastern Australia
compared to the 1900–1998 period [18]. The reductions in rainfall are also occurring in the
main rainfall and runoff period (cool season) of the year for southern Australia.

www.climatechangeinaustralia.gov.au
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There are multiple lines of evidence indicating that there will be less cool season
rainfall under climate change. The trends in recent observations show this. The decline is
consistent with large scale atmospheric and oceanic processes in a warmer climate shifting
the mid-latitude weather systems, pushing the winter storm tracks further south [28–30],
and practically all of the climate models project a drier cool season in Australia [31].

Global sea levels have risen 20 cm since 1880 [18]. This rise has been accelerating,
reaching a rate of over 3 cm/decade over recent decades. The rate of rise varies around the
Australian coast and from decade to decade. Satellite altimetry from 1993 to 2014 shows
rises for the southern coast of Australia to be 3–6 cm/decade. On the south-eastern coast,
the rates are higher (6–8 cm/decade).

2.2. Historical Streamflow Trends and Future Streamflow Projections

The observed long-term reduction in rainfall has led to even greater reductions in
streamflow in southern Australia. This is illustrated by the reduced inflows for Perth
dams [32] (Figure 1), where the pre-1971 inflow averaged 338 Gl/year; 1975–2000 173 Gl/year;
2001–2009 92 Gl/year and 2010–2018 51 Gl/year (excluding Stirling and Samson Brook Dams,
which came on-line in 2001). Likewise, inflows to the River Murray in the last 20 years
averaged 4820 Gl/year compared to 9407 Gl/year over the last 100 years [33]. Declines in
streamflow have also been observed in four drainage divisions: the Murray–Darling Basin, the
South-east Coast (Victoria) and South-east Coast (New South Wales) (which include Sydney
and Melbourne) and the South Australian Gulf (which includes Adelaide). In each of these
drainage divisions, between two thirds and three quarters of streamflow records show a
declining trend since the 1970s [32].
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The sensitivity of average runoff to average precipitation, i.e., the rainfall elasticity
of streamflow, is about 2–3.5 in Australia [34], is higher in drier regions and is about
3.5 in south-western Australia [35]. This means that a 10% change in average annual
rainfall will be amplified as a 20–35% change in the catchment runoff (and streamflow, and
inflow into storages). This provides an indication of the future change in runoff that may
result from a change in rainfall due to climate change [34,35]. The decline in future runoff
will be further accentuated by non-stationarity in the rainfall–runoff relationship [36,37],
higher potential evapotranspiration [38] and reduced connectivity between surface and
groundwater systems under more prolonged dry conditions [39,40].

The projections developed from hydrological modelling informed by a climate change
signal from global climate models indicate that under a 2 ◦C global average warming:
average annual runoff in northern Australia would change by −40% to +30% (median
of −5%); average annual runoff in eastern Australia would change by −40% to +20%
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(median of −15%); average annual runoff in south-west Australia would change by −20%
to −70% (median of −50%); and average annual runoff in south-east Australia would
change by 0 to −40% (median of −20%) [31,41,42].

2.3. Groundwater in Australia

Groundwater is an important source of water in Australia. It represents about 30% of
total water use [43] in Australia. Figure 2 provides a snapshot of groundwater resources
for Australia. The major groundwater resources in productive regional aquifers are shown
in dark blue (Figure 2a) [44]. This shows that low to moderate productive aquifers cover
most of southern Australia. The groundwater salinity, as indicated by Figure 2b, is another
major constraint to use of groundwater. As a result of the large area of low to moderate
productivity and high groundwater salinity, groundwater use is spatially ‘patchy’. This is
shown to be the case by the bore density (Figure 2c). Even so, groundwater is the main
source or only source of water in drier regions away from the eastern and very southern
fringes (Figure 2d). There are small areas of high extraction and large areas of low extraction
density, meaning that stressed aquifers will be spatially ‘patchy’. If recharge reduces as a
result of climate change, all of the aquifers are affected, but sustainable management of
already stressed aquifers will be specially challenging.
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Groundwater use is countercyclical to rainfall [45]. Extraction tends to be higher
during drier periods and lower during wetter periods. It becomes most important dur-
ing droughts, when surface water resources are limited [3]. The large storage of many
groundwater systems mean that most groundwater systems should not be vulnerable
to climate variability and gives the opportunity for adaptive management, particularly
in the conjunctive management of surface water and groundwater. There are several
high value aquatic and terrestrial ecosystems in southern Australia that are dependent on
groundwater [46]. Over the last twenty years, there has been a greater focus on protecting
groundwater as a source for ecosystems. The need to maintain shallow water tables can
limit the operating range of groundwater systems and thus effectively reduce the buffering
capacity of the groundwater storage. Groundwater pressures for all of the aquifers in
the regional groundwater systems in southern Australia have mostly been falling over
the last twenty years, consistent with lower recharge [44,47] and greater extraction over a
drier period. Relative to groundwater systems around the world, Australian groundwater
systems show low to moderate vulnerability, e.g., [48].

A reduction in cool-season rainfall is likely to reduce recharge [47], as recharge in
southern Australia is winter dominant. The mechanisms that lead to elasticity factors of
greater than one for runoff also apply to recharge [49], as a minimum volume of rainfall
is required to generate runoff or recharge. This means any reduction in rainfall will be
amplified for recharge. Higher temperatures and lower rainfall will lead to higher potential
evapotranspiration, which may affect groundwater demand and evaporative discharge.
This, together with reduced recharge will place greater pressure on groundwater systems.
The next section describes groundwater planning and management, especially under a
drying climate.
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3. Groundwater Planning and Climate Change
3.1. Water Planning in Australia

The 1994 Council of Australian Governments Water Reform Framework and the 2004
Intergovernmental Agreement on the National Water Initiative (NWI) [50] set out the
foundations for the management of water resources in Australia. Australian governments
have agreed to manage water resources in a way that balances economic, social and
environmental outcomes through a range of regulatory and planning reforms.

Under the NWI, water resources are managed by each state and territory having in
place water plans and water access entitlements that provide long-term security of access
by water users to their share of the available water resource. These plans are the primary
mechanism for addressing risks to water security, including those from climate variability
and long-term change. Identifying a sustainable limit for water extractions, which accounts
for the implications of climate change for water availability, is one of the fundamental
principles of the NWI. The NWI also identifies water entitlement holders within water
plans as responsible for bearing the risks of any reduction in the amount and reliability of
water allocations because of seasonal or long-term changes in climate.

The water reforms have introduced water markets that allow water users to adapt to
changes in water availability. Water markets place a cost value on water, a value which
varies according to demand and supply. In times of water scarcity, water markets can move
water to more productive and efficient uses. The combination of actions under the water
reform, e.g., water rights, facilitated trade and allowed carry over storage, is expected to
assist water entitlement holders to manage the risks of climatic variability and long-term
climate change [51]. Markets for surface water entitlements were considered an important
mechanism for reducing the economic impacts of the 1997–2009 Millennium Drought [52].

Groundwater management plans are still evolving in response to the NWI. The type
of groundwater management varies across and within jurisdictions. Plans are expected
to have an extraction limit [50], with a range of rules to manage groundwater systems.
The plans have both water use and environmental objectives and aims to balance consump-
tive and environmental needs. Where there is not a high level of extraction, a specific
groundwater plan may not exist, but rather a generic plan. The water reform process has
helped place Australia, where groundwater systems compare well globally in terms of
water stress [49], in a better position to address the impact from climate change.

3.2. Uncertainty, Risk and Climate Change within Water Plans

Several existing water plans, including two groundwater plans, were reviewed in
2008 against the main themes of the NWI [53]. The review found deficiencies in the way
plans dealt with uncertainty and climate change. With respect to the latter, the reviewers
stated that ‘the impact of climate change means that there is even less ability to predict
and plan water resource use with certainty, so an adaptive approach to water resource
management and planning is required.’ The National Water Commission recommended
that all future water plans explicitly consider the impacts of climate change on water
resources and environment. It also recommended that all water plans are sufficiently re-
silient to accommodate a broad range of climate change outcomes [54]. Several documents
were developed to describe how to incorporate (i) adaptive risk management, (ii) scenario
planning and (iii) risk strategies into water planning [55–57].

