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Abstract: Nowadays, desalination continues to expand globally, which is one of the most effective
solutions to solve the problem of the global drinking water shortage. However, desalination is
not a fail-safe process and has many environmental and human health consequences. This paper
investigated the desalination procedure of seawater with different technologies, namely, multi-stage
flash distillation (MSF), multi-effect distillation (MED), and reverse osmosis (RO), and with various
energy sources (fossil energy, solar energy, wind energy, nuclear energy). The aim was to examine
the different desalination technologies’ effectiveness with energy sources using three assessment
methods, which were examined separately. The life cycle assessment (LCA), PESTLE, and multi-
criteria decision analysis (MCDA) methods were used to evaluate each procedure. LCA was based on
the following impact analysis and evaluation methods: ReCiPe 2016, IMPACT 2002+, and IPCC 2013
GWP 100a; PESTLE risk analysis evaluated the long-lasting impact on processes and technologies
with political, economic, social, technological, legal, and environmental factors. Additionally, MCDA
was based on the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) method
to evaluate desalination technologies. This study considered the operational phase of a plant, which
includes the necessary energy and chemical needs, which is called “gate-to-gate” analysis. Saudi
Arabia data were used for the analysis, with the base unit of 1 m3 of the water product. As the
result of this study, RO combined with renewable energy provided outstanding benefits in terms
of human health, ecosystem quality, and resources, as well as the climate change and emissions of
GHGs categories.

Keywords: life cycle assessment; PESTLE analysis; multi-criteria decision analyses; desalination;
reverse osmosis; multi-stage flash distillation; multi-effect distillation

1. Introduction
1.1. Overview of Desalination in the World

About 71% of the Earth’s surface is covered with water, but only a small part of it can
be considered as drinkable water, i.e., 2.5% of the Earth’s water. Overall, just under 0.7%
of water resources are available to people [1]. From this amount, we have to satisfy the
ever-increasing water consumption of 7.8 billion people currently living (150–400 L/person
a day [2]). In addition to the increasing water consumption, the human population is
also anticipated to increase. It is predicted that only 60% of the demanded water will
be available for consumption in 2030 [3]. The Economic Cooperation and Development
(OECD) has predicted that about 40% of the population will live in water-stressed regions
by 2050 [4]. It is hard to imagine that more than half of the humans on Earth will not have
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access to clean, drinkable water. This number may continue to drop in the coming decades
as we are increasingly exposed to our water sources. In areas where there are not enough
available freshwater sources, another solution has to be found. Among other things, the
process of desalination of seawater has been proved to be an effective alternative.

The desalination technology was first introduced on a larger scale in the Middle East
during World War II, due to the general lack of water, and is becoming more widespread as
the population increases and the drinking water stock is reduced [5,6]. Around the world,
the number of desalination plants has increased with an average rate of about 6.8% a year
since 2010, with the average annual capacity addition being about 4.6 million m3/day.
By February 2020, there were 20,971 desalination projects with 16,876 installed plants,
with the capacity of 97.2 million m3/day of freshwater production [7]. Nowadays, over
150 countries have already used desalination technologies to provide clean water for about
300 million people [8].

The desalination capacity in Saudi Arabia, the United Arab Emirates (UAE), Kuwait,
and Qatar accounts for 55% of the total global share. Desalination plants for urban water
are located throughout the world but are especially predominant in the Middle East
and North Africa. As shown in Figure 1, the Middle East and North Africa had the
largest regional desalination market in 2019, with around 45.32% of the total capacity,
followed by East Asia and the Pacific (17.52%), North America (11.34%), and Western
Europe (8.75%). The lowest regional desalination capacities were found for Southern Asia
(2.94%), Eastern Europe and Central Asia (2.26%), and sub-Saharan Africa (1.78%), where
desalination is mainly limited to small facilities for private and industrial applications [9].
Al-Jubail in Saudi Arabia is the largest desalination plant in the world, with a capacity of
1.4 million m3/day of water [10]. Desalination plants globally focused along the coast
also tend to be larger than desalination plants on the mainland. The highest desalination
capacity is where oil availability is the highest (most desalination plants use fossil fuels),
such as the US and North Africa.
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Figure 1. Number and capacity of desalination plants by region in 2019: (a) number of desalination
plants; (b) desalination capacity (million m3/day), with data from [9].

