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Abstract: The use of electrochemistry is a promising approach for the treatment of direct osmosis
concentrate that contains a high concentration of organic pollutants and has high osmotic pressure,
to achieve the safe discharge of effluent. This work addresses, for the first time, this major environ-
mental challenge using perforated aluminum electrodes mounted in an electrocoagulation–flotation
cell (PA-ECF). The design of the experiments, the modeling, and the optimization of the PA-ECF
conditions for the treatment of DO concentrate rich in Pb were explored using a central composite
design (CCD) under response surface methodology (RSM). Therefore, the CCD-RSM was employed
to optimize and study the effect of the independent variables, namely electrolysis time (5.85 min to
116.15 min) and current intensity (0.09 A to 2.91 A) on Pb removal. Optimal values of the process
parameters were determined as an electrolysis time of 77.65 min and a current intensity of 0.9 A. In ad-
dition to Pb removal (97.8%), energy consumption, electrode mass-consumed material, and operating
cost were estimated as 0.0025 kWh/m3, 0.217 kg Al/m3, and 0.423 USD/m3, respectively. In addition,
it was found that DO concentrate obtained from metallurgical wastewater can be recovered through
PA-ECF (almost 94% Pb removal). This work demonstrated that the PA-ECF technique could became
a viable process applicable in the treatment of DO concentrate containing Pb-rich for reuse.

Keywords: electrocoagulation–flotation process; perforated aluminum; feed solution; direct osmosis;
response surface methodology

1. Introduction

Currently, environmental pollution related to heavy metals increasingly concerns the
research community due to industrial development [1,2]. Improper discharge of effluents
containing hazardous heavy metals such as lead (Pb) to water bodies will pose irreparable
risks to aquatic organisms and, therefore, humans [3,4]. Improper discharge of untreated
industrial wastewater containing Pb such as paper printing, electroplating, pigments,
ammunition, petrol, metal pleating, and metallurgy is one of the leading causes of water
contamination [5,6]. As stated in the framework of the European water policy, Pb is listed
as a priority substance due to its persistence, toxicity, and bioaccumulation. The threshold
limit for the presence of Pb in water is 10 ng mL−1 according to the European Council
Directive 98/83/EC1, [7]. Lead can affect the reproductive system and many organs of
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the human body, such as the liver and kidneys, and alter brain functions. On the other
hand, prolonged exposure to Pb can cause induce sterility, abortion, and neonatal deaths.
To address this issue, finding a suitable and cost-effective way to remove Pb (or reduce it to
a legally acceptable level) from aquatic environments has become a global challenge [3,8,9].

Many technologies have been used to remove heavy metals from the aqueous medium,
such as ion exchange [8,9], adsorption [10,11], biological [12,13], electrochemical [14,15],
and membrane technology [16,17]. Among them, direct osmosis (DO) has received special
attention in recent years. DO is an emerging membrane technology in water/wastewater
treatment methods that has some merits including low energy requirements, reduced
membrane fouling, easy cleaning, and low or no additional pressure is needed in contrast
to that of pressure-driven membrane processes. Theoretically, DO membranes can afford
the reduction in heavy metal ions, which are multivalent in nature [18,19]. The draw
solution and the feed solution were separated by a semi-permeable membrane in DO
treatment. Water penetrates from the feed solution with lower concentration to draw
solution with higher concentration while the membrane rejects unwanted compounds.
The required separation flux is the difference in the osmotic pressure between draw solution
and feed solution [20,21]. Despite the good quality of the treated water in this process and
the adequate efficiency, a large volume of DO concentrate must be either discharged or
further treated to offer a safe or low-risk effluent [22,23]. Hence, with the treatment of the
DO concentrate, a knowledge gap remains. Therefore, alternative keys for treating such
solutions are required.

Regarding DO treatment, electrocoagulation–flotation (ECF) technology as a green
electrochemical process offers several merits such as low investment, design simplicity,
nonspecific method, amenability to automation, environmental versatility, and a low energy
low maintenance requirement [24–26]. The basic unit of ECF comprises an immersed
anode and cathode inside the treated solution mounted in an electrolytic chamber powered
by a direct current power supply [27]. ECF treatment can be achieved through three
main mechanisms, including (i) destabilization of suspensions, (ii) particles entrapment,
and (iii) adsorption of pollutants, once an electric current is applied through the direct
current power supply to the submerged electrodes in aqueous medium metal coagulants
released by oxidation and dissolution of the sacrificial anodes. On the other hand, reduction
occurs at the cathode, resulting in hydrogen gas released as bubbles [28–30]. Therefore,
the metal/hydroxide ions generated at the anode act as coagulants, while the precipitated
hydroxides remove pollutants by sweep coagulation [31]. The chemical reactions in ECF
reactors are as follows [32]:

Anode:
M→ Mn+ + ne− (1)

2H2O → 4H+ + O2 + 4e− (2)

Cathode:
nH2O + ne− → nOH− +

n
2

H2 (3)

Mn+ + ne− → M (4)

Bulk solution:
Mn+ + nOH− → M(OH)n (5)

Response surface methodology (RSM) consists of a powerful statistical approach
useful for analyzing modeling and optimization problems where a response is affected by
multiple independent variables [33]. In addition, RSM contains significant features over
traditional experimental methods, such as time and experimental error reduction, mathe-
matical modeling, improvement, and optimization processes [34,35]. However, the RSM
combination with central composite design (CCD) is a broadly used optimization technique
to study different processes used for water purification [36]. Because water/wastewater
treatment technologies are affected by different variables, the optimization of parameters
is necessary to achieve maximum process efficiency. Indeed, in recent years, many works
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have investigated the effect of different parameters and their interactions in process perfor-
mance using RSM [37–41]. The primary aim of this work was to fill the knowledge gap for
the treatment or reuse of DO concentrate containing Pb-rich using perforated aluminium
electrodes mounted in the ECF cell (PA-ECF). Moreover, this research focuses on optimizing
the critical factors of the ECF technology, namely current intensity and electrolysis time,
using CCD. Finally, an experiment under optimum conditions was conducted on actual
DO concentrate obtained from metallurgical wastewater to evaluate the efficacy of PA-ECF
in the real field.

2. Materials and Methods
2.1. Direct Osmosis Concentrate Characteristics

A commercial direct osmosis (DO) membrane (Aquaporin Asia Pte. Ltd., Singapore)
was used to separate the feed solution and the draw solution. DO concentrate was pro-
duced during a series of experiments. The DO concentrate possessed pH = 1.1, electrical
conductivity = 0.063 S/m, and Pb = 69.3 mg/L. Because the draw solution containing salts
invariably passed through the membrane and entered the feed solution in the DO process,
the feed solution’s amount of electrical conductivity increased. Correspondingly, electrical
conductivity of the solution tested in the present work was high. On the one hand, ECF
technique is a good means for treating wastewater containing high electrical conductivity.
On the other hand, it has a great advantage to increase process efficiency and reduce energy
consumption [42].

2.2. Perforated Aluminium–Electrocoagulation–Flotation (PA-ECF) Set Up

A schematic diagram for the DO concentrate obtained from FO process using PA-ECF
technique for treatment is shown in Figure 1. The PA-ECF runs were conducted in a 0.5 L
volume beaker equipped with a magnetic stirrer to supply uniform mixing during the
experiment. The speed of stirrer was preserved at 250 rpm. The ECF cell was provided
with four monopolar perforated aluminium electrodes arranged in parallel connection.
The dimensions of the perforated aluminium electrodes included width, length, and depth
as 65 mm, 95 mm, and 2 mm, respectively, which were placed vertically in the middle of
the cell. A perforated plastic sheet of a 1 mm thickness separates the cathode and anode
electrodes, connected to a direct current power supply (0–30 V and 0–3 A).

After each assay, the treated samples were left to settle the precipitates produced from
the ECF cell for 60 min. Then, the treated water was pumped into a beaker. The conductivity,
Pb, and pH were measured. The perforated aluminium electrodes were regularly rubbed
with abrasive paper before each ECF run and simultaneously rinsed with a mixture of acid
reagent and distilled water to prevent electrode passivation.

2.3. Analytical Methods

According to Standard Methods for the Examination of Water and Wastewater, the
amount of Pb solution was measured at 620 nm using a flame atomic absorption spectropho-
tometer (Rayleigh Analytical Instrument Corporation, WFX-130, Beijing, China) 3113 [43].
The pH of the solution was monitored using a pH meter (CONSORT C831, Hertenstraat,
Belgium), while conductivity measurements were performed using a conductivity meter
(Leybold GmbH 666222, Hürth, Germany).

The efficiency of Pb removal (R) (%) was estimated as follows [44]:

% Pb removal = ((C0 − Ct)/C0) × 100 (6)

where C0 and Ct are the initial and final Pb concentration, respectively (mg/L).
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Figure 1. Schematic of the PA-ECF technique to treat DO concentrate containing Pb-rich.

2.4. Experimental Statistical Design

One of the powerful techniques used in mathematical modeling, design, and opti-
mization of experimental conditions is the response level methodology (RSM). Compared
to conventional methods, RSM reduces the time and costs of the test and thus signifi-
cantly decreases test errors [33]. In the current work, RSM was employed in modeling
and optimizing two variables: electrolysis time, current, and their interactions, while the
response was the Pb removal efficiency. The experiments were designed and analyzed by
the software Design Expert 7 (Stat-Ease, Inc., Minneapolis, MN, USA) using the central
composite design (CCD). A set of 13 assays was codified for optimization based on two
independent variables, including current value and electrolysis time through five levels.
The domain of independent variables was controlled according to the values offered in the
literature, and after obtaining the pre-test results [44,45], the coded critical factors are listed
in Table 1. The system behavior was defined by second order polynomial Equation (7) [17]:

y (%) = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i +

k

∑
1≤i≤j

βijXiXj + ε (7)

where y denotes the response; i, j, and β0 the linear constant, the second-order, and the constant
coefficient, respectively. The regression constant, quadratic coefficient, and the interaction
coefficient are βi, βii, and βij, respectively. xi and xj are the coded independent variables.

Table 1. Experimental domain of CCD.

Independent Code Code Levels

Variables Variables −1.41 −1 0 +1 +1.41

Electrolysis time (min) A 5.85 22 61 100 116.15
Current intensity (A) B 0.09 0.5 1.5 2.5 2.91
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3. Results and Discussion
3.1. Modeling and Statistical Analysis via Central Composite Design (CCD)

The removal of contaminants from wastewater is highly dependent on the amount
of metal ions released through the applied current during the ECF treatment time. Fara-
day’s law is used as a simple relationship for an amount of electrode material dissolved.
Consequently, the two crucial parameters for optimizing the pollutants removal in the ECF
technique are the current intensity and electrolysis time. Setting them up to the optimal
level can help reduce energy consumption and thus reduce operating costs [42]. Therefore,
the CCD was used to define the effect of both individual parameters (electrolysis time and
current intensity) and their interactions with the response variable (% Pb removal). Table 2
shows a total of 13 trials of Pb removal by the ECF process along with the experimental
data vs. the data predicted by the quadratic model.

Table 2. Design matrix of experiments and results of CCD.

Runs Standard
Run No.

Experimental Matrix
Removal Efficiency (%)

Pb

A B Actual Predicted

1 12 0 0 98.90 98.2
2 13 0 0 97.51 98.2
3 11 0 0 96.4 98.2
4 5 −1.41 0 92.89 92.72
5 10 0 0 99.87 98.2
6 2 +1 −1 91.53 91.75
7 7 0 −1.41 88.45 88.13
8 3 −1 +1 95.35 95.36
9 4 +1 +1 100.00 99.92

10 6 +1.41 0 97.64 97.59
11 9 0 0 98.31 98.2
12 1 −1 −1 89.12 89.42
13 8 0 +1.41 97.99 98.08

In Table 3, the predicted values were fitted with the second-order polynomial functions,
where Υ1 is Pb removal (%), and A, B are the electrolysis time and current intensity values,
respectively. The negative sign reveals the antagonistic effects, while the positive sign
reveals the synergistic effects. As shown in Table 4, analysis of variance (ANOVA) was used
to attest to the adequacy of the model. The data illustrate a good fit between the quadratic
model and the experimental data, with a relatively high R2 of 0.96. The significant factors
were ranked according to the F-value or p-value with 95% confidence level. The larger
F-value 34.48 and the smaller ‘p’ value (<0.0001) indicate that the model is significant.
The lack of fit F-test describes the deviation of experimental data around the model.
The lack of fit would not be significant as long as the model fits in well with the data.
Table 5 shows that the lack of fit for the obtained model for Pb removal efficiency was not
statistically significant, indicating weak model noise over their signal. Moreover, the model
terms are significant only when the values of “Prob. > F” are less than 0.05. In this respect,
electrolysis time (A), the quadratic terms of electrolysis time (A2), and the quadratic terms
of current intensity (B2) have significant effects (p < 0.05), and current intensity (B) has a
very significant effect (p < 0.0001) on Pb removal efficiency.

Table 3. The quadratic models for predicting responses of DO concentrate using the PA-ECF process.

Parameter Equation for Real Variables

Υ1 (Pb removal efficiency, %) +98.20 + 1.72 × A + 3.52 × B + 0.56 × AB − 1.52 × A2 − 2.55 × B2

A: electrolysis time; B: current intensity.
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Table 4. ANOVA results of experiment data for Pb removal.

Source of Variations Sum of
Squares Df Mean

Square F-Value p-Value
Prob > F Remarks

Model 179.67 5 35.93 34.48 <0.0001 Highly
significant

A-Electrolysis time 23.73 1 23.73 22.77 0.002 significant

B-Current intensity 99.36 1 99.36 95.34 <0.0001 Highly
significant

AB 1.25 1 1.25 1.20 0.3089

A2 16.15 1 16.15 15.50 0.0056 Significant

B2 45.23 1 45.23 43.41 0.0003 Significant

Residual 7.29 7 1.04

Lack of Fit 0.29 3 0.096 0.055 0.9809 Not
significant

Pure Error 7.01 4 1.75

Cor Total 186.97 12

R2/R2
adj (%) = 0.96/0.93

Different diagnostics tests were performed to examine the model validation and the
graphical results are shown in Figure 2. Four aspects of graphical model validation are
(I) normal probability plot of residuals (Figure 2a), (II) externally studentized residuals
vs. predicted (Figure 2b), (III) externally studentized residuals vs. run number (Figure 2c),
and (IV) predicted vs. actual plots (Figure 2d). The residuals as shown in Figure 2a lie near
to the normal probability line, indicating that the model is reliable. Likewise, the plots of
residuals (Figure 2b,c) depict that the residuals lie well within the acceptable range, further
augmenting the model validation. Ultimately, it can be deduced from Figure 2d that the
actual data comparatively overlap with the simulated data, which verifies that the model
can be used for accurate predictions.

3.2. Importance of Influencing Parameters via Pareto Diagram Analysis

A Pareto diagram is a prevailing tool that describes the effect of each of the indepen-
dent variables on the response acquired as the ratio of the pure sum (SA) of each factor
divided by the total sum of squares (SST) as stated in Equation (8). The significance of
the applied current and treatment time is confirmed by the Pareto diagram illustrated in
Figure 3 [46].

Pi (%) =
SA

SST
(8)

According to the diagram, as presented in Figure 3, the electrolysis time and current
intensity had the percent contributions of 53.14% and 12.69%, respectively, with a cumula-
tive percentage of 65.83%. In conclusion, the current intensity was the crucial parameter
rather than electrolysis time for Pb removal efficiency.

3.3. Interaction of Time and Current on Pb Removal

Figure 4a,b depicted the counter and 3D response surface plots of the effect of current
and treatment time on Pb. Both the current intensity and electrolysis time are the utmost
essential parameters in the ECF since the current determines the concentration of coagulants
and the mixing. On the other hand, the electrolysis time determines the dissolution of
aluminum ions (Al3+), which strongly depends on the current value [47]. As shown,
higher current intensity and electrolysis time achieved higher Pb removal. In addition,
in agreement with Tables 3 and 4, the effect of current intensity on Pb removal is higher than
electrolysis time. At the beginning of the PA-ECF process, the Pb removal diminished (blue
region) due to a low pH of 1.5. However, the current study exhibited that the percentage
of Pb removal is desirable (90%) even at low pH if the electrolysis time is long enough
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(30 min), strictly in line with the literature [3,4]. It could be remarked that the greater the
value of current and time of treatment, the greater the rate of the Pb abatement. In the
red region on the plots, it is considered that the Pb removal reached a peak (entirely
100%) when the current increased to 2 A at 85 min of electrolysis time and pH reached
approximately 5.5, then remained virtually constant at current intensity higher than 2 A.
It is apparent that Al (III) in the form of Al (OH)3(s) is the predominant species within pH
range of 5.5–8.5 [48]. According to Faraday’s law (Equation (11)), the mass of the electrode
dissolved in the PA-ECF cell is proportional to the applied current. As is evident, at a
more elevated current, the amplified generation of gas bubbles and coagulants increased
the removal of contaminants through sedimentation or flotation [42,49]. However, since
the consumption of both energy and electrodes increases with increasing applied current,
very high current intensities are not desirable. Niazmand et al. [44] demonstrated that the
highest removal of total phenolic compounds was observed at the highest current and time.
Ait Ouaissa et al. [50] investigated the efficiency of an electrocoagulation unit with Al alloy
in the removal of Cr (VI). According to their results, almost 97% of Cr (VI) was removed at
a current density of 40 A/m2 and an initial pH of 3 to 6.
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Figure 4. Contour plot (a), and 3D response surface plot (b) of the effect of current intensity and electrolysis time on removal
efficiency of Pb.

3.4. Optimization Process

After analyzing the effect of the independent variables, a critical step is the use of the
obtained model to optimize the target variables and maximize the response and, therefore,
the Pb removal. In this context, when the independent variables were within the specified
range in Table 2, as depicted in Figure 5, the higher Pb removal was estimated equal
to 95.52%. According to the results of Table 5, the optimal conditions were estimated
equal to 77.65 min of electrolysis and 0.9 A of current. An additional experiment under
optimal conditions exhibited that the Pb removal efficiency (97.8%) and the predicted
values were close to each other, indicating the model optimization’s accuracy and validity.
According to the literature, the RSM has been used to optimize the electrocoagulation
treatment of various pollutants in recent years. For instance, Barışçı et al. [51] used the
Box–Behnken design to examine the efficiency of the electrocoagulation process. After the
optimization, they achieved lead removal (99%) at pH 5, using 26 A/m2 and 0.5 g/L of
electrolyte. Yoosefian et al. [52] reported optimization of iron–electrocoagulation treatment
for ciprofloxacin antibiotic removal by RSM and CCD. Under optimal conditions (pH 7.5,
a reaction time of 20 min, 150 A/m2, and 1.5 cm interelectrode distance, the researchers
achieved 99% CP removal. In the study of Genawi et al. [53] the researchers reported almost
100% electrocoagulation efficiency for the removal of Cr (VI) from tannery wastewater
using RSM using 130 A/m2 and pH 7.

On the other hand, Assadi et al. [8] used the Box–Behnken design for optimizing
the Pb removal from wastewater using Al–electrocoagulation treatment. The removal
approached 94% at optimal values: (pH 7.25 and 33 A/m2). Furthermore, Ano et al. [54]
analyzed nitrate removal by electrocoagulation using the Box–Behnken design under RSM.
They found that under optimal conditions (1.80 A, 33 min, and pH 8.73), the nitrate removal
was 73.8%.
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Table 5. Optimal condition and comparison between actual value and predicted value.

Parameters Electrolysis Time
(min)

Current
Intensity (A)

Removal (%)
Predict

Removal (%)
Experimental

Optimal value 77.65 0.9 97.8 95.52

3.5. Cost-Effectiveness Estimation

From an economic perspective, the mass of the sacrificed electrode and the energy
consumed are major operating cost items of the ECF process. The electrochemical process
of applying an electric current to the wastewater depends on the released different ions,
which leads to the consumption of electrodes, so it is crucial to evaluate the operating cost
of the reactor according to Equation (9) [55]:

Operation cost = α ×MAEC + β × ECONS (9)

where MAEC (kg/m3) and ECONS (kWh/m3) are electrode mass-consumed material and
energy required to remove the target contaminant, respectively; the Energy Ministry and
Markets of Iran announced the prices of 1 kWh of electricity (α) and electrode material (β)
as 0.04 USD/kWh and 1.95 USD/kg of Al in 2020, respectively.

The consumption of electrical energy (ECONS) can be estimated by Equation (10),
while the cost of electrodes is calculated by Faraday’s law, which is influenced by time and
current as Equation (11) [37]:

ECONS

(
kWh
m3

)
=

U× I× T
VL

(10)

MAEC(
kgFe
m3 ) =

I× T×MV
Z× F×VL

(11)
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U, I, T, and VL denote the voltage applied (V), current (A), electrolysis time (h),
and working volume (m3), respectively. MV is the molecular mass of Al (26.98 g/mol),
Z is the number of transferred electrons number (3), and F is the Faraday’s constant
(96,487 C/mol). Therefore, according to Equations (10) and (11), both energy and electrode
consumptions were calculated to evaluate the operating cost of the cell (Equation (9)).

Finally, the operating treatment cost was defined in all runs planned by CCD-RSM.
Figure 6 displays that the operation cost has an increasing trend for increased removal
efficiency. For almost 100% Pb removal observed in run #9, the maximum operating cost
was estimated as 0.1 USD/m3. Under the optimal operating conditions, the necessary
energy, the electrode mass, and the operating cost were equal to 0.0025 kWh/m3, 0.217 kg
Al/m3, and 0.423 USD/m3, respectively. Gonder et al. [56] estimated the total operating
cost equal to 0.3 USD/m3 using electrocoagulation-Al electrodes to remove organics, oil-
grease, and chloride under optimum conditions (pH 6, 10 A/m2, and 30 min). Bakshi
et al. [57] applied electrocoagulation for phosphate removal, and the calculated operating
cost was 0.22 USD/m3 at optimized conditions (pH 7, 11.5 V, interelectrode distance of
3 cm, 0.5 kg/m3 of salts, and 14 min of treatment). While, in another study, Bian et al. [58]
reported energy consumption between 0.378 and 0.977 kWh/m3 to treat oily bilge using
electrocoagulation, which was much higher than the value of the present study. As the
results revealed, the present study confirms previous findings.
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3.6. Treatment of Direct Osmosis Concentrate from Metallurgical Industry

The metallurgical industry is one of the major industries producing heavy metals,
especially Pb. In addition, the industry discharges considerable amounts of wastewater
into the aquatic environment, which is dangerous for human and living organisms and
leads to altering the functioning of organs. In this study, metallurgical wastewater was
used as a potential source of Pb to estimate the efficiency of the proposed process to treat
DO concentrate in the actual field.

In agreement with the synthetic solutions treated previously, a direct osmosis process
was applied to obtain DO concentrate from metallurgical wastewater. After performing
the assays, the DO concentrate had pH 3.5, contained 98.2 mg/L of Pb (as a target pollu-
tant), and the electrical conductivity was 0.041 S/m. Therefore, a perforated aluminum
electrocoagulation–flotation (PA-ECF) experiment was conducted using the optimal condi-
tions obtained in the previous section (electrolysis time of 77.65 min and current intensity
of 0.9 A). In the same vein, at the optimal point, five series of experiments were performed
under the same conditions (Figure 7), which resulted in an average of 94.2% Pb removal
from DO concentrate of the actual metallurgical wastewater. As a result, it was found
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that the PA-ECF process can be used as an economically viable solution to solve the DO
concentrate membrane challenge.
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4. Conclusions

To summarize, the ECF process using perforated aluminum electrodes (PA-ECF)
would cope with DO concentrate, a major membrane challenge, containing Pb-rich pro-
duced from the feed solution. The CCD-RSM was used successfully as a statistical tool,
which reduces the number of trials and optimizes the operating factors. According to the
Pareto analysis, the current intensity had a more significant impact on Pb removal efficiency
rather than treatment time with contributions of 53.14% and 12.69%, respectively. Under
optimal conditions (electrolysis time of 77.65 min and current intensity of 0.9 A), the Pb
removal, the energy consumed, the electrode mass-consumed material, and the operating
cost were estimated equal to 97.8%, 0.0025 kWh/m3, 0.217 kg Al/m3, and 0.423 USD/m3.
It can be concluded that modeling and optimization by CCD under RSM could lead to
satisfactory results. In addition, 94.2% Pb removal was achieved from DO concentrate of
real metallurgical wastewater through PA-ECF. Although the prospect of this study was
to examine the process on an industrial scale and to achieve reasonable results with real
operating parameters, further studies are essential to examine electrochemical degradation
pathways and mechanisms for Pb removal via GC-MS analysis.
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27. Kabdaşlı, I.; Arslan-Alaton, I.; Ölmez-Hancı, T.; Tünay, O. Electrocoagulation applications for industrial wastewaters: A critical
review. Environ. Technol. Rev. 2012, 1, 2–45. [CrossRef]
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