3.2.1. Adaptive Risk Management

Risk management aims to meet management objectives despite deficiencies in knowl-
edge and allows decisions to be made with imperfect knowledge. Water planning invariably
involves deficiencies in knowledge, including those related to hydrological processes and
drivers of demand (e.g., markets, technology, changing attitudes and government policies).
Risk management is therefore a critical component of planning processes [56,57]. In the
case of groundwater, there is an additional deficiency in knowledge: sufficient understand-
ing of the hydrogeological properties and groundwater inputs and outputs to predict the
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response of groundwater systems to stresses [25]. The future climate is therefore just one
more uncertainty, albeit a major one.

Figure 3 depicts how water planning can align with the adaptive management ap-
proach to risk management [57,58]. As a plan is initiated or updated, there is a need to
assess the effectiveness of the current plan for addressing the chosen risks. Management
objectives are refined based on updated knowledge from monitoring and investigations.
The alternative risk mitigation is compared to the current plan. If the residual risk is large,
or options need to be refined, the cycle repeats itself until a set of acceptable options is
obtained. A modelling and investigations program is developed to allow an update of the
plan at some time into the future.
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Most plans have a mechanism to intervene within the planning cycle if monitoring
shows that the groundwater state is inconsistent with plan expectations. If monitor-
ing shows that the agreed thresholds (e.g., groundwater level, groundwater quality) are
exceeded at identified sites, the plan (and assumptions) is reviewed. Some plans go fur-
ther by using monitoring to set seasonal or annual allocations, e.g., [58]. This provides
greater protection to environmental and other assets where there is uncertainty in setting
extraction limits.

The precautionary principle represents another risk management approach embedded
in the NWI. The principle ‘if there are threats of serious or irreversible environmental
damage, lack of full scientific certainty should not be used as a reason for postponing mea-
sures to prevent environmental degradation’ provides greater environmental protection.
Precautionary approaches could be used to protect other water-dependent assets that are
considered important by the planning bodies.

3.2.2. Scenario Modelling

Scenario modelling is a tool for addressing future uncertainties by enabling more
specific risk management strategies to be tailored to the range of possible futures. Ground-
water management actions taken today may lead to impacts in decades to come and hence
beyond the current planning cycle. Scenario modelling is generally used to compare the
impact of an action compared to the status quo [25]. Water management plans will influ-
ence the spatial and temporal distribution of groundwater extraction, as will commodity
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prices and climate. Scenarios are used to better understand the range of potential impacts.
These are then used to revise the plan, and other government policies and industry plans.

The wide range of climate projections under different emission scenarios and from
different climate models means that climate is a primary influence on the range of scenarios.
While the risk is characterised by the likelihood and consequence [55] point out that it is
not appropriate to assign probabilities to future climate, but rather that a range of scenarios
should be considered that aid the evaluation of options. The development of scenarios may
require downscaled climate datasets for relevant regions, e.g., [59,60]. These are available
across Australia.

3.2.3. Other Risk Management Strategies

Where uncertainty is large, one risk management strategy is to ‘avoid the foreclosure
of existing options until the impacts of climate change are better known’ and ‘to create
a greater range, or lower the cost, of possible response to climate change into the future’
(i.e., ‘hedging’) [55]. As hedging can become prohibitively expensive, screening of options
becomes necessary. Risk approaches include transferring, offsetting or ignoring risks [27].

Adaptive responses need to be tailored to the type of climate change. For example,
where there are gradual but persistent changes in average climatic conditions, as for the
drying climate in southern Australia, the uncertainty in future climate is translated to the
uncertainty of timing of implementing options. This concept is illustrated in Figure 4, where
long-term trends in groundwater supply and demands both have uncertainties [61], and
the timing of supply no longer meeting demand has a large uncertainty. While the timing is
uncertain, this is not a reason not to discuss the types of actions required and evaluate them
further. Thus, options can be agreed and developed beforehand and then implemented
when triggered by the climate. This especially applies to larger infrastructure projects.
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Where there is greater uncertainty in the projections, there needs to be a greater
focus on managing current and future use to avoid compromising important assets into
the future [55]. Groundwater is generally considered to be a secure water supply, with
major groundwater systems being highly buffered and therefore not overly sensitive
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to climate variability. Some groundwater systems can be more vulnerable, e.g., thin
groundwater lenses and those systems where shallow water tables are required to support
groundwater-dependent ecosystems and baseflow. Many major groundwater systems
are dependent on episodic flood events for recharge. Where both surface water and
groundwater are available, the conjunctive or integrated use of surface and groundwater
can enable greater resilience to climate variability. A different type of scenario is required to
develop contingency plans for extreme events. The authors of [61] suggest using scenarios
that are somewhat worse than the historical worst to evaluate options. Any change
in extreme events may also influence recharge to some alluvial aquifers (next section).
There is a need to also consider scenarios where climate change occurs in rapid bursts (as
have historically happened in Australia), in addition to those involving a slow, gradual
change [62,63].

The Australian government [59] advises for south-west Australia, that ‘water planners
and managers need to revise and reset water availability through new water allocation
plans. Focus should be given to managing water allocations in the most practical way to
reduce risks associated with expected declines in rainfall” and water availability’, including
driving water use efficiency measures and exploring possible new sources. The advice for
south-eastern Australia is that ‘water planning and management processes to be robust
and adaptive across a wide range of possible futures, and they are subject to regular
review . . . approaches include adaptive planning cycles that incorporate revision of water
plans, flexible water allocations that are informed by seasonal and inter-annual water
availability and including options that trigger responses to manage the risks of extreme
drought.’ Moreover, similar to south-western Australia, future water availability may need
to be revised down.

3.3. Vulnerability Mapping

The development of more detailed water plans can be resource intensive. While the
above general approaches help frame the questions and responses, there is a need for a
specific assessment of risk for an individual groundwater system and where necessary,
development of adaptive measures. It is therefore desirable to prioritise resources to
higher risk and important regions for this purpose and communicate the rationale for
different resourcing to the community. Vulnerability mapping is an approach to do this.
Vulnerability maps combine key mappable characteristics which lead to a sensitivity of
risk to climate change.

Three such characteristics are (i) the ratio of extraction to estimated recharge, (ii) the
ratio of groundwater storage to recharge and (iii) the presence of important environmental
assets. The impacts from climate change are more important where groundwater is already
stressed from extraction, i.e., where the ratio of extraction to recharge is high. A reduction
in recharge may cause the current extraction limit to be unsustainable, whereas it may not
matter if there is only limited extraction.

As mentioned above, groundwater systems are less sensitive to climate variability if
they are highly buffered. A large storage to recharge ratio means that there is more time to
respond to a change in the climate. Where there are important environmental assets, any
change in groundwater storage or quality may impact on the assets.

Vulnerability maps have been produced for Australia [24] and some states. Figure 5
shows one for South Australia [64].
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3.4. Summary of Water Planning

This section has described water planning, its relationship to risk management and
the need for these to deal with climate change and extreme climate events. Broad strategies
can be identified that manage uncertainty and risk, but water plans require greater detail.
The resources required to develop water plans that address climate change can be large.
Vulnerability mapping has identified groundwater systems that may be sensitive to any
change in the climate. This helps focus resources to areas where the risks are greater. Water
plans need to assess the impacts from climate change on current plans and revise plans
as necessary. Scenarios that encompass a wide range of climate projections, including
downscaled data, are required for this purpose. Sections 4 and 5 describe the risk assess-
ment, while Section 6 describes the development of risk measures. Methods have been
developing in Australia for over 20 years.

4. Risk Assessment: Recharge Response
4.1. Context

A risk assessment is the process of determining the level of risk, and comparing this
with risk criteria to determine whether the risk is acceptable. A risk assessment assists
in the decision about whether risk treatments are required. Figure 6 shows how climate
changes relate to the main impacts. The changed climate variables are shown in blue. These
lead to changed boundary conditions to the groundwater system (shown in grey), including
changes in recharge and higher sea levels. The groundwater system responds to these
changed inputs, causing changed water table levels, fluxes, etc. (shown in yellow). These,
in turn, cause the impacts that matter (shown in green), including reduced groundwater
extraction limit and poorer health of groundwater-dependent ecosystems (GDEs).
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This section describes the components of the flow diagram that relate to recharge.
The climate change processes have been described in Section 2. For southern Australia,
the main risk sources for groundwater are reduced cool-season rainfall, higher sea levels
and longer time spent in droughts and higher temperatures. The main emphasis for this
paper has been the reduced rainfall, but the other risk sources also need to be considered.
Section 4 describes the primary responses related to reduced recharge. Section 5 describes
the secondary groundwater responses and the associated impacts, as well as the impacts of
higher sea levels.

A previous study [12] recognised four categories of recharge: (i) diffuse recharge;
(ii) focused or localised recharge; (iii) irrigation recharge; and (iv) mountain systems
recharge. For this paper, we will be discussing the first three. The fourth category, moun-
tain systems recharge, is a process where either water infiltrates into the fractured rock
system and then moves laterally to the plain aquifers or water flows overland and infil-
trates the plains aquifer. Less is known of mountain systems recharge in Australia than
in the USA and Europe [65,66], but mountain recharge is expected to form a relatively
smaller component of recharge processes, as there is little snowpack, and many of the
areas near mountain ranges in southern Australia are sub-humid rather than arid or semi-
arid [67–69]. This paper will incorporate mountain recharge into its impact on diffuse
and localised recharge. Conversely, inundation or flood recharge will be separated from
localised recharge. Changes in diffuse recharge represents the only direct effect of climate
change, while changes in localised, irrigation and inundation recharge and that due to land
use change are all indirect effects of climate change.

4.2. Diffuse Recharge

Diffuse recharge is the recharge that occurs through percolation below vegetation
across the broader landscape. Most of the groundwater systems at risk in Australia are
regional sedimentary or alluvial groundwater systems dominated by diffuse recharge.
The diffuse recharge flux depends on the soil and vegetation types in addition to climate
variables (rainfall distribution, temperature and evaporation).
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4.2.1. Recharge Scaling Factors

Predictions of future diffuse recharge under climate change relies on a model or
relationship linking recharge to climate variables. Unlike runoff, there is no equivalent to
the gauged data upon which to develop statistical relationships. While it is possible to use
water table fluctuations in areas of a shallow water table to develop relationships between
recharge and climate, its application to southern Australia has been limited. Instead,
soils-vegetation-atmosphere transfer (SVAT) models, developed for agronomic and salinity
purposes, have generally been implemented to analyse recharge relationships [70–78].
Predictive uncertainty of such physics-based models at regional scales tends to be larger
than the predictive uncertainty of conceptual rainfall–runoff models, as SVAT models
are generally only constrained by point-measurements of recharge rather than basin-
wide gauged data, as available for surface water. The assimilation of remotely sensed
data, such as evapotranspiration, has shown promise in increasing confidence in SVAT
model predictions [79]. Underlying these models is the need for the plant root zone to be
sufficiently wet to generate drainage of water to the water tables. This leads to a threshold-
like relationship between annual recharge and annual or seasonal rainfall where the rainfall
threshold depends on the vegetation and soils [75] (see Figure 7).
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profiles, as weighted by thickness of the soil layers. Adapted from [75].

The future climate scenarios from different global circulation models (GCMs), emission
scenarios and downscaling methods (statistical, dynamic) have been used as inputs for
these models. Generally, these models are designed to use daily climatic data. The risk
approach, described in Section 3, requires values that represents the range of conditions
and hence the range of recharge values. This suggests that at a minimum, the median
projection should be considered together with the dry and wet ends of recharge projections.
Because of the high natural variability in the climate system, the change in average annual
recharge is likely to be smaller than the inter-annual variability in the recharge. However,
where there is a decline in average annual recharge, multi-year periods with low recharge
will increase.

Groundwater systems are often overlain by a range of vegetation and soil types,
for which the climate response may vary. The physical SVAT models lend themselves
to providing spatial information for regions of low relief, where lateral flows are minor.
Within the Australian context, such models have been implemented across various regions
of Australia at different scales. While the spatial information for soils and vegetation can be
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coarse, this provides a trend of recharge changes. For this paper, we will use the recharge
scaling factor, RSF, to represent the ratio of the future recharge to the current recharge.

RSF = Rscenario ÷ Rcurrent (1)

where Rscenario is the recharge for a future scenario and Rcurrent is the current recharge. A
value of 1.3 implies a 30% increase in recharge.

Figure 8 shows the maps of the RSF for historical climate and 2050 climate scenarios
and dry, median and wet fifteen-year sequences under each climate [70]. The red colours
indicate that the RSF < 1 and blue colours that the RSF > 1 with more intense colours
indicating values well away from one. As one might expect, the wetter scenarios and
sequences tend to be dominated by blue, while the drier scenarios and sequences tend to
have more red. For the dry sequence for the wet scenario, the wet sequence for the dry
scenario and the median sequence of the median scenario, there is mostly a shift to red,
indicating a tendency to lower recharge under climate change. In south-western Australia
(Perth Basin) and southern Victoria (south-south-east of the map), the RSF is less than
one under almost all of the sequences and scenarios. This suggests that despite the large
uncertainty range in the RSF, there is consistency in the RSF being less than one for these
southern regions. The consistency becomes less for areas further north, where rainfall
becomes less winter dominant and the direction of change in future rainfall is less certain.
For areas in eastern NSW, there is a slight tendency for the RSF > 1.
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Figure 8. Maps for the recharge scaling factor (RSF) for Australia under different scenarios. The RSF is the ratio of recharge
to that under the historical climate for the median fifteen-year sequence. The first column shows the RSF under historical
climate, while successive columns show the RSF for dry, median and wet climate scenarios in 2050. The top, middle and
bottom row shows the wettest, median and driest fifteen-year sequences for the different climate scenarios. The red indicates
the RSF < 1, while blue indicates the RSF > 1 with more intense colours being values that are very different to one.
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Table 1 shows the results from various studies across southern Australia using different
recharge models and downscaling techniques. The result for Perth in south-west Western
Australia [75] shows the RSF < 1 for all of the climate scenarios, with percentage change
varying from −35 to −2%. For the Southern Basins PWA in the Eyre Peninsula in southern
South Australia (SA) [76], the RSF is much less than one for all of the scenarios modelled,
while the Mallee in north-west Victoria (Vic.) [61] shows a strong bias towards the RSF < 1
but being greater than 1 for the wettest scenario. Further north from the Mallee, the
Murrumbidgee in southern New South Wales NSW [72] shows a slight bias to lower values,
while that for Condamine in southern Queensland [72] has a slight bias to higher values.
Despite the large variation in modelling outputs, the risk management suggests the range
of results should be used in water planning. The Victorian government guideline for
water planning [61] goes further by suggesting that water planners should assume that the
water availability scales with recharge. Information on changes in recharge is available in
Australia via maps and associated databases at various scales for different climate scenarios
and using different downscaling and recharge models.

Table 1. Modelling outputs from a range of studies across Australia. Results are shown for Perth [75];
Southern PWA (Eyre Peninsula) [77]; Mallee [61]; Murrumbidgee (NSW); and Condamine (QLD) [72].

Region State Scenario

Year Wet (%) Med (%) Dry (%)

Mallee VIC 2040 10.5 −14.1 −60.5
Southern Basins PWA SA 2030 −5 −11 −28

2050 −8 −21 −48
Murrumbidgee NSW 2020–39 −8

Condamine QLD 2020–39 +5.0
Central Perth WA 2030 −2 −18 −35

4.2.2. Elasticity and Recharge Offsets

Figure 9a is a schematic diagram showing how the elasticity of recharge to precipi-
tation relates to the recharge–precipitation relationship, especially how a threshold-like
relationship leads to an elasticity of greater than one. The elasticity is the ratio of two
slopes that of the relationship, in this case between recharge and precipitation, to that of
the means from the origin. For the case of a threshold-like relationship, this ratio is clearly
greater than one. Almost all of the modelling results for southern Australia show elasticity
factors greater than one and mostly in the range of 1.5 to 4 [49]. The ratio increases as
the mean precipitation approaches the threshold precipitation, as occurs for heavier soils,
perennial vegetation or for lower mean precipitation [49]. A region will contain a range
of soils and vegetation types leading to an averaging of such relationships, which itself
will resemble a threshold relationship. Climate factors, other than precipitation, will affect
recharge, and elasticity factors with respect to these can also be constructed. However,
ref. [49] showed the importance of precipitation in explaining the variability of recharge,
especially for southern Australia (relative importance ~0.8). Under a future climate, the
relationship will evolve as precipitation and other climate factors change.

Figure 9b shows schematically the change in mean annual recharge as plotted against
mean annual precipitation, as modelled by SVAT informed by the climate change signal
(mainly rainfall) from different global circulation models for a given climate scenario.
The slope of this line is the sensitivity of modelled recharge to modelled precipitation
for different models. This slope will generally differ from that of the current elasticity
factor, but because of the importance of precipitation in determining recharge in southern
Australia, the slopes should be similar and hence greater than one. The line does not neces-
sarily cross the origin due to changes in climate factors other than precipitation. Various
modelling studies have led to a different amplitude and signs of the intercept, C. Studies
where C is negative have invoked a variety of possible causes, including increased rainfall
intensity [73], changes in wet/dry spell duration [77], changes in the time required for
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annual vegetation to complete their life cycle [78] and reductions in leaf area index as vege-
tation is extended outside of its optimum temperature range [71], while a positive intercept
was attributed to the increases in temperature and solar radiation leading to increases in
evaporation and transpiration, along with changes in the number of rainy days [75].
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International studies show different behaviour for recharge into the future related
to different climates. For example, values for the RSF (0.5–1.3) and elasticity factor (1–5)
were found for the High Plains aquifer in the USA [78]. The values for C changed signs for
different emission scenarios as a result of the changing vapour pressure deficit. The values
of the RSF for sites in Britain were found to be in the range of 0.6–0.93 [80], indicating
reduced recharge from increased winter rainfall and reduced summer rainfall. Recharge
was found to have an elasticity factor of ~1 to summer rainfall, while being relatively
insensitive to increases in winter rainfall and sensitive to decreases in winter rainfall. Apart
from the climate, the spatial heterogeneity of properties can affect the elasticity factor.
For example, the elasticity factor for carbonate aquifers was found to increase with the
increased spatial heterogeneity of hydrogeological properties [81].

Care should be taken in comparing model outputs, as the output can represent differ-
ent fluxes. For example, the Perth study [75] estimated net annual recharge to the water
table and therefore included transpiration from water tables. Other studies have assumed
either free drainage to the water table (e.g., [70]) or net drainage after lateral movement of
perched water above low-permeability soil layers (e.g., [72]). Rejected recharge or diversion
of water to the land surface can reduce the elasticity factor. Some of these factors could be
considered as a groundwater response (Section 5), while others need to be considered in
the estimation of recharge or allowed for in the interpretation of results.

4.3. Impacts on Other Forms of Recharge

While the impacts on diffuse recharge can be modelled across large regions, the
impacts of climate change on other forms of recharge will vary across regions and generally
need to be considered in the context of an individual groundwater system. We consider
the following impacts:

i. Change in land use;
ii. Changes in irrigation;
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iii. Changes in streamflow and surface water levels;
iv. Changes in frequency and magnitude of inundation and episodic other episodic events.

4.3.1. Changes in Land Use

Previous studies have shown that recharge is sensitive to land use [82]. Clearance of
perennial native vegetation for dryland agriculture has led to higher recharge and rising
water tables. The modelling approaches for recharge under different climate scenarios have
often modelled recharge under different vegetation types as part of the process. For the
north Perth Basin, it was found that recent clearing of vegetation led to rising water tables
under all of the climate scenarios [75]. This study shows that changes in land use may
result in changes in recharge that may be greater than the direct effects of climate change on
recharge. The change in cropping to pasture would most probably mean reduced recharge,
while changes from forestry to pasture will increase recharge.

Land use and land management can change for a range of reasons, including changes
in commodity prices, social preferences and improved technology as well as changes
in climate. Climate change could lead to large areas of land use change, as would be
required for significant changes in land use. These could be indicated by maps of Köppen–
Geiger climate types. These are defined by seasonal patterns of rainfall and temperature,
which also are the dominant climate factors for recharge. Climate types reflect the spatial
distribution of terrestrial ecosystems, which have a substantial effect on renewable water
resources. The types of interest to this paper, namely, temperate types (Cs and Cf), are
contracting in response to expansion of arid types B to the south and south-east [83]. These
changes indicate a possible contraction to the northern extent of the southern cropping
zones. To the south of the temperate zone, there may also be contraction of forestry.
Adaptations by land managers, such as crop variety, may partially avoid the need for land
use change.

4.3.2. Changes in Irrigation

The largest irrigation areas in southern Australia are in the south-eastern Murray–
Darling Basin. These irrigation areas have been undergoing major changes in water use
efficiency since 1990 [84]. This is a consequence of several drivers, including an interim cap
on surface water diversions in the Murray–Darling Basin; implementation of water trade,
which shifts water to higher value and more water-efficient horticulture; the Millennium
Drought in south-eastern Australia and issues of stream water quality [85]. Other irrigation
areas in southern Australia have also undergone water use efficiency improvements in
order to maintain or increase agricultural production with less water. These irrigation water
use efficiency improvements have generally reduced recharge [86]. The large diversion of
surface water for irrigation means that irrigation recharge from surface water irrigation
can be a large component of groundwater recharge in some areas, especially the southern
Murray–Darling Basin, in south-eastern Australia, e.g., Lower Murrumbidgee.

The implementation of the Murray–Darling Basin Plan has reduced diversions of
surface water to provide water entitlements to the environment. Climate change is likely
to further reduce availability of surface water for irrigation, and lead to a reduction in the
volume of diversions for irrigation. This implies that irrigation recharge overall is likely to
reduce, and the spatial pattern of this recharge may change from the current distribution
as water moves to higher value crops under water trading.

4.3.3. Changes in Streamflow and Surface Water Levels

Flood and stream recharge may be responsible for areas of fresher groundwater and
could dominate the total recharge in smaller systems. There is generally a pattern of
gaining streams in upland areas, becoming losing to alluvial areas and then a shift to
gaining streams [87]. Some of the areas in southern Australia have no permanent streams,
although occasional inundation and point recharge may be locally important. Regulation
of streams for water supply and irrigation have led to a reduction of medium-sized floods
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and increased low flows. Stream recharge is discussed further in [24]. The effect of climate
change will be to reduce surface water availability for all but perhaps the larger floods, but
the impact of this change can be confused by regulation.

4.3.4. Inundation and Episodic Recharge

Over the coming decades, Australia is projected to experience (i) more intense short-
duration heavy rainfall events and (ii) fewer tropical cyclones, but a greater proportion
are projected to be of high intensity, with ongoing large variations from year to year. High-
intensity rainfall could lead to increases in episodic recharge in southern Australia [61],
despite reducing rainfall overall and fewer tropical cyclones. Episodic recharge is likely to
be more important in semi-arid to arid areas.

4.4. Total Recharge

The aggregate recharge to groundwater systems in southern Australia is likely to
amplify the expected reduction in rainfall. However, the degree of amplification will vary
for individual groundwater systems, depending on the different forms of recharge. While
most forms of recharge will decline under reducing rainfall, the regulation of surface water,
land use change and episodic recharge could increase leading to a decline in particular
groundwater systems [88]. This needs to be considered in individual assessments of
groundwater systems.

5. Risk Assessment: Groundwater Response

This section describes the approaches to risk assessment and some of the expected
impacts in southern Australia if there is no management response. This section also
describes how some of the other climate change drivers, such as higher sea levels, might
affect groundwater systems. Some risk assessment studies from the Perth Coastal Plain will
be used to illustrate the discussion. This area of sandy plains, with ocean to the west and
clayey plateaus to the east, overlying multi-aquifer regional groundwater systems, has been
investigated via a water assessment for this area conducted by the Commonwealth Scientific
and Industrial Research Organisation (CSIRO) [89–93] and augmented by a National
Climate Change Adaptation Research Facility (NCCARF) study [94] of the ecological risks
from changes in groundwater.

5.1. Groundwater Balance Response and Sensitivity to Climate Stressors

Understanding the groundwater response to reduced recharge and other stressors
caused by climate change requires knowledge of the groundwater balance and how this
balance changes in response to these stressors. Individual groundwater systems are subject
to a groundwater balance, for which, in equilibrium, the rate of change of groundwater
storage equals the inputs (recharge) minus the outputs (discharge). The specific discharge
components will vary across groundwater systems, but typically consist of groundwater
extraction, discharge to the ocean, discharge to streams and surface water features loss by
evapotranspiration to the land surface and leakage to deeper aquifers. Discharge compo-
nents are typically associated with important attributes valued highly by the community.
These include the reliability of groundwater supply, avoidance of seawater intrusion,
waterlogging and salinisation of land and streams, the protection of baseflow, groundwater-
dependent ecosystems and groundwater quality.

When a stressor, such as reduced recharge from climate change, is applied to the
groundwater system, the groundwater system responds by evolving to a new equilibrium
groundwater balance, in which the other components of the groundwater balance coun-
terbalance the stressor. Not only will the discharge fluxes reduce, but some additional
recharge is induced and the rate of change in storage will change. The reduced recharge
will initially cause lower water tables relative to the baseline of no climate change. This,
in turn, induces recharge from streams, should there be connectivity to the groundwater
system, and reduces rejected recharge because of lower water tables. Eventually, a new
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equilibrium is reached, where groundwater storage no longer changes. Each change in
groundwater balance can be expressed as a percentage of the stressor. For example, the
evapotranspiration may be reduced by 30% of the reduction in recharge. The percent-
ages should add to 100%. The combination of reduced discharge to streams and induced
recharge from a stream, when expressed as a ratio of the stressor, has been called the
connectivity factor [95].

The connectivity is proportional to the sensitivity of streamflow to a change in recharge,
defined in a similar fashion to the elasticity factor. The sensitivity of each groundwater
component to precipitation can be defined and is equal to the product of the sensitivity of
the groundwater balance component to the stressor and the sensitivity of the stressor to
precipitation. Whether the reduction in a groundwater balance component represents an
amplification of the reduction in rainfall is dependent on whether the sensitivity is greater
than one. Generally, we would expect that groundwater components are sensitive to falls
in the water table, such as evapotranspiration from groundwater and discharge to streams,
and those components which are already small to be more susceptible to a reduction in
recharge to regional groundwater systems.

Groundwater modelling for the Perth Coastal Plain [92] shows how spatial variability
is important. Three groundwater models have been used to represent three different
regions from south to north (Southern Perth Basin, Peel-Harvey Area and Central Perth
Basin). The method of calculation means that recharge and evapotranspiration have been
combined into one component, with an elasticity factor with rainfall averaging 1.5–4 for
the median future climate and 2–3 for the dry future climate. These lower values are due
to the increase of evapotranspiration as water tables fall [75]. The remaining responses of
components vary across the three regions with discharge to the ocean (39%) and leakage
to deeper aquifers (34%) under a drier climate being the most important in the southern
region, discharge to drains (~52%), and storage change (64%) important in the central
region. The components most sensitive to a change in precipitation are storage change (3.2)
in southern region, discharge to ocean (7.7) in the Peel-Harvey and storage change (3.8) in
the central region.

Under the historical climate, there has been an increasing groundwater storage under
the Perth Coastal Plain due to the clearing of deep-rooted native vegetation for agriculture.
The current water table behaviour is spatially variable with some areas still showing rising
water tables. Under the drier climate change scenarios, the rate of rise in storage reduces
under drier scenarios in the central region, changes from rising to falling in the southern
region and from steady/falling to falling more quickly in the Peel-Harvey region. As most
of the interest will be on the environmental assets at particular locations, groundwater
modelling outputs, representing these assets, will be important.

One of the groundwater components of a special interest is that of groundwater ex-
traction. Groundwater plans define the extraction limit and rules governing the spatial and
temporal distribution of groundwater extraction. Where recharge is reduced, groundwater
plans determine the balance between reduction in the extraction limit to that of other com-
ponents, which often reflect environmental health [56]. If the plan leads to the maintenance
of the extraction limit, the sensitivity of extraction to precipitation is zero, and the other
components carry the impact of reduced recharge. If a water table response management
system is used, the groundwater extraction is reduced to maintain storage and discharge to
the land surface to protect the environmental values; most probably leading to an amplified
effect on extraction.

5.2. Applicability of Groundwater Modelling to Assess Risk

The groundwater response is generally slow relative to the surface water responses.
As shown above for the Perth Coastal Plain, numerical groundwater models are sometimes
used to simulate the changing groundwater balance through changing pressures and
fluxes. Uncertainty in water balance estimates is, however, seldom quantified [96]. Not
all groundwater plans have an associated groundwater model, but those plans of systems
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most at risk are often underpinned by a groundwater model. The groundwater model
outputs of a range of climate scenarios can be compared to those of the baseline of no
climate change. Models support the assessment of the likelihood of relevant impacts and
therefore risk assessment. To support the groundwater modelling approach to climate
change, best practice guidelines have been developed e.g., [97,98]. Despite these, an audit
of Australian groundwater models [24] found that many of the models were not suitable for
the assessment of climate change. While best practice guidelines suggest that the approach
has matured, there have been novel approaches to groundwater modelling, such as the
approach to representing climate change. An example is the use of transient climate slices
from GCMs instead of using GCM outputs to scale daily climate data [99].

There are at least three issues for using groundwater modelling for risk assessment.
Firstly, analyses of uncertainties show how errors propagate from GCMs; through down-
scaling approaches, recharge modelling to groundwater models and that uncertainties
associated with hydrogeological properties can be as large as climate uncertainty [100].
The large predictive uncertainties caused by the propagation and amplification of the
individual uncertainties can lead to confusion and difficulty in using these results for
decision making [101].

Secondly, the outputs of groundwater models are groundwater balances, fluxes and
groundwater pressure, whereas many of the impacts are expressed in terms of ecological
health. As will be shown, ecological models can be developed to use groundwater outputs.
This will propagate further uncertainty.

Thirdly, many of these processes of interest act on a finer scale than most groundwater
modelling grids. While grids can be made finer, the relevant data is not available at this
finer scale. Approaches to address this are described in the next few sections.

An alternative approach is to focus on the robustness of the management approach
by using it within a risk management approach. Testing can be conducted using a sensi-
tivity analysis, a range of scenarios and historical responses to previous extreme events.
Improving the estimates of predictive uncertainty may not help this process [102,103].

5.3. Phreatophytic Transpiration and Evaporation from Shallow Water Tables

Groundwater discharge through the land surface can have both positive and negative
environmental impacts. It can cause waterlogging and salinity if water tables are shallow
and saline, causing damage to soils, crops and other vegetation, as well as built infrastruc-
ture [88]. Where water tables are fresh, groundwater can become an important source of
water for both native and agricultural plants. Reduced discharge caused by falling water
tables can then reverse these impacts. For saline areas, falling water tables will lead to
reduced land salinisation and waterlogging. It can also reduce the costs of salinity mitiga-
tion by groundwater pumping from shallow aquifers and sub-surface drainage [104,105].
Where groundwater is fresher, falling water tables can mean the loss of leaf area and less
ability for plants to survive droughts [93]. This section will focus on the potential detrimen-
tal impacts on GDEs, as the risk to salinity in southern Australia has reduced due to the
drier climate and better irrigation management [105]. A continually drying climate is likely
to have irreversible impacts on ecosystems, particularly if it is already fragmented [106].

Over the last twenty years, there have been many Australian studies of GDEs and
information and tools to support the management to protect GDEs. These include the
GDE toolbox for assessment and other tools [106,107], identification of GDE types [108]
and the GDE Atlas [46], which shows likely areas of GDEs and types. There have been
efforts to provide prioritisation and risk assessment frameworks that are adapted to specific
jurisdictions [109–111].

Groundwater modelling and the associated groundwater information can support the
impact assessment on GDEs by (i) identifying areas and salinity of shallow groundwater
and (ii) predicting changes in the depth of water tables and discharge to the land surface.
These are necessary conditions for risk to GDEs from changed groundwater balance. There
is a discrepancy between the grid size of the model and the processes that affect vegetation.
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For example, topography can vary more within a grid cell than the minimum depth to
the water table. Variations in topography, soils, run-off processes and vegetation at a
small spatial scale can lead to large variations in groundwater discharge [112]. While
groundwater models predict broad patterns of changed discharge, these can, in practice,
be focused in small areas. The relationship between water table elevation and ET within
a groundwater model is oversimplistic as they fail to capture salinity and vegetation
processes and responses to variable climate and changing water tables [113]. For example,
plant roots can grow in response to falling water tables. The ability of vegetation to adapt
to changed conditions will not depend only on the type of vegetation and its tolerance to
drought and salinity, but also the vigour and resilience of the plants.

South-west Western Australia has been the site of comprehensive studies of phreato-
phytic vegetation [114–117]. These consist of long-term, local-scale investigations [114] of
terrestrial vegetation responses to the decline in the water table in addition to the analysis
of seasonal water-source partitioning of species growing along a depth to groundwater
gradient that ranged in depth from 2.5 to 30 m. [115,116]. The depth to groundwater and
rate of drawdown were identified as the dominant biophysical drivers of floristic spatial
and temporal patterns in response to rainfall reduction and groundwater drawdown over
30 years. An ecological framework [117] has been developed for water resource allocation
planning in the Perth region. Groundwater modelling outputs from the CSIRO south-west
Western Australia Sustainable Yield (SWWASY) modelling [93] have been linked with
a desktop study of ecological risks based on this framework to predict the impacts on
phreatophytic vegetation on the Perth Coastal Plain. The results showed that under a dry
climate scenario, that more than 20% of the current habitat for terrestrial GDEs is likely to
be under high and severe risk.

The study of plant water relationships, such as that for Gnangara Mound, is extremely
resource intensive. This means that it is necessary to extrapolate understanding and
information from such site studies. While there have been some efforts to determine the
relationships between plant water use and groundwater depth [118], much still needs to
be done.

5.4. Streams and Wetlands

Groundwater discharge to streams and other surface water bodies can also have both
positive and negative impacts. The creation of baseflow can be important to downstream
ecosystems [119] and the water supply [39], while nutrients and salt contained in ground-
water discharge can lead to stream water quality issues [120] and discharge to surface
drains to issues for disposal. The reduction of groundwater discharge to streams, lakes and
wetlands by climate change will generally reverse these impacts.

Groundwater models and associated groundwater information can support the assess-
ment of stream discharge by (i) identifying broad patterns of losing and gaining streams
and estimates of the associated groundwater–surface water exchanges and (ii) quantify-
ing the degree of change caused by changing groundwater conditions. There is often a
discrepancy in spatial resolution of the grids in groundwater models and the variability
on-ground due to patterns of bank impedance, stream geometry, hydrogeology of the
near-stream environment and riparian evapotranspiration (ET). Moreover, it is difficult
to partition discharge to the land surface in the riparian zone and to streams. Streams
and their management will also change in response to the climate. These deficiencies
particularly affect the estimation of low flows.

The groundwater modelling for south-western Western Australia predicted the impact
of reduced groundwater discharge on four streams in the region. The discharge to the
Blackwood and Capel Rivers and Gingin Brook reduced between 0 and 48%, depending
on the climate scenario. Under historical climate, baseflow constituted 67% of the surface
flow of Gingin Brook [22]. The Collie River will change from a gaining to a losing stream
under the median and dry climates. However, the discharge to surface water bodies in
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the modelled region is dominated by discharge to drains, with an elasticity factor between
discharge and precipitation varying from 1.3 to 5.4.

The relationship between run-off and rainfall in south-west Western Australia (SWWA)
has also been shown [39] to be reduced following drier periods because of reduced ground-
water discharge to streams. This change in streamflow has contributed to problems with
Perth’s water supply. The same process may be occurring for some areas of south-eastern
Australia [121,122].

Groundwater modelling outputs from the south-western Australian groundwater
modelling has been used to predict the impacts on riverine and wetlands ecosystems [94].
The linkage of outputs to the Blackwood River Fish Health Model is an example of pre-
dicting the impact of climate change on baseflow-dependent ecosystems. The modelling
was applied to about 30 km of the Blackwood River, where groundwater has a significant
effect on water quality in the summer months. Groundwater–river relationships were
combined with ecological thresholds to produce a composite fish health index from two
indicator fish, Galaxias occidentalis and Nannatherina balstoni. While the model has been
applied to a limited area, the approach is promising for a wider application. In its current
form, it identified limited small refugia, with the impact for the dry scenarios the least
optimistic. The impact of climate change on macroinvertebrate and amphibians in wetlands
in the Perth coastal area has also been studied [81]. The groundwater modelling outputs
showed the wetlands at risk, and this was linked with models for macroinvertebrates and
amphibians and priority of the wetlands.

5.5. Oceanic Discharge

Groundwater discharge to the ocean or submarine groundwater discharge (SGD) plays
an important role in coastal biogeochemical processes and hydrological cycles, such as the
formation of offshore plankton blooms, hydrological cycles and the release of nutrients,
trace elements and gases, that affect coastal ecosystems and has been used as a freshwater
resource by local communities for millennia [123,124]. Climate change is expected to
modify SGD through sea level rise, a reduction of recharge to coastal aquifers and changes
to groundwater extraction.

Rises in the sea level had been expected to induce the fresh–saline water interfaces
in coastal aquifers to move inland. The extent of seawater intrusion into coastal aquifers
depends on a variety of factors, including coastal topography, recharge and groundwater
abstraction from coastal aquifers [125]. Analytical models [16] suggest that the impacts
of sea level rise and recharge reduction from climate change on seawater intrusion is
negligible compared to that of groundwater abstraction. Coastal aquifers under very low
hydraulic gradients are theoretically sensitive to sea level rise but, in practice, are expected
in the coming decades to be more severely affected by saltwater inundation from storm
surges than sea level rise [16].

While sea saltwater inundation can have disastrous consequences for urban areas, it
also affects shallow groundwater systems by salinising shallow aquifers and causing large
volumes of recharge. Not only are low-lying coastal areas vulnerable to marine inundation,
but also groundwater inundation [15], localised coastal-plain flooding due to a rise of
the groundwater table with sea level. The potential area of groundwater inundation for
Honolulu was twice that for marine inundation [15]. The coastal area of Australia, with an
elevation of less than 1m, has been mapped [125] to represent those affected by tides, 5 m
to represent those areas affected by sea surges and 10m to represent the maximum extent
to which areas would be affected by sea surges. The details of those areas can be found
in [126], but the national-scale results show that 116,600 km2 of the Australian coastline
have elevations <10 m Australian Height Datum (AHD). This will be much less for the
southern coast. The areas in South Australia are respectively 2059, 2848, 4271 km2 for
<1 m AHD, >1 m AHD and <5 m AHD, and >5 m and <10 m AHD, respectively. For
Victoria, the same areas were 559, 1094 and 1606 km2, respectively. The author of [126]
highlights that, in the Australian context, increased recharge from land use change has
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occurred across southern Australia. This, together with leakage from urban areas would
exacerbate the issues of groundwater inundation if not counterbalanced by less recharge
from drier conditions.

The SWWASY modelling shows that ocean discharge under a dry climate scenario will
reduce by 27% and 38%, respectively, for the central and southern Perth Basins (elasticity
of ~3), and may cause sea water intrusion for the Peel-Harvey Area (elasticity of ~6). There
are several international examples of groundwater modelling to analyse sea water intrusion,
e.g., for the low-lying areas of the Netherlands [127].

5.6. Changed Groundwater Demand and Groundwater Extraction

Groundwater demand is dependent on several factors, both climatic and non-climatic.
Changes in population, markets and technology often drive demand. Climate change can
affect the water needed for irrigated crops, reduce surface water availability, affect the
types of crops that can be grown and the businesses in the region and can increase the price
of water. In southern Australia, where surface water availability is reducing, this places
greater dependence on groundwater.

5.7. Aggregate Impacts

The groundwater systems under potential stress from climate change will be spatially
‘patchy’ due to the spatial variability of the groundwater extraction response to water
quality and transmissivity of groundwater systems. Where the systems are under stress,
there will be a range of impacts. The nature of the impacts will vary from system to
system depending on the environmental values and consumptive demands that could be
affected. The regional and urban water managers, and the community more generally,
will be weighing up the positive and negative impacts and deciding what actions need
to take place, if any. The next section discusses risk management, both of the individual
groundwater system and of the regional integrated water resource.

6. Risk Management
6.1. Context

Before discussing risk mitigation in any detail, it is necessary to place the management
of groundwater systems in response to climate change in the broader context.

Firstly, even under the most optimistic scenarios of mitigating climate change, there
will be a need to adapt to climate change, with a trend of declining rainfall, rather than
just relying on mitigating climate change. Adaptation measures should not exacerbate the
causes of climate change, as would, for example, the implementation of desalination using
fossil fuels.

Secondly, one cannot isolate the management of groundwater systems from other
sources of water and more general regional water planning. As rainfall decreases and
periods of drought increases, it is necessary for the water resource management to become
more resilient to the climate. This includes (i) managing demand and encouraging water
use efficiency improvements; (ii) changing the balance of water sources used and develop-
ing new water sources; and (iii) improving the connectivity of different sources of water
through infrastructure. Groundwater is more resilient to the climate than surface water,
but as surface water supplies become more limited, groundwater will come under pressure.
More resilient water supplies may be required, such as desalination. The improvement
of connectivity allows improved potential to match water availability to demand. This
could occur through infrastructure, such as pipelines, together with policy and manage-
ment approaches, such as water trade, conjunctive water use, managed aquifer recharge,
water-sensitive urban design, inter-basin transfers and the protection of significant high
recharge zones.

Thirdly, the planning process addresses multiple time scales, including (i) long-term
planning (~20–100 years) and defining options; (ii) current water management plans
(5–10 years); and (iii) contingency planning. The first considers future demands, risks



Water 2021, 13, 3588 23 of 36

and opportunities and defines a framework for the future. One example is shown in
Figure 10. Decisions on the timing of actions in the plan will often be based on the water
supply relative to demand. Poor timing of decisions can be costly, both politically and
economically, especially for actions involving new infrastructure. The uncertainty of trends
in climate change means that there is uncertainty in the timing of triggers for actions to be
undertaken. The timing will be dependent on the climate variability, with implementation
of actions generally occurring during drier periods, when the need for such changes is most
evident. Some preparation may be required ahead of a decision point, e.g., land purchase
and changes in legislation and administrative arrangements.
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Figure 10. Forward water security pathway for the Limestone Coast region in South Australia, a
region dependent on groundwater (Adapted from https://www.lclga.sa.gov.au/application/files/
9415/4987/8891/Regional_Climate_Change_Adaptation_Plan.pdf, accessed 10 December 2021).

6.2. Individual Groundwater Systems

All groundwater plans need to include adaptation to climate change [26]. The re-
sponses to climate change are similar to those for addressing stressed groundwater systems;
namely, increasing water use efficiency, reducing extraction, redistribution of extraction,
enhancing recharge and desalination. Since these have been well discussed in the scientific
literature, the foci in this section are three emerging issues in Australia with particular
relevance to the climate.

6.2.1. Shift to Adaptive Measures

Not only are the predictions of groundwater responses to a combination of climate
and management uncertain, but it is also difficult to determine and communicate whether
climate change is already affecting the water resources. In the short term, climate variability
will dominate any underlying trend. Moreover, for groundwater, this is made even more
difficult because of the higher use during drier times and slow groundwater processes
that confuses the impacts of the climate with those of management. This means that
contentious issues, such as reducing extraction limits, may become difficult to justify.

https://www.lclga.sa.gov.au/application/files/9415/4987/8891/Regional_Climate_Change_Adaptation_Plan.pdf
https://www.lclga.sa.gov.au/application/files/9415/4987/8891/Regional_Climate_Change_Adaptation_Plan.pdf
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While groundwater models provide useful information on processes and sensitivities, the
high predictive uncertainty means they cannot be relied upon to manage the system or
justify actions.

In a recent study [128], control theory was used to review groundwater management
plans in Australia and found that the effectiveness of the majority could not be tested
because they lacked a clearly defined objective or acceptable level of developmental impact.
This work highlighted that while most groundwater management plans purport to be adap-
tive, they do not satisfy the most basic criterion. Groundwater management plans in the
Murray–Darling Basin (MDB) now need to incorporate considerations of local management
rules, such as resource condition indicators and thresholds [129,130] under the expectation
for the MDB that adaptive measurement is used to address climate change [130].

Even if the objective of a plan is clear, the actions to achieve that objective needs to be
clear and effective. In another review of groundwater management plans [131], a large gulf
was found between the realities of adaptive management and the theoretical frameworks
for adaptive groundwater management. The most notable issue was a lack of substantive
mitigation measures and/or assessment of the potential for remediation. Groundwater
processes can be slow, so that responding to a change in the monitored state may be too late
for effective action. This means that some mitigation measures need to be pro-active rather
than reactive. Even if there are clear and effective actions, there needs to be compliance
with the plan, ensuring that actions are implemented in a timely fashion. A previous
study of adaptive management [132] also found difficulties due to poor monitoring, low
resourcing and compliance issues. The lack of a clear definition of sustainable yield within
an adaptive framework [133] adds to the difficulty.

In Australia, there has tended to be a binary perspective between an adaptive ap-
proach, namely, groundwater level response management, and conventional allocation
methods [131,134]. Groundwater level response management has been implemented in
Victoria, Western Australia [135,136] and on the Eyre Peninsula, South Australia [137] as
groundwater systems have become stressed and the uncertainties have not been resolved.
The main issue is that for adaptive management to be effective, it will be resource inten-
sive [131,134]. Moreover, care needs to be taken with groundwater level management in
coastal aquifers or aquifers with connection to streams, as water levels can be maintained
by changing the flux between water sources [131]. Construction of clear definitions and
guidelines for adaptive management applied to groundwater management is required to
set the expectations of regulatory bodies and government departments responsible for
assessing groundwater-affecting projects, and to ensure that the protective attributes of
adaptive management are properly incorporated into project plans [131].

6.2.2. Water Trading

Groundwater trading was introduced as part of the market-based mechanisms un-
der the water reform. Groundwater trade is widely advocated for reallocating scarce
groundwater resources between competing users, towards higher value uses and man-
aging over-allocated and declining aquifers [138]. A study of a groundwater-dependent
irrigation district in Western Australia [138] indicates the potential economic costs of
a proportional reduction in the available groundwater for irrigation are 18–21% less if
groundwater trade is possible, while a recent study of a regulated groundwater dependent
irrigation district in California predicts the economic benefits to be up to 36% greater than
that under command and control [139], despite issues of market share.

Groundwater trading is not as mature as surface water trading, forming only about 5%
of the allocation trade and about 20% of the entitlement in 2019–2020 [140]. The groundwater
entitlement trade has grown steadily since 2007–2008, with most trades last year occurring
in the Murrumbidgee and Goulburn valleys in the southern Murray–Darling Basin and the
south-east region of South Australia.

Because of this slow growth, less is known about the groundwater trade than surface
water trade, although some lessons have been learnt from this limited experience [141–145].
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These have shown that groundwater trading will be more administratively complex and
resource intensive. Groundwater trade needs to be more constrained spatially than surface
water trade, and may not be suitable for some stressed groundwater systems.

Groundwater trade can be used with zoning to encourage the transfer of groundwater
extraction away from ‘hotspots’ areas, where a locally high concentration of extraction
has led to localised drawdown of water tables. Such transfers may allow the levels of
extraction to be maintained, while meeting environmental conditions. Moreover, trade
rules are usually designed to avoid extraction near streams or near significant groundwater-
dependent ecosystems, which could be affected by extraction. The trade outside fresher
water zones may require adaptation to use brackish groundwater for irrigation. This can
be through direct use on the right soil, crop and climate environments, or associated with
solar-powered local scale desalination schemes, more commonly used in the Middle East.

There is some evidence of groundwater trade being used by irrigators to substitute
groundwater for surface water during drier times (e.g., refs. [146–148]). In any case,
groundwater use is generally higher in drier times [45], but this trade, and the use of
carry-over of entitlements, encourages the use of groundwater as a buffer for drier periods.
This is an informal type of conjunctive water use that may be useful for addressing climate
variability. This is discussed further in the next section.

The ability to manage groundwater systems under a changing and variable climate
with groundwater trade will need to be reviewed periodically to better understand the
actual economic, environmental and social benefits and disbenefits, whether it facilitates
adaptation to the changing and variable climate and whether there are unintended
adverse consequences.

6.2.3. Conjunctive Water Management and Managed Aquifer Recharge (MAR)

Conjunctive use of surface and groundwater combines the use of both sources of
water in order to better meet water management objectives, including adapting to cli-
mate variability in southern Australia [149]. The integrated management of surface water
and groundwater is not rare in Australia, but fully integrated plans with joint surface
and groundwater entitlements are [150]. An example of such a plan is that of the Upper
Ovens [151], which allows entitlements to be traded between surface water and ground-
water. Conjunctive water entitlements existed previously in New South Wales but was
discontinued in the late 1990s, and more recently replaced for integrated water management
rules for ‘highly connected’ systems [152].

Managed aquifer recharge is the collective term for a wide range of techniques to inten-
tionally augment aquifer recharge for beneficial use or for environmental protection [153].
It is seen as a way of addressing climate variability and change by preventing unsuitable
water discharging into some environments, storing water during wetter periods for use
when it is dry and maintaining the saturation of the aquifer. A range of water sources can
be used, including natural water, storm water, treated sewerage and desalinated water.
The latter two are not sensitive to climate and so form a climate-resilient source of water.
Infiltration-based MAR schemes have been used since the 1960s.

MAR with storm water began in Adelaide in the early 1990s and its use has accelerated
in the last decade to reach about 23 Gl/year capacity. MAR with stormwater could be
cost effectively used for drinking water supplies, and risk management costs, including
treatment were significantly cheaper than supporting dual reticulation to residential ar-
eas [154]. MAR, using recycled water, has been used since 2008 at Alice Springs. A large
plant (14 Gl/year) using highly treated recycled water has been developed in Perth, with a
similar sized plant under construction. The aim is for 20% of Perth’s wastewater to be used
in this way by 2030.

The development of guidelines for managing the risks has helped provide confi-
dence in the use of stormwater and recycled water for MAR [155,156]. For the period
of 2011–2015, the volume of MAR was about 410 Gl/year or about 8.3% of the annual
groundwater extraction in Australia and increasing by about 3.6%/year [157]. The pro-
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jected increase of MAR capacity by 2050 is over 700 Gl/year, with about half being from
sewage and stormwater and about half from natural water (rivers, lakes and groundwater).

The existence of aquifers with large volumes of water is useful as a buffer for droughts.
Examples of water banking through MAR enhancing the resilience of groundwater sup-
plies during drought have been previously described [158,159]. While water banking has
been implemented in the USA for over twenty years [158,160], the concept is still new in
Australia and no water banking authority exists. There have been several suggestions
for MAR and water banking in the Murray–Darling Basin (e.g., [161,162]), but the use
of MAR is negligible compared to other sources. The cost of MAR is an important con-
sideration, but is favourable, when compared to infrastructure, such as desalination and
dams [153,159,163,164]. MAR is increasingly being considered for urban water supply, espe-
cially as a drought contingency measure or as part of water-sensitive urban design (WSUD)
(e.g., https://watersensitivecities.org.au/solutions/case-studies/Kalamunda-mar/, ac-
cessed 10 December, 2021). Where extraction is close to the extraction limit, MAR may be
the only opportunity to augment a water resource, where permitted.

6.3. Examples from Southern Australia

Figure 11 shows the supply–demand picture for Perth out to 2050 [20]. The surface
water and groundwater resources are expected to continue to shrink while demand is
expected to increase. This provides a shortfall that needs to be met. Desalination has
been used in the past, as it has for all the major cities in Australia, noting that they are all
located next to the coast. Much of the shortfall is expected to be met by improved water
use efficiency and managed aquifer recharge using recycled water. Deeper groundwater
resources were seen as meeting any remaining demand, but the risks associated with
groundwater-dependent ecosystems has meant that this is being reassessed. Meeting
the demands of groundwater-dependent ecosystems form a large driver for the water
management plan.
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water, treated water and desalination are being considered by many of the smaller urban
authorities, as well as developing deeper groundwater systems.

7. Discussion

This paper has provided an overview of scientific studies of climate change impacts
on groundwater for southern Australia and the management and adaptation responses.
The climate is expected to continue a recent historical trend of lower rainfall and longer
droughts. A reduction in winter rainfall leads to a proportionately greater (1.5 to 4 times)
reduction in surface water runoff and groundwater recharge. The groundwater systems
will respond to this change in recharge by evolving to a new equilibrium. In the process of
doing so, most groundwater components will change, and therefore leading to a range of
impacts on the environment as well as consumptive users. The prediction of the magnitude
and timing of the change is more difficult because of the uncertainties in future greenhouse
gas emissions and climate projections, as well as in the hydrogeological properties and
modelling of groundwater systems. The range of responses include lower baseflow to
streams, lower evapotranspiration by phreatophytic vegetation, lower discharge to the
ocean and the dewatering of bores. Higher sea levels could lead to groundwater inundation
and seawater intrusion. The spatial risks are very heterogeneous, not only because of the
differing hydrogeological properties but also due to the patterns of extraction associated
with aquifer productivity and groundwater salinity.

Australia has undergone significant water reforms over the last three decades. This
has led to efforts to return aquifers and streams back to a sustainable equilibrium through
policies returning water to the environment, regional water planning and market reforms.
There has been an effort to incorporate uncertainty and risk management into these plans.
This paper has described three groundwater management responses, namely, the shift
to greater adaptive management, use of groundwater trade for stressed aquifers and
managed aquifer recharge. Each of these strategies are at an early stage of maturity.
Groundwater management responses need to be considered within the context of regional
water management becoming more climate resilient.

7.1. Similarities and Differences from Overseas Experience

Not surprisingly, many of the processes are similar to those described in the in-
ternational literature. However, we would expect differences due to different climate,
hydrogeology and the planning systems that would be reflected in the groundwater science
and management between countries. Even in Australia, groundwater management varies
both between jurisdictions and in the jurisdictions within Australia.

Climatic processes similar to that for southern Australia are occurring in Mediter-
ranean, south-west USA and in similar mid-latitudes in the southern hemisphere [165,166].
These regions are experiencing similar issues of water scarcity to those of southern Australia
and are mostly dependent on groundwater. There are differences in the hydrogeological
conditions. Australia has a low topographic relief and only minor snowfall. Mountain
recharge is less important to the main aquifers in Australia than in the south-western
USA or Chile. The low relief, together with the semi-arid to sub-humid climate, leads to
conditions of saline groundwater that constrains groundwater use. Non-replenishable
groundwater reserves exist but are not as important as in parts of the Mediterranean.

Perhaps, the largest differences are in the economic and policy settings. The recent
water reforms aim to return aquifers to sustainable levels of extraction, even under a
changed climate. The planning and entitlement framework provides a vehicle for doing so.
The low population base means that Australia does not have the same urgency to maintain
food production as some other countries and is more able to impose monitoring and
compliance. Moreover, the current stage of development of water resources in Australia
means a priority for protecting the remaining ecosystems.

These similarities and differences determine the degree to which the Australian expe-
rience provides lessons for other countries. Where there is a continually drying trend, most
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of the scientific approaches and concepts are likely to apply (e.g., elasticity and amplifi-
cation, converting scientific uncertainty into uncertainty in the delay of implementation).
The mitigation approaches will depend on the policy framework in each country, e.g., as to
whether adaptation approaches, trading or MAR is adopted. The acceptability of using
recycled water, for example, will be a common problem. More fundamentally, the degree to
which extraction can be changed to sustainable levels of the importance of ecosystems will
determine the ability to implement actions. Some of the scientific approaches are generic to
many other countries, e.g., risk approach and scenario modelling.

7.2. Future Challenges

Quantifying changes in recharge over large areas in response to climate change is
difficult. Changes in recharge drive many of the processes that cause concern. Some of the
complexities of estimating recharge, such as temporal changes in stream and flood recharge,
properly accounting for spatial variability of diffuse recharge and lateral movement over
impeding layers in the unsaturated zone, are still at a seminal stage, even without climate
change. The hydrogeological characterisation of groundwater systems and modelling
of responses to changed recharge is reasonably well understood but is constrained by
resources over large areas. Prioritisation approaches can help focus efforts, but the available
resources for such research and investigations continue to diminish. It is likely that large
predictive uncertainties will continue.

Adaptive risk-based approaches to groundwater management will therefore become
more important. Recent analyses suggest that groundwater management plans may
be less than optimal for adaptive management. A lack of clear objectives, ineffective
responses to triggers, lack of appropriate monitoring and poor compliance will reduce
the effectiveness of such plans. The national groundwater strategic framework recognises
the need to ‘develop (better) risk-based approaches to specifying water entitlement for
groundwater, and the associated conditions (quantity, quality and surrounding users),
which recognise seasonal variability, lag effects and uncertainty; to assess and manage
impacts of groundwater extraction on connected surface water resources, surface water and
groundwater quality and dependent ecosystems; and to assess and manage cumulative
effects associated with multiple stressors and water extractions’ [167]. While this paper has
focused on water quantity, groundwater quality will also be important in some cases and
worthy of further study.

Groundwater trade in Australia is still developing and the time taken to assess ground-
water trade applications is an impediment. There is a need to better assess groundwater
trading rules, including their effectiveness and opportunities for improvement and ap-
propriate application of trade between surface water and groundwater. Groundwater
trade is one of a range of innovative approaches being used to address climate change.
There is still a need to ‘address regulatory frameworks and legal uncertainty which in-
hibits the update of innovative groundwater solutions (such as managed aquifer recharge,
groundwater trading and use of recycled water), with appropriate safeguards and where
these solutions provide additional options to complement traditional water infrastructure
approaches’ [167].

Many of these challenges can be best addressed by national water-focused drought and
climate change planning. While the management will be dependent on hydrogeological
settings, coordinated planning will best take advantage of the experience from trialling
innovative approaches.
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