1.2. Desalination Technology

Desalination technology provides drinking water for people in places where drinking
water would otherwise be an issue. The water produced can also be used for irrigation,
such as in drought and dry areas, which can reduce the import dependency of a given
area, contribute to the local economy, and provide food supply improvements [11,12].
The desalination process has been using proven and working technologies for decades,
providing a reliable process. However, it is not a consequence-free procedure; one of these
drawbacks is discharged flow from desalination plants. Environmental impacts (EIs) of
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the desalination process are assessed based on the utilized feedwater sources, the desalina-
tion technology, and the management of the waste brine and heat generated [13,14]. The
various EIs are brine discharge, GHG emissions, toxic chemical emissions, water intake
activities, and high energy consumption. Indeed, brine discharge and high energy con-
sumption are the main and most significant impacts. The concentration of brine solutions is
1.6–2 times greater than the salinity of seawater (35 g/L), and their amount is also
huge [15–17]. The temperature of brine produced by thermal-based technologies is also
1.37–1.82 times warmer than the average seawater temperature (22 ◦C) [18–20]. High
temperature levels and salinity discharge affect marine organisms and cause biological
problems [21–24]. Moreover, the used chemicals in the desalination process can also be
returned to the sea. These are largely chlorine, antiscalants (polymeric substances such as
polyphosphates, phosphonates, and polycarbonic acids), coagulants (ferric chloride (FeCl3),
ferric sulfate [Fe2(SO4)3], aluminium chloride, and polyelectrolytes), flocculants (cationic
polymer), strong acid/base sulfuric acid (H2SO4) and hydrochloric acid (HCl), oxidizing
agents (sodium hypochlorite (NaOCl) and calcium hypochlorite [Ca(ClO)2]), reducing
agents (bisulfite (HSO3

−), foaming inhibitors, and heavy metals (Cu, Fe, Ni, Mo, Cr, Cd,
Pb, Hg, U, As) that are released into the water [17,25–27]. The substances thus introduced
can cause a change in the pH of the water and an increase in the nutrient content and
algae, which can lead to an overheating of the oxygen balance [28]. Drainage pipelines
for desalination can suck up small aquatic organisms, damaging the local ecosystem. This
can be reduced by installing a grid. Huge flue gas emissions and greenhouse gases from
desalination plants contribute to air pollution in the environment. Annual global emissions
from desalination plants are predicted to be increased by 0.4 billion tons of CO2 equivalent
by 2050 [29]. Desalination needs a high energy demand, which has significant costs. De-
salination technology requires an 8–20 times greater energy intensity than conventional
surface water treatment technology (see Table 1) [30].

Table 1. Required energy use of distinct water sources for 1 m3 of drinking water [30,31].

Water Supply Alternative Energy (kWh/m3)

Conventional treatment of surface water 0.20–0.40
Groundwater 0.48

Wastewater treatment 0.62–0.87
Wastewater reuse 1.00–2.50

Brackish water desalination 1.00–1.50
Seawater desalination 2.58–8.50

Desalination is essentially a process in which freshwater is separated from brackish
water or saltwater. To run this process, there are two types of required energy (thermal,
electricity). Desalination technology includes two major categories: thermal technology
(traditional technology) and membrane technology (modern technology). The properties
of thermal and membrane techniques are summarized in Table 2.

Table 2. Overview of desalination technologies [32].

Classification Thermal Membrane

Desalination technologies MED, MSF, MVC, TVC MF, UF, NF, MB, MD, ED, RO

Separation mechanism Phase change Diffusion

Main type of energy
requirements Thermal Electricity

Driving force Heat Pressure/Electricity

Specific energy consumption High Low
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1.2.1. Thermal Desalination Technology

The thermal process is a phase-changed method in which the feedwater is heated
under an operating temperature and pressure. Water vapor condenses as pure water,
leaving behind salts and other non-volatile substances. Thermal processes are operated
using heat and mechanical energy with a larger required amount compared to membrane
processes. Therefore, most of the operational processes with many steps reuse heat through
a sequential process of condensation and evaporation [33]. The thermal technologies
include multi-effect distillation (MED), mechanical vapor compression (MVC), multi-stage
flash distillation (MSF), and thermal vapor compression (TVC).

The theoretical operation of the MED and MSF techniques is shown in Figures 2 and 3.
In MED, the vapors of each stage condense in the next successive stage; the hot pipes
are then sprayed with seawater to evaporate the water; this process is repeated for the
next stage. A saline solution is collected at the bottom of each stage and circulated to
the next stage or delivered out of the system [34]. MED units can be arranged in several
ways, depending on the type of heat exchangers (horizontal or vertical), the direction
of flow of the brine or steam (forward, backward, parallel), etc. For energy efficiency,
steam is usually extracted from a power plant’s steam turbine or utilized as waste energy
from other industrial processes. As the primary steam does not come into direct contact
with the brine, the condensate inside the evaporator is usually circulated, and the boiler
chemicals are not spread into the pure distillate. MSF is based on heat transfer desalination
technology consisting of the evaporation and condensation of water. It is an energy-
intensive process that requires both heat and electricity. The evaporation and condensation
steps are connected in several stages so that the latent heat of evaporation is recovered
by preheating the incoming water. The principle of the process is that the saltwater is
evaporated, and the water and salt can be separated. Evaporation occurs several times
(15–20 times) in series-connected chambers and at low pressure so that the water boils at a
lower temperature [35].

Figure 4 shows the current contribution of installed desalination technologies all over
the world. The most commercially used thermal technology is MSF, with 18% of the market
share of commercial desalination plants [3,36]. It is a process applied in many places, in
which it is possible to obtain sufficiently clean drinking water; an additional advantage is
that it requires just few additives. However, corrosion is a very common phenomenon if
non-stainless steel is used. MSF is commercially operated in large-sized plants, is easy to
manage, and has a long-term operation record [33].
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1.2.2. Membrane Desalination Technology

Membrane processes are non-phase-changed procedures. The water remains in the
liquid phase, and semipermeable membranes separate the water or salt from the feedwa-
ter. The electrical power or the natural osmotic pressure gradient drives these processes.
Membrane technology includes microfiltration (MF), nanofiltration (NF), ultrafiltration
(UF), membrane bioreactors (MBs) [38], membrane distillation (MD) [39], electrodialysis
(ED) [40,41], forward osmosis (FO), and reverse osmosis (RO) [12]. MF and UF membrane
systems are not usually directly used for desalination, but their use has increased signifi-
cantly in recent years for RO pre-treatment. MF and UF systems can effectively remove
colloidal organics, turbidity, insoluble particles, viruses, or pathogens in seawater [42].
As with MF and UF, NF has been applied as a pre-treatment for desalination; however,
its filtering efficiency is greater than that of MF and UF, and it can remove very small
particles of around 0.001 microns by osmotic driving forces [43]. ED drives the ions (not
water) from the seawater through membranes to electrodes of an opposite charge with
electric energy as the driving force; ED is much more favourable for desalination of low salt
contents of about 8–10 g/L or a few thousand ppm TDS, as its cost is proportional to the
amount of carried salt through the membrane. The RO method is based on the principle of
reverse osmosis, in which the seawater is pressed through a semipermeable membrane,
and the salt remains behind the membrane. Pressure is applied to the higher-concentration
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solution so that the solvent, as opposed to osmosis, flows toward the lower-concentration
solution. As a result, this provides pure water and a salt concentrate. The advantage is that
the amount of pure water recovered and the seawater used for it is high and that it not
only filters off the salt but also other harmful substances (see Table 3) [44]. However, the
disadvantages are membrane scaling, fouling, and the requirement of external pressure
application [33]. The theoretical operation of RO is shown in Figure 5. After pre-treatment
to remove solids, the seawater is compressed by a high-pressure pump (HPP) to supply the
RO desalination unit. RO is realized in a cross-flow so that the feed stream flows parallel to
the surface of the membrane while some of the components of the mixture pass through
the membrane and leave the permeate side. The direction of feeding reduces the possibility
of concentration polarization, as the feed current washes away the filtered molecules from
the surface of the membrane [45]. The total energy consumption for desalination may be
reduced by improvement in membrane properties, and/or an additional energy recovery
system, which is commonly used to recover this hydraulic energy and transfer it to the
feed stream. This system helps to reduce the amount of energy and the size required by the
HPPs [46].
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from [47].

Among the several listed desalination technologies, the three most applied ones are
RO, MSF, and MED [36,48]. Desalination by RO accounts for 69% of the technology in the
total installed desalination capacity worldwide (65.5 million m3/day) (see Figure 4).

Many studies have been conducted comparing different desalination technologies
based on electrical/thermal/total energy consumption, technology conditions, environ-
mental impact, product quality, and product cost [49–52]. As it can be seen in Table 3,
membrane technology is optimal based on a combination of both energy consumption and
CO2 emissions. However, the unit cost of products is close to that of thermal technology
because of its higher operating and maintenance costs. Currently, conventional fossil fuels
are the energy source for 99% of the desalination process [49].
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Table 3. Comparison of desalination techniques [49–52].

Thermal Technology Membrane Technology

MSF MED MVC TVC ED RO

Water type Seawater,
Brackish

Seawater,
Brackish

Seawater,
Brackish

Seawater,
Brackish Brackish Seawater,

Brackish

Operation temperature (◦C) 90–110 70 70–100 63–70 Ambient Ambient

Typical unit size (m3/day) 50,000–70,000 5000–15,000 100–3000 10,000–30,000 2–145,000 24,000

Electrical energy consumption
(kWh/m3) 4–6 1.5–2.5 7–12 1.8–1.6 2.6–5.5 5–9

Thermal energy consumption
(KJ/kg) 190–390 230–390 none 145–390 none none

Electrical equivalent for
thermal energy (kWh/m3) 9.5–19.5 5–8.5 none 9.5–25.5 none none

Total electric equivalent
(kWh/m3) 13.5–25.5 6.5–11 7–12 11–28 2.6–5.5 5–9

Maximum value of CO2
emissions (kg CO2/m3) 24 19.2 11.5 21 5.3 8.6

Distillate quality—TDS (ppm) ~10 ~10 ~10 ~10 150–500 <500

Unit product cost (USD/m3) 0.52–1.75 0.52–1.01 2–2.6 0.827 0.6–1.05 0.52–0.56

1.2.3. Hybrid Desalination Technology

Hybrid desalination systems usually combine both thermal and membrane desalina-
tion processes with at least one additional process, the latter used to pre-treat feedwater
prior to desalination, to treat the brine prior to its management, and/or to produce energy,
e.g., FO-NF, ED-RO, RO-MD, FO-ED, RO-MSF, RO-MED, or RO-ED. The deployment of
RO-MSF and RO-MED in power plants and desalination in Ras Al-Khair in Saudi Arabia,
Fujairah I and II in the UAE, and Az-Zour in Kuwait shows the application of hybrid
systems on a large scale [53]. The simple hybrid system RO-MSF has been applied to new
commercial desalination plants [54]. The hybrid system has been regarded as an economic
alternative for independent systems. It has the ability to reduce stress and pressure on
energy consumption, scaling, and fouling, as well as the cost of desalinated water through
improved recovery rates and the overall quality of the water [53,55].

Desalination requires a high amount of energy which is usually provided by fossil
fuels. Using renewable energy (RE) sources to operate desalination technologies is a good
alternative to decrease the climate impacts of desalination and to produce freshwater in
remote regions with severe water scarcity and an unfavorable or impracticable connection
to the public electrical grid. Most installed solar, geothermal, and wind or hybrid so-
lar/wind desalination plants have small capacities. Heat or electricity controls membrane
and distillation processes, while RE systems generate mechanical energy [50]. Among
the renewable energies, solar energy is the most popular and widely used in the world.
The reason is that solar energy is available free in the natural form of heat which can be
used directly to desalinate and in even greater quantities. It is the most plentiful source
available for the Earth, and the cleanest. Arid areas often have a lot of potential for solar
energy. Desalination using solar energy is the process in which salt is separated from
saltwater (brackish water or saltwater) with the help of solar energy [56]. Solar desalination
involves evaporation and condensation. Modern technologies allow both the light and
heat of the sun to be employed for energy generation. The main ways to use solar energy
directly are by converting solar energy into heat (photothermal—a simple thermal solar
collector) or electricity (photovoltaic (PV)/solar cells) using a device (collector, solar cells).
The distribution of renewable energy with desalination technology is shown in Figure 6.
PV-RO is the most suitable option for desalination.
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Figure 6. Desalination techniques fed by renewable energy sources in 2017, data from [50].

As shown in Tables 3 and 4, renewable energy desalination technology is costly com-
pared to conventional desalination technology. Despite the relatively low operating and
maintenance costs, the required capital of renewable energy systems is high; consequently,
the produced water expense is high [54]. However, with the rapid development of re-
newable energy technologies, it is expected that the cost will be reduced, and the water
production cost will eventually become lower.

Table 4. Energy consumption and water production cost of renewable energy (RE) desalination [52].

RE Desalination Process Typical Capacity
(m3/day)

Energy Demand
(kWhe/m3)

Water Production Cost
(USD/m3)

Solar still <100 Solar passive 1.3–6.5

Solar MEH 1–100 Thermal 29.6
Electrical 1.5 2.6–6.5

Solar MD 0.15–10 45–59 10.5–19.5

Solar pond/MED 20,000–200,000 Thermal 12.4–24.1
Electrical 2–3 0.71–0.89

Solar pond/RO 20,000–200,000 Seawater 4–6
Brackish water 1.5–4 0.66–0.77

Solar CSP/MED >5000 Thermal 12.4–24.1
Electrical 2–3 2.4–2.8

Solar PV/RO <100 Seawater 4–6
Brackish water 1.5–4

11.7–15.6
6.5–9.1

Solar PV/EDR <100 1.5–4 10.4–11.7

Wind/RO 50–2000 Seawater 4–6
Brackish water 1.5–4

6.6–9 small capacity
1.95–5.2 for 1000 m3/d

Wind/MVC <100 7–12 5.2–7.8

Geothermal/MED 80 Thermal 12.4–24.1
Electrical 2–3 2–2.8

2. Materials and Methods
2.1. Life Cycle Analysis (LCA)
2.1.1. Goal and Scope

This study compared the three most commonly used desalination processes (MSF,
MED, RO) in terms of environmental impacts. Then, it examined how the use of different
renewable energy sources and nuclear energy affects the results. This study only considered
the operational phase of a plant, which includes the necessary energy and chemical needs,
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which is called “gate-to-gate” analysis. Irrespective of the type of plant, the operational
phase is responsible for a significant part (85–95%) of the environmental impact. Data from
Saudi Arabia were used for the analysis, with the base unit of 1 m3 of the water product.
The system boundary for each desalination plant is shown in Figure 7.
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2.1.2. Inventory Analysis

This study did not include piping systems, pumps, water tanks, and additional units.
The emissions from material transportation and construction were also not considered in
this study due to data deficiencies and their insignificant impacts [58]. The investment
and the plant required for the transport costs and at the end of the life cycle management
of waste materials were investigated. The input and output data were collected from
an existing study [58] and are listed in Table 5, in which each parameter belