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Abstract: Weather plays a critical role in outdoor agricultural production; therefore, climate informa-
tion can help farmers to arrange planting and production schedules, especially for urban agriculture
(UA), providing fresh vegetables to partially fulfill city residents’ dietary needs. General weather in-
formation in the form of timely forecasts is insufficient to anticipate potential occurrences of weather
types and features during the designated time windows for precise cultivation planning. In this
research, we intended to use a self-organizing map (SOM), which is a clustering technique with
powerful feature extraction ability to reveal hidden patterns of datasets, to explore the represented
spatiotemporal weather features of Taipei city based on the observed data of six key weather factors
that were collected at five weather stations in northern Taiwan during 2014 and 2018. The weather
types and features of duration and distribution for Taipei on a 10-day basis were specifically ex-
amined, indicating that weather types #2, #4, and #7 featured to manifest the dominant seasonal
patterns in a year. The results can serve as practical references to anticipate upcoming weather
types/features within designated time frames, arrange potential/further measures of cultivation
tasks and/or adjustments in response, and use water/energy resources efficiently for the sustainable
production of smart urban agriculture.

Keywords: weather types and features; meteorological feature extraction; artificial neural network;
self-organizing map (SOM); urban agriculture; resource utilization efficiency; urban northern Taiwan

1. Introduction

Urban agriculture (UA), which is defined by the Food and Agriculture Organization
(FAO) as “the small areas within the city for growing crops and raising small livestock or
milk cows for own-consumption subsistence or small-scale sale in local/neighborhood mar-
kets” [1,2], takes advantage of vacant rooftops, balconies, and community spaces to plant
vegetables for neighborhoods’ fresh diet in urban areas. In East Asia, Europe, and North
America, many urban farmers produce potential high-quality food at an affordable cost [3].
Compared with large-scale commercial cultivation on rural farms, UA usually occupies
smaller land areas and is operated by community volunteers/seniors (non-professionals)
for leisure, social interaction, and partial self-sufficiency purposes [4,5]. Leafy vegetables
are often the primary products of UA since they are highly valued for their nutritional
content, with dietary diversity with shorter growing periods [6,7]. Therefore, the planting
activities of UA generally produce short-term vegetable crops with more diversified species
but less yield quantity and crop rotation is often carried out after each harvest upon the
growers’ interests.

Weather plays a critical role in outdoor agricultural production by affecting the op-
timal growth, development, and yields of crops, as well as the incidence and spread of
pests/diseases, water needs, and fertilizer requirements for cultivation. The spatiotemporal
(short-term and annual) variations of weather factors (i.e., temperature, rainfall, humidity,
sunshine, etc.) of a particular place over the selected time interval during the cultivation
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season should be considered for assessing their influences on crop growth. In addition,
climate change has also caused impacts on agricultural operation and management [8,9].

Decision making in agriculture is based on knowledge of the crop behavior and
cultivation information, which may also include characterization of the local growing
conditions, management practices, and the response of the crop to these variables at any
given time. In particular, the timing of planting, cultivation, and harvest based on cultural
tasks are often determined based upon weather forecasts; therefore, a good climate-based
strategy for agronomic planning can help to reduce the stresses of crop growth and increase
the effectiveness of the timing of preventive measures and cultural operations, as well as
engage farmers to organize and use appropriate cultural practices to cope with or take
advantage of weather forecasts in various ways. On the other hand, once the crop season
starts and resources demands and technology are committed, only certain cultivation
operations can be adopted in response to weather phenomena by relying on advanced
notice of the occurrence of erratic weather for minimizing the hazardous effects during
mid-season [10].

Despite the agricultural weather forecast being available for upcoming days, many
farmers in East Asia today still follow the traditional solar terms of the Lunar Calendar
(also known as the Farmer Calendar or the Yellow Calendar in Chinese) from rural proverbs
as important rules of thumb for the timing of cultivation practices in light of anticipating
local weather in each season. Based on the experiences of ancestors, farmers are suggested
to use specific agricultural operations for better efficiency due to the expectation for the
occurrence of certain seasonal weather phenomenon on specific dates in a year.

In addition to nowcasting, short-term forecasts or monthly climate projections for
agricultural producers are usually preferred by farmers when making agricultural de-
cisions. The use of non-forecast climate information on seasonal pattern analysis, i.e.,
historical climate information, long-term climate outlooks, and decision calendars, can
also be valuable as a practically useful reference for cultivation tasks and agricultural
risk management [11,12]. The seasonal pattern of weather types requires probing into
years of historical data of various weather factors, and feature patterns can be extracted
through effective and efficient data-mining techniques to explore more information that
might not otherwise be disclosed. Various machine learning methods were employed
in precedent studies to classify weather features and make forecasts [13,14], for example,
a deep neural network (DNN) for weather forecasting [15]; a recurrent neural network
(RNN) and long short-term memory (LSTM) for air temperature forecasting [16]; an RNN
for hourly rainfall forecasting during typhoon periods [17]; a multilayer perceptron neural
network (MLP) for air temperature prediction inside greenhouse [18]; a convolutional
neural network (CNN) for wind speed prediction [19] and weather pattern clustering [20];
a deep convolutional neural network (DCNN) for weather phenomenon classification
based on images [21]; a backpropagation neural network (BPNN) for weather system
prediction [22–24]; a self-organizing map (SOM) for estimating meteorological variables
of evaporation [25], a method to train an SOM for clustering high-dimensional flood in-
undation maps [26]; an adaptive model of the enhanced multiple linear regression model
(EMLRM) for rainfall forecasting [27]; a combined modular models comparison using
moving average (MA), MLP, and support vector regression (SVR) for daily and monthly
prediction on rainfall time series [28]; an artificial neural network (ANN)-based lower up-
per bound estimation (LUBE) and multi-objective fully informed particle swarm (MOFIPS)
for interval forecasting for streamflow discharge [29]; and a comparison of BPNN, group
method of data handing (GMDH), and autoregressive integrated moving average (ARIMA)
for monthly rainfall forecasting [30].

As one of the powerful methods of exploratory data analysis for data mining and
visualization interpreting [31,32], SOMs have been usually used to discover intrinsic pat-
terns by downscaling the complex weather data sets from a high-dimensional space to
a low-dimensional one through clustering similar data patterns into neighboring SOM
units for easy comprehension [33,34]. For the feature extraction from large datasets, di-
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mensionality reduction is a critical step to eliminate redundant information for simplifying
the subsequent processes of classification and the search for information while retaining
meaningful properties of the original datasets. Compared with traditional methods, such
as principal component analysis (PCA) and wavelet decomposition methods, SOM may
better classify datasets and present results in a two-dimensional topology well [35].

An increasing number of SOM applications were also adopted to assist with agricul-
tural decision making when considering the weather information from recent years [36].
For agricultural applications, some data-driven models were developed to identify land
covers for agricultural control and management and provide information for production
systems to better manage their crops according to the specific conditions on farms [37–40].
Time series of climatic and agro-climatic indices were used to examine the signs of climate
changes in rainfall, temperature, and agricultural drought to identify potential impacts on
the agricultural water balance [41]. In addition, SOM was also applied to data clustering
and pattern recognition for many types of climatic and meteorological data to analyze
synoptic climatology at various spatial and temporal scales [42–44], forecasting and now-
casting [45–47], and investigation of extreme climate events [48–50], as well as variations
of meteorological variables, such as evaporation and rainfall pattern analysis [25,51,52],
cloud classification [53], and climate change analysis [54,55].

Generally, monthly/annual meteorological statistics provide very rough information
about respective weather factors rather than substantially reflect the overall phenomenon
of weather features during a certain period and give no characteristics on the temporal and
sequential distribution of repetition and alteration trends. Weather forecasts are provided
based on the surrounding atmospheric circulation condition. Both types of information are
often used as reference guidelines for crop cultivation for farmers, but it is challenging for
farmers to anticipate and grasp precisely what weather phenomena and features would
potentially occur during a specific time window. Therefore, this research aimed to use
data-mining techniques to discover/induce the annual pattern and distribution of weather
types and features of a region based on historical meteorological data, including their
occurrence time, frequency, continuity, and intensity, so that agricultural operationists can
anticipate the occurrences and trends of weather types and features during each specified
period for engaging in appropriate cultivation tasks in advance.

In this regard, this research adopted an SOM to cluster large and complex historical
meteorological data into several categories (types) of similar weather features while explor-
ing each type’s characteristics on temporal distribution, sequential continuity, occurrence
time, and frequency so that crops can adapt to the weather in northern urban Taiwan
owing to the measures that were taken beforehand (when necessary). Therefore, the even-
tual findings are expected to provide practical weather reference to help with sustainable
production in terms of species selection, planting schedules, precautions arrangement,
and further efficiency enhancement of water and energy resources that are used for the
planning and design of urban agriculture/farming for promotion purposes.

2. Materials and Methodology

Various weather factors for agricultural forecasting are intertwined and affect farm
planning and operations from place to place and from season to season. This research
aimed to explore the representative spatiotemporal weather features by collecting and
analyzing the observed data of 6 key weather factors at 5 weather stations in northern
Taiwan. An SOM, as one of the effective artificial neural network approaches, was adopted
to cluster the meteorological data to reveal the hidden weather features. Subsequently,
the temporal patterns of such features at the Taipei Station were specifically examined so
that potential measures in response to certain weather phenomena at certain periods for
the smart and efficient utilization of resources (water/energy) in urban agriculture can
be provided.

To cross-reference to the results of weather types and features, the Da-an rooftop farm,
which has been a successful urban agriculture (UA) site since 2014 and had a complete
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work log and harvest records in Taipei City in northern Taiwan, was chosen as the real
case in operation for reference. In addition, due to the special characteristics of UA, i.e.,
it usually involves smaller planting areas, lower harvest weight, higher crop rotation
frequency, more species diversity, and short-term crops (with growing periods of a few
months), the data collected during 2014–2018 were selected to form the weather types and
features in this study.

2.1. Materials of Weather Data Collection

Taipei City, New Taipei City, Taoyuan City, and Keelung City, which constitute the
main metropolitan area in northern Taiwan, were selected for this research. The four cities
cover an area of 3675 km2 (accounting for 10.2% of the total area of Taiwan) and have
a population of 8.82 million (about 38.3% of the total population of Taiwan). The daily
meteorological data were collected from five Central Bureau of Weather (CBW) ground
weather stations in northern Taiwan, including the Banqiao, Tamshui, Taipei, Keelung,
and Xinwu Weather Stations (locations are shown in Figure 1) from 1 January 2014 to
31 December 2018 [56]. Being located in downtown areas in Taipei Metropolitan, the five
weather stations were selected because they are governed directly by the Central Weather
Bureau in Taiwan and can provide the most comprehensive, complete, and extensive
monitoring weather data at urban areas in northern Taiwan. With Taipei City being located
in the Taipei Basin and the Taipei Weather Station being situated in the main urban area
in the city, the Taipei Weather Station was specifically examined to explore the weather
types and features in this research because the Da-an rooftop farms, with its harvest logs
for reference, was located there. With a similar approach, the weather types and patterns at
the other four weather stations are also valuable and deserve further in-depth exploration
in future research.
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Figure 1. The location of five Central Weather Bureau stations in northern Taiwan.

The meteorological factors (variables) for agricultural weather forecasts that immedi-
ately affect farm planning or operations vary from place to place and from season to season.
According to the Köppen climate classification, Taiwan is an island that is classified as
having a “warm oceanic climate/humid subtropical climate,” while Taipei City is classified
as “temperate, no dry season, hot summer” (Köppen: Cfa) [57]. Temperature (for heat suc-
cession), relative humidity (for transpiration), precipitation (for irrigation), sunshine hours
(insolation duration), global radiation (light and thermal condition for plant physiology),
and total cloud cover (character of prevailing clouds that reduce the global solar radiation)
are the core weather factors that influence crop-growing processes; therefore, each dataset
comprised the daily logs of the 6 weather factors. Wind speed and direction were excluded
from this research because the wind blowing around UA sites with a relatively small scale
is often affected by the surrounding buildings. It is noted that these heterogeneous datasets
were normalized (within a value range of 0–1.0) for preprocessing. Then, the normalized
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datasets were input into the SOM for clustering the weather features, and the clustering
results were displayed in a honeycomb arrangement.

A total of 9130 datasets were collected from the 5 weather stations in northern Taiwan
over the 5 years, and their basic statistics are given in Table 1.

Table 1. Basic statistics of the meteorological data collected at five weather stations in northern Taiwan during 2014–2018.

Station
Name

Temperature
(◦C)

Relative
Humidity

(%)

Precipitation
(mm)

Sunshine
Duration
(Total h)

Global
Radiation
(MJ/m2)

Total Cloud
Cover (Level

0–10)

Banqiao

Max 32.3 96.0 246.0 12.7 29.8 10.0
Min 5.4 46.0 0.0 0.0 0.0 0.0

Avg * 23.5 72.9 6.1 3.7 11.4 7.0
Std ** 5.5 7.9 17.0 3.5 7.3 2.6

Tamshui

Max 32.3 100.0 379.5 12.5 29.1 6.7
Min 5.1 1.8 0.0 0.0 0.0 0.0
Avg 23.0 76.7 5.4 4.5 13.2 5.0
Std 5.5 9.4 19.7 4.0 7.8 1.6

Taipei

Max 33.2 97.0 306.7 11.6 28.9 10.0
Min 5.6 5.6 0.0 0.0 0.0 0.0
Avg 23.8 23.8 6.1 3.6 12.0 7.2
Std 5.6 5.6 18.2 3.5 7.2 2.5

Xinwu

Max 31.7 100.0 246.5 12.9 30.6 10.0
Min 5.7 50.0 0.0 0.0 0.0 0.0
Avg 23.0 79.8 3.9 5.1 14.9 6.2
Std 5.5 8.5 14.6 4.2 8.5 2.9

Keelung

Max 32.4 96.0 337.6 12.6 31.1 10.0
Min 5.4 49.0 0.0 0.0 0.0 0.0
Avg 23.1 76.1 9.2 3.8 11.7 7.6
Std 5.3 8.9 22.6 4.0 9.0 2.6

All Stations

Max 33.2 100.0 379.5 12.9 31.1 10.0
Min 5.1 1.8 0.0 0.0 0.0 0.0
Avg 23.3 75.6 6.1 4.2 12.6 6.6
Std 5.5 9.1 18.7 3.9 8.1 2.7

* Average, ** standard deviation.

2.2. Self-Organizing Map (SOM)

The SOM proposed by Kohonen in 1982 [58,59] is an artificial neural network that is
configured with an unsupervised learning algorithm. It consists of repeatedly learning
processes to gradually update the data nodes in the output map until converging to a
stable and representative solution of the input space. Each of its learning steps starts with
randomly selecting an input weight vector. A node in the input layer is searched for by
competing with each other in the output map (the topological layer) to find the most “simi-
lar” one (also called the “winning” node or the “best matching unit” (BMU)) to best match
the input vector. Next, the training continues to make the BMU and its neighbors closer to
the input vector in a manner that is governed by the learning rate and the neighborhood
function [34,42]. The map is then reconfigured to adaptively transform high-dimensional
input patterns into two-dimensional arrays of neurons in a topologically ordered fashion,
which facilitates the detection of the inherent structure and the interrelationships between
data [25]. Thus, the patterns of a large number of clusters and the transitional nodes
between patterns can be more readily understood and discerned [60]. The SOM technique
preserves the neighborhood relations of the input data to form a meaningful topological
map [30] so that a large amount of information can be stored in the weight values of the
SOM’s neurons with similar characteristics in input vectors [61,62]. An SOM is capable of
conserving the space continuum between daily meteorological datum so that there is some
resemblance in the neighboring clusters. Therefore, an SOM can cover the overall data
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characters to offer a more detailed presentation of particular features [63], and the result
of the clustering can provide a means to visualize the complex distribution and reveal
weather patterns and attributes of the temporal sequence over a region of interest [42].

Figure 2 illustrates the concept of the SOM approach in this research. The datasets
were input into the SOM network for clustering according to weather similarities by
calculating the differences, namely, the distances, between every two inputs on the multi-
dimensional topology. The shortest distance (i.e., the minimal difference) between any two
inputs indicates that they share more resembling weather characters than others; therefore,
they are grouped into one category (i.e., one neuron). Weather features may be clustered
into various categories (neurons) depending on the research purposes. Given relatively
limited differences in terms of geographical distance among the five weather stations
and environmental conditions in northern Taiwan, the variation in weather features may
not be too drastic; therefore, this study determined the network size of the SOM to be
3 × 3 (= 9 categories of weather types in total).

Water 2021, 13, x FOR PEER REVIEW  6 of 21 
 

 

SOM’s neurons with similar characteristics in input vectors [61,62]. An SOM is capable of 

conserving  the  space  continuum  between daily meteorological datum  so  that  there  is 

some resemblance in the neighboring clusters. Therefore, an SOM can cover the overall 

data characters to offer a more detailed presentation of particular features [63], and the 

result of the clustering can provide a means to visualize the complex distribution and re‐

veal weather patterns and attributes of the temporal sequence over a region of interest 

[42]. 

Figure 2 illustrates the concept of the SOM approach in this research. The datasets 

were input into the SOM network for clustering according to weather similarities by cal‐

culating the differences, namely, the distances, between every two inputs on the multi‐

dimensional  topology. The shortest distance  (i.e.,  the minimal difference) between any 

two  inputs  indicates  that  they  share more  resembling weather  characters  than others; 

therefore, they are grouped into one category (i.e., one neuron). Weather features may be 

clustered  into various categories (neurons) depending on the research purposes. Given 

relatively limited differences in terms of geographical distance among the five weather 

stations and environmental conditions in northern Taiwan, the variation in weather fea‐

tures may not be too drastic; therefore, this study determined the network size of the SOM 

to be 3 × 3 (= 9 categories of weather types in total). 

 

Figure 2. The SOM network structure for clustering weather features in this research. Figure 2. The SOM network structure for clustering weather features in this research.



Water 2021, 13, 3457 7 of 20

In reference to the traditional Chinese Farmers’ Calendar, the concept of a “10-day
period”, also called the “xun” in Chinese, has been commonly used as a temporal cycle for
planning and engaging cultivation tasks in Chinese society. There are basically three 10-day
periods in a month. With variations of week numbers and start/end dates in a month every
year, as well as month/seasons, it is relatively complicated to specify the same period in a
year for the analysis and comparison of weather types/features and generalizing weather
features over very long temporal periods. Therefore, following the agricultural tradition
in Taiwan, the 10-day period was adopted to be the conveniently unified and appropriate
temporal scale in this research. Therefore, this research considered the 10-day period to
be the temporal scale. The software that was used to run the SOM in this research was
MATLAB version 2019b.

3. Results

The strength of an SOM is the ability to directly use uncompressed data rather than
only using traditional statistics with diluted weather attributes or converting them into
certain performance indicators [63]. SOM also effectively provides a means to visualize
the complex distribution of weather features to classify and reveal the synoptic weather
patterns and attributes of the temporal sequence over a region of interest. In this research,
the SOM led to two outcomes for further analysis: first, the result of nine weather feature
types (neurons) at each weather station in northern Taiwan, and second, the distribution of
weather types throughout the years at the specific weather station indicated the temporal
trend/pattern of local weather features. These two results are delineated as follows.

3.1. Types of Weather Features

Figure 3 illustrates the SOM results. Figure 3a shows the number of datasets in each
SOM neuron that represented similar features. Figure 3b shows the numbering labels that
were associated with the neurons of the SOM topological map. It is evident that neurons #2,
#3, #4, and #7 accounted for 64% of the total inputs; therefore, these four neurons were the
most representative types to depict the overall weather characteristics in northern Taiwan.
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Figure 4 presents the heatmap of the SOM results, indicating the weather-type con-
figuration that can be considered to be the six stratified layers of weather factors with
the corresponding characteristics. Every neuron was held at the same position across all
weather factor layers so that similar heatmaps in different factor planes represent a high
correlation of features. On each weather factor layer, every neuron is shaded in a specific
color with a spectrum from light to dark to indicate the weight significance from the highest
(in yellow) to the lowest (in black). Therefore, each heatmap represents the feature intensity
of a weather factor learned by the SOM. The four corners of the SOM can thus be taken
as the most extreme nodes in terms of climate variability, with a smooth continuum in
between [60]. All data inputs that were assigned in each neuron for each weather factor
layer were extracted to further explore their typical characteristics in common via statistics
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methods, where the characteristics of each weather factor are illustrated in the form of a
stock chart. They are visually presented to show the significance and variation of each
specific weather factor in each neuron in this research. With the neuron labels (#1–#9) on
the horizontal axis, each blue rectangle comprises the ranges of average value plus/minus
one standard deviation of all data in that specific neuron. The top and bottom tips of
black vertical lines indicate the maximum and minimum values of all data in that specific
neuron, respectively. It is noted that in the precipitation layer, the enormous values of the
maximum rainfalls are labeled directly on top so that the precipitation variation is still
visually explicit.
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Among all nine neurons, the temperature weighed most significantly (the highest
value) in neuron #3, then followed by neurons #2, #9, #1, and #4 accordingly with gradually
darker colors, and lastly, neuron #7 in black denoted the lowest value. As for the total
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cloud cover layer, neurons #6 and #3 on the lower-right presented the least cloud cover
(i.e., the sunniest condition), then neurons #2, #5, and #9 followed with gradually higher
temperatures toward the upper-left, and neuron #7 in yellow denoted the most cloudy
condition (i.e., least sunny).

Therefore, through integrating the characteristics of the six weather factors with
various significances allocated, each neuron designated one type of weather feature. Since
neurons #7 and #2 comprised the two most significant inputs, they were taken to illustrate
how the six weather factors are transformed into a radar diagram of each weather type
and what their overall features were, as shown in Figure 5.
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In neuron #7, the temperature, sunshine hours, and global radiation factors were
all colored black, indicating these three factors displayed the lowest levels. In contrast,
relatively high humidity and total cloud cover appear (in yellow), suggesting that these
factors displayed the highest levels. Precipitation was orange, meaning it displayed a
medium level. As a consequence, neuron #7, which was also denoted as weather type
#7, integrated the weather characteristics of the lowest temperature, the highest humidity,
medium rainfall, the least sunshine hours, the lowest global radiation, and the highest
total cloud cover, which complied with the general weather phenomena in winter from
our observation (Figure 5a). With the same rationale, neuron #2 exemplified the weather
characteristics of high temperature, medium humidity, and low precipitation, along with
lower sunshine hours, high global radiation, and lower total cloud cover (Figure 5b).

When converting the above results of neuron #2 to the radar diagram shown in
Figure 5b, the green line linking the green points (average values) formed the “shape of
type #2 in terms of average values”. The same rationale applied to the orange points and
line, denoting the “shape of type #2 in terms of the maximum values”, as well as to the
yellow ones, denoting the “shape of type #2 in terms of the minimum values”. Therefore,
the daily average, maximum, and minimum records for each weather type were delineated
explicitly. Overall, type #2 indicated that the maxima of temperature, relative humidity,



Water 2021, 13, 3457 10 of 20

and total cloud cover reached the highest level of 1.0 at the outmost edge on the hexagon,
while the sunshine hours and global radiation positions were at 0.8 (the second-highest
level) and precipitation positions were at 0.2 (a very low level). The “shape of the average
values” profiled the dominant weather factors, which were temperature, humidity, and
total cloud cover positioning in the range 0.6–0.8. The other three factors played much
less significant roles, where precipitation, sunshine hours, and global radiation positioning
were at around 0.0, 0.4, and 0.6, respectively.

3.2. Weather Pattern at Five Stations in Northern Taiwan

This research originally explored the weather features from five stations in northern
Taiwan, where Table 2 illustrates the integrated results. Each station presented its own
weather characteristics, but overall, types #2, #3, #4, #7, and #9 were the most typical ones
at the Banqiao, Taipei, and Xinwu stations, while Tamshui and Keelung presented their
own types of weather features. The seasonal characteristics of weather features at the other
four stations also deserve more elaboration in the form of the comprehensive analysis that
was given for the Taipei Station in this research.

Table 2. Features of weather types at 5 weather stations in northern Taiwan.

Station Main
Types

Occupying
Percentage

Absent
Types

Summer
Types

Concentration in
Summer Months

Winter
Types

Concentration in
Winter Months

Banqiao 4, 7 (1~9) 40% 0 1, 2, 3, 4, 6 April–September 4, 5, 7, 8, 9 October–March
Tamshui 3, 8 55% 1, 6, 7 2, 3, 4 April–October 5, 8 October–May
Taipei 2, 4, 7 70% 1, 6 2, 3, 4 April–October 5, 7, 8, 9 October–April

Keelung 1, 5, 6 83% 2, 3, 5 4, 6 April–October 7, 8 October–April
Xinwu 2, 3, 4, 7 72% 1, 6 2, 3, 4 April–October 5, 7, 8, 9 October–April

3.3. Temporal Pattern of Weather Types

The result of the Taipei weather station is taken as the main focus for elaboration in
this research. Figure 6 shows the occurrences (counts) of the nine weather types on a 10-day
basis from 2014 to 2018. Each cell is visually shaded with a color spectrum indicating
the frequency intensification. The higher the occurrence frequency is, the darker the cell
color is. Therefore, the occurrence time, frequency, and duration of each weather type
are presented explicitly on the pattern of weather types that occurred at specific weather
stations throughout the years between 2014 and 2018.

Figure 7 shows the percentage of each weather type that occurred on an annual basis.
Figures 6 and 7 explicitly display that there was a stable trend and similar occurrence
percentages for the variation of weather types over the five years. Though the annual
occurrences of each weather type might be slightly different and/or offset, the timings of
the sequential trend and the duration were generally consistent. In this regard, it is essential
to examine the high-frequency occurrence distribution, duration, continuity, and extent
profiles rather than the forecasts of weather features on specific dates. Therefore, it was
reasonable to aggregate the 5-year occurrences under the same 10-day basis into overall
seasonal features by summing all the values in each cell to strengthen the significance and
distribution of feature types, as illustrated in Figure 8a.

In addition, when the specific weather type lasted continuously (especially with
high occurrence frequency) and multiple weather types took place over the same time
frame, these weather types could be considered altogether to be the “representing weather
features” of the sequential regularity and pattern. In this regard, from the distribution of
concentration and continuity, it is explicit that the nine weather types that were distributed
throughout the thirty-six 10-day periods formed three distinct sections of temporal groups
annually, referring to sections A, B, and C marked with dashed rectangles in Figure 8a.

Section A (marked with a dashed orange rectangle) represented the period from “early
spring through late fall” (mainly full summer). Section B (marked with a dashed blue
rectangle) represented the period from “mid-fall through next mid-spring” (mainly full
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winter), with two sub-sections, namely, section B2 from early autumn to winter at the
year-end and section B1 from winter at the beginning of the year (1 January) to early
summer. Section C (marked with a dashed yellow rectangle) referred to the absent or barely
occurring types all year round. There were some overlaps of 10-day periods between
sections A and B1, similarly between sections B2 and A. This explained the seasonal
alternation with diverse weather types and complex variations during spring and fall.

Figure 8b also delineates the two leading weather types with the associated occurrence
percentages summed from major (in pink shades) and secondary (in yellow shades) weather
types in each 10-day period. With shaded cells indicating that the percentage exceeded
the designated one listed in the sum column, this demonstrates how significant and
representative the weather type was in each 10-day period. In addition, the last row
shows the subtotal percentage of the two leading types, together with over 60% (in green
shades) as a high concentration and continuum of occurrences. The 10-day periods without
green shaded cells represent the percentage <60% as non-leading major and secondary
occurrences, which also refers to more diverse and variant weather types taking place in
springs and falls as the seasonal transition.
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Figure 6. The occurrence distribution on a 10-day basis for each weather type at Taipei Station.
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3.4. Frequency, Duration, and Distributions of Type Occurrences

The collective occurrences of the nine weather types at Taipei Station were analyzed
from two perspectives: the features and distribution of occurring types and the compre-
hensive outcome during designated timespans (season, month, and 10-day periods), which
are elaborated in the following.

Figure 8a illustrates that among all nine feature types, types #2 (25.8%), #4 (24.7%),
and #7 (19.8%) were the main weather types at the Taipei Station and altogether accounted
for 70.3% of the occurrences out of the occurrences of all types over the five years. There
were barely any type #1 or #6 weather patterns each year.

Figure 9 illustrates the occurrence distribution and duration of types in sections A, B,
and C. Section A in Figure 9a basically spanned from April to early October, where the
highest frequency weather types were types #2 (red bar), #4 (green bar), and #3 (yellow bar),
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implying they are the representative weather types during the season from mid-spring
to early fall. These types tended to appear sporadically or were absent before April and
disappeared gradually after mid-October till the year-end. The occurrence timespans and
high frequencies of types #2 and #4 seemed complementary to each other, with one rising
(appearing) and the other falling (disappearing), while type #3 peaked shortly in the hottest
days of mid-summer (mid-July to mid-September). Section B in Figure 9b, on the other
hand, shows the duration starting from mid-October to the next late April (covering late
fall, winter, and the following spring), with a gradual transition through types #4, #7, #5,
and #9. There were barely any type #1 or #6 weather patterns, with only 1–2 occurrences in
early August in Section C.
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3.5. Main Features of Weather Types in Taipei City

To elaborate the weather types and features in the Taipei area for further application to
UA, Figure 10 highlights the features of the two leading weather types for sections A, B, and
C to visually present the variations of the six weather factors during the designated period.

Comprehensively, with cross-referencing to Figures 8–10, the annual weather pattern
in the Taipei area presented the following features in the sequential timing of a year are
elaborated as follows.
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Though mainly concentrating from April to mid-June and from mid-August to Novem-
ber (before and after summer), type #4 weather patterns occurred in almost every 10-day
period throughout 2014–2018. This was taken as the basic annual weather feature in Taipei.

Intensifying from January to March and in December, type #7 weather patterns domi-
nated the weather features in winter, with the lowest temperature range (14–20 ◦C), little
rainfall, high humidity (80%), the least global radiation (0–5 MJ/m2) and sunshine hours,
the highest level of cloud cover of the year, and sometimes accompanied by the second
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most frequent weather pattern, namely, type #5, with its relatively mild/less “winter
touch” features.

During the periods of March–April (spring) and October–November (fall), all the
weather types, except for types #1 and #6, appeared alternatively, indicating greater
variations and less stable features, for instance, temperature (14–31 ◦C), precipitation
(15–43 mm), global radiation (0–26 MJ/m2), sunshine duration (0.5–11 h), and cloud cover
(levels 1–10). Types #7 (winter) and #5 played the most significant roles and frequently
occurred in early March and then gradually disappeared, followed by types #4 and #2,
mainly from April (as the summer began to emerge). Such weather features proceeded in a
mirrored way from October to November as winter approached.

From May to September (late spring through summer to early fall), types #2 and
#4 occur were dominant and alternated, with their high temperature (25–30 ◦C), little
precipitation, and large variation in global radiation, sunshine hours, and cloud cover.
Furthermore, accompanied with a slight trace of type #3, the summer feature reached its
climax occurrences, with the highest temperature (27–31 ◦C), very limited rainfall, the most
abundant global radiation (19–26 MJ/m2) and sunshine hours (7–11 h), the least rainfall,
and lower cloud cover (levels 2.5–5) in the summer peak from mid-July to September.
Then, from October, the weather feature returned gradually to the basic type (type #4) and
transformed into fall–winter patterns.

4. Discussion

Weather classification of typical local weather features from past experiences and
historical data can greatly enhance agricultural decision making by identifying the timings
for effective cultivation activities and the corresponding efficiency of resource use. For
example, the statistics of the historical average, maximum, and minimum of certain weather
factors (e.g., temperature and precipitation) within a time interval (month or year) provides
a very rough idea of the local weather condition with variation ranges. In addition, some
specific daily phenomena with the presence of various weather factors occurred frequently
and repetitively during a certain period in a year; therefore, such alternation of seasonal
features can be considered to be the “typical weather patterns” and is expected to continue
in the following years. This section discusses and extends the use of SOM, weather types,
and features and particularly focuses on the potential application of the feature results.

4.1. SOM Approach Contributions to the Weather Typing

The results of the weather features from the SOM approach can effectively excavate
out more hidden details of characteristics on the key weather types. It explicitly visualizes
the weather patterns and trends in terms of their occurring time, frequency, intensity,
distribution, duration, and transition nexus with various types. Furthermore, it is rational
to elucidate/interpret what weather types are likely to occur during designated periods of
interest and how meteorological factors are expected to appear substantially. Therefore, it
is practical to grasp the temporal distribution and seasonal changes of weather features to
plan for appropriate strategies and measures when necessary.

4.2. Potential Applications

The investigation of weather features and historical meteorological data throughout
the year can be a reference for agricultural decisions in various cultivation activities, such
as species selection, planting, harvesting, transplanting, defoliation, fertilization, and
irrigation [11]. In addition, necessary precautions can be further adopted to preempt crop
stress control, sheltering, disease risk reduction, and pest control, as well as to explore
sustainable resource mechanisms in terms of collection, storage, and utilization.

The symbolic representation of temporal weather features is the key to effective crop
planting plans that suggest farmers take necessary actions and measures for optimal crop
growing and harvesting, with more efficient resource utilization and protection from
potential weather damage. For example, the timings of meteorological conditions of
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temperature, precipitation, and sunshine hours affect crop-growing schedules regarding
seeding, seedling, flowering, fruiting, and harvesting, particularly through the necessary
heat for succession, water supply for irrigation, and sunlight exposure for photosynthesis.
Therefore, the understanding of the temporal distribution and intensity of local weather
types would contribute to enhancing the cropping (such as the species selection) under
favorable weather, with adequate supporting facilities being installed when necessary (such
as the provision of shade for crops from sunscald and increasing ventilation to prevent
against potential insects/disease due to high temperature and humidity).

The features of weather types can also enhance the prediction of rainwater and solar
power output by calculating the related green resources input based on meteorology for
cultivation during the process of species selection, maintenance, and resources regulation
regarding collection, storage, and provision. Particularly for urban agriculture via rooftop
farming and community gardening, the water and electricity that are needed for irrigating
farms often come from public utilities. Hence, drawing practical planting plans and
operation strategies by taking advantage of favorable weather features during designated
periods for specific measurements/adaptations can be sustainable. For instance, installing
an external rainwater tank and solar power facility, as well as prioritizing the use of rainfall
and sunlight as green/renewable resources for efficient collection, storage, and reuse for
farming irrigation, reduces the dependence on tap water and municipal electricity.

The Da-an rooftop farm with elevated planters extensively laid out on its rooftop can
be taken as a study site for the application of weather types and features that are relevant to
UA activities. The selection of crop species and some auxiliary measurements are proposed
as application examples in the following.

Sweet potato leaves (SPL) (Ipomoea batatas (L.) Lam.) has been one of the commonly
planted species at the Da-an site over the years. As popular leafy vegetables, SP is a
subtropical herbaceous trailing vine with a relatively short growing cycle to produce
frequent harvests during growing seasons; it requires continuous heat, abundant daily
watering (with good drainage), long sunlight exposure, and is very sensitive to chilly
temperatures [64]. SPL prefers cooler and drier seasons as seedlings, then it can mature fast
in hot and humid months (with a favorable optimal temperature range between 20–30 ◦C).
SP leaves can be picked for harvest within as short as 18 days in hot summers but as long
as 30 days in cold winters [65]. According to the analysis of major weather types that
were developed for Taipei in this research, SPL can serve as a very good species that is
suitable to grow under the weather conditions in Taipei, and its most favorable growing
seasons would fall within section A. By referring to Figures 4, 8 and 10, with SPL seedlings
planted in April, they can grow prosperously from May to September when weather types
#2 and #4 are dominant (with characteristics of high temperature (25–30 ◦C); constantly
high humidity; limited daily precipitation but sometimes showers up to over 300 mm;
and large variations in global radiation, sunshine hours, and cloud cover). It is noted that
type #3 is concentrated from mid-July to mid-September (with characteristics of very hot
days, reaching the highest temperature (27–31 ◦C), sunshine hours (7–11 h daily), and
radiation (19–26 MJ/m2). SPL grows slowly from November to next February, during
which, weather types transform gradually from types #4 to #7 with winter characteristics.
In other words, as seen in Figures 4 and 8b, the total occurrence frequency of weather types
#2, #3, and #4 accounted for 72–95% in section A starting from late April to the end of
September. Therefore, SPL would enjoy the high temperature and humidity, as well as
the long sunshine hours and strong radiation, with some fluctuation between these three
weather types.

With types #2, #3, and #4 occurring alternately during section A, cross-referencing
between Figures 4, 8, and 9, types #2 and #3 featured low daily precipitation (12–15 mm)
whereas type #4 featured high daily precipitation (42 mm). Furthermore, all three types had
occasional extremely high daily precipitation (with a maximum of up to 86–307 mm). These
showed that there were potential demands to set up provisional rainwater tanks, such as
additional water containers and large inclined planes to increase rainwater collection areas
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and storage volume as watershed during intensive showers, which could be set aside for
later irrigation in a sustainable way. Therefore, by way of providing an SPL irrigation plan
to satisfy SPL’s abundant water needs in hot summers, the daily irrigation water supply
can be managed to come from an additional setup of a rainwater tank to collect and store
torrential rain as a supplement to irrigation water from May to September, specifically
during section A. The potential size of the suggested rainwater tank depends on the SPL
planting area, the number of plants, and the loading capacity of the rooftop of the building.

The sunshine duration can affect plants’ growth due to sunlight exposure for photosyn-
thesis; therefore, some crop species prefer longer sunlight exposure to grow prosperously
than others. The features of sunshine duration, global radiation, and total cloud cover
level can also impact the efficiency of solar power utilization. Therefore, seasons with long
sunshine hours and radiation (type #3) showed higher suitability for heliophyte species or
require some shading facility for sciophyte species to prevent sunscald. On the other hand,
this also suggests the great potential to establish a solar power facility for providing green
energy to the automatic irrigation system in the farm.

5. Conclusions

This study proposed an SOM neural network to cluster and identify the specific
features of weather types based on six meteorological variables at five weather stations in
northern metropolitan Taiwan. The daily meteorological datasets, comprising temperature,
precipitation, relative humidity, sunshine duration, global radiation, and total cloud cover
from 2014–2018, were collected as inputs to the SOM network and then were classified
into a topological map based on the similarities of weather features to investigate their
multi-collinear relationships for spatiotemporal distribution analysis.

The results of the weather features from the SOM classification not only corresponded
to what we know about the general weather features in the five metropolitan areas but
also provided detailed and integrated information of weather features on the occurrence
period, duration, frequency, intensity, and variation range from historical data sets on a
10-day basis. This study contributes to the practicability for urban agriculture planning
by exploring the in-depth weather features in northern Taiwan to conduct urban farming
in planting arrangement, installing equipment, and managing the crop-growing process
(seeding, seedling, growth rate, maturing, flowering, fruiting, harvesting, etc.) in response
to local weather features before launching planting in the five study areas.

The results of this study can also be applied to selecting appropriate species for
planting in favorable seasons with appropriate weather features. The size of the rainwater
tank and the scale of solar power equipment can also be identified to comply with weather
features to achieve the optimal resource utilization efficiency to grow and irrigate vegetables
so as to reduce the municipal water and electricity use during farming operations.

Given the arising phenomenon of climate change, the chances of unprecedented
weather with continuous hot/chilly days, rainstorms, and droughts tend to occur more
frequently. However, such weather conditions were not included in the weather typing
in this research because outlier data (especially for extremely high precipitation, which is
mostly caused by typhoons or sudden torrential rains) were removed at the data prepro-
cessing stage. It is suggested that the extreme weather events in cities of northern Taiwan
require further investigation regarding their occurrence time and frequency, as well to help
with providing advice as a further reference/strategy for urban agriculture operations if
possible so that more risks may be anticipated and stronger adaptation measures could
be prepared.
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37. Taşdemir, K.; Wirnhardt, C. Neural network-based clustering for agriculture management. EURASIP J. Adv. Signal Process 2012, 1,
1–13. [CrossRef]

38. Satizábal, H.; Barreto-Sanz, M.; Jiménez, D.; Pérez-Uribe, A.; Cock, J. Enhancing decision-making processes of small farmers in
tropical crops by means of machine learning models. In Technologies and Innovations for Development; Springer: Paris, France, 2012;
pp. 265–277.

39. Mohan, P.; Patil, K.K. Deep learning based weighted SOM to forecast weather and crop prediction for agriculture application. Int.
J. Intell. Eng. Syst. 2018, 11, 167–176. [CrossRef]

40. Rubem, A.P.S.; de Moura, A.L.; de Oliveira, E.; de Mello, J.S.; Alves, L.A.; Tavares, R.S. Productive performance of small
peri-urban farms using self-organizing maps and data envelopment analysis. WIT Trans. Ecol. Environ. 2015, 192, 133–145.

41. Vergni, L.; Todisco, F. Spatio-temporal variability of precipitation, temperature and agricultural drought indices in Central Italy.
Agric. For. Meteorol. 2011, 151, 301–313. [CrossRef]

42. Hewitson, B.C.; Crane, R. Self-organizing maps: Applications to synoptic climatology. Clim. Res. 2002, 22, 13–26. [CrossRef]
43. Alexander, L.V.; Uotila, P.; Nicholls, N.; Lynch, A. A new daily pressure dataset for Australia and its application to the assessment

of changes in synoptic patterns during the last century. J. Clim. 2010, 23, 1111–1126. [CrossRef]
44. Loikith, P.C.; Lintner, B.R.; Sweeney, A. Characterizing large-scale meteorological patterns and associated temperature and

precipitation extremes over the northwestern United States using self-organizing maps. J. Clim. 2017, 30, 2829–2847. [CrossRef]
45. Borah, N.; Sahai, A.; Chattopadhyay, R.; Joseph, S.; Abhilash, S.; Goswami, B. A self-organizing map–based ensemble forecast

system for extended range prediction of active/break cycles of Indian summer monsoon. J. Geophys. Res. Atmos. 2013, 118,
9022–9034. [CrossRef]

46. Chang, L.C.; Shen, H.Y.; Chang, F.J. Regional flood inundation nowcast using hybrid SOM and dynamic neural networks.
J. Hydrol. 2014, 519, 476–489. [CrossRef]

http://doi.org/10.1038/s41598-020-57897-9
http://www.ncbi.nlm.nih.gov/pubmed/31992743
http://doi.org/10.1029/2020EA001604
http://doi.org/10.14569/IJACSA.2018.090859
http://doi.org/10.1016/j.jhydrol.2010.01.016
http://doi.org/10.1016/j.jhydrol.2020.125655
http://doi.org/10.22266/ijies2019.1031.03
http://doi.org/10.1016/j.engappai.2012.05.023
http://doi.org/10.1016/j.engappai.2015.07.019
http://doi.org/10.3390/w13202871
http://doi.org/10.1016/j.scitotenv.2020.139656
http://www.ncbi.nlm.nih.gov/pubmed/32485387
http://doi.org/10.5194/gmd-14-2097-2021
http://doi.org/10.1016/j.inpa.2020.07.002
https://www.intechopen.com/chapters/13302
http://doi.org/10.5772/13146
http://doi.org/10.1186/1687-6180-2012-200
http://doi.org/10.22266/ijies2018.0831.17
http://doi.org/10.1016/j.agrformet.2010.11.005
http://doi.org/10.3354/cr022013
http://doi.org/10.1175/2009JCLI2972.1
http://doi.org/10.1175/JCLI-D-16-0670.1
http://doi.org/10.1002/jgrd.50688
http://doi.org/10.1016/j.jhydrol.2014.07.036


Water 2021, 13, 3457 20 of 20

47. Chang, L.C.; Chang, F.J.; Yang, S.N.; Tsai, F.H.; Chang, T.H.; Herricks, E.E. Self-organizing maps of typhoon tracks allow for flood
forecasts up to two days in advance. Nat. Commun. 2020, 11, 1983. [CrossRef]

48. Cavazos, T. Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the
Balkans. J. Clim. 2000, 13, 1718–1732. [CrossRef]

49. Cassano, E.N.; Glisan, J.M.; Cassano, J.J.; Gutowski, W.J., Jr.; Seefeldt, M.W. Self-organizing map analysis of widespread
temperature extremes in Alaska and Canada. Clim. Res. 2015, 62, 199–218. [CrossRef]

50. Gibson, P.B.; Perkins-Kirkpatrick, S.E.; Uotila, P.; Pepler, A.S.; Alexander, L.V. On the use of self-organizing maps for studying
climate extremes. J. Geophys. Res. Atmos. 2017, 122, 3891–3903. [CrossRef]

51. Fassnacht, S.R.; Derry, J.E. Defining similar regions of snow in the Colorado River Basin using self-organizing maps.
Water Resour. Res. 2010, 46, W04507. [CrossRef]

52. Hsu, K.C.; Li, S.T. Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural
network. Adv. Water Resour. 2010, 33, 190–200. [CrossRef]

53. Zhang, W.; Wang, J.; Jin, D.; Oreopoulos, L.; Zhang, Z. A deterministic self-organizing map approach and its application on
satellite data based cloud type classification. In Proceedings of the 2018 IEEE International Conference on Big Data, Seattle, WA,
USA, 10–13 December 2018; pp. 2027–2034.

54. Nguyen-Le, D.; Yamada, T.J. Using weather pattern recognition to classify and predict summertime heavy rainfall occurrence
over the Upper Nan river basin, northwestern Thailand. Weather Forecast 2019, 34, 345–360. [CrossRef]

55. Ohba, M.; Sugimoto, S. Differences in climate change impacts between weather patterns: Possible effects on spatial heterogeneous
changes in future extreme rainfall. Clim. Dynam. 2019, 52, 4177–4191. [CrossRef]

56. CWB Observation Data Inquire System. Available online: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (accessed
on 1 August 2019).

57. World Maps of Köppen−Geiger Climate Classification. Available online: http://koeppen-geiger.vu-wien.ac.at (accessed on
12 July 2021).

58. Kohonen, T. A simple paradigm for the self-organized formation of structured feature maps. In Competition and Cooperation in
Neural Nets; Springer: Berlin, Heidelberg, 1982; pp. 248–266.

59. Kohonen, T. Self-Organizing Maps, 3rd ed.; Springer: Berlin, Germany, 2001.
60. Sheridan, S.C.; Lee, C.C. The self-organizing map in synoptic climatological research. Prog. Phys. Geogr. 2011, 35, 109–119.

[CrossRef]
61. Heikkinen, M.; Poutiainen, H.; Liukkonen, M.; Heikkinen, T.; Hiltunen, Y. Subtraction analysis based on self-organizing maps for

an industrial wastewater treatment process. Math. Comput. Simul. 2011, 82, 450–459. [CrossRef]
62. Lakshminarayanan, S. Application of self-organizing maps on time series data for identifying interpretable driving manoeuvres.

Eur. Transp. Res. Rev. 2020, 12, 25. [CrossRef]
63. Skific, N.; Francis, J. Self-Organizing Maps: A Powerful Tool for the Atmospheric Sciences. In Applications of Self-Organizing

Maps; Johnsson, M., Ed.; IntechOpen: Rijeka, Croatia, 2012. Available online: https://www.intechopen.com/chapters/40865#B7
(accessed on 23 February 2020). [CrossRef]

64. Welbaum, G.E. Vegetable Production and Practices, 1st ed.; CABI: Boston, MA, USA, 2015.
65. Huang, A.; Chang, F.J. Prospects for Rooftop Farming System Dynamics: An Action to Stimulate Water-Energy-Food Nexus

Synergies toward Green Cities of Tomorrow. Sustainability 2021, 13, 9042. [CrossRef]

http://doi.org/10.1038/s41467-020-15734-7
http://doi.org/10.1175/1520-0442(2000)013&lt;1718:USOMTI&gt;2.0.CO;2
http://doi.org/10.3354/cr01274
http://doi.org/10.1002/2016JD026256
http://doi.org/10.1029/2009WR007835
http://doi.org/10.1016/j.advwatres.2009.11.005
http://doi.org/10.1175/WAF-D-18-0122.1
http://doi.org/10.1007/s00382-018-4374-1
https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
http://koeppen-geiger.vu-wien.ac.at
http://doi.org/10.1177/0309133310397582
http://doi.org/10.1016/j.matcom.2010.10.021
http://doi.org/10.1186/s12544-020-00421-x
https://www.intechopen.com/chapters/40865#B7
http://doi.org/10.5772/54299
http://doi.org/10.3390/su13169042

	Introduction 
	Materials and Methodology 
	Materials of Weather Data Collection 
	Self-Organizing Map (SOM) 

	Results 
	Types of Weather Features 
	Weather Pattern at Five Stations in Northern Taiwan 
	Temporal Pattern of Weather Types 
	Frequency, Duration, and Distributions of Type Occurrences 
	Main Features of Weather Types in Taipei City 

	Discussion 
	SOM Approach Contributions to the Weather Typing 
	Potential Applications 

	Conclusions 
	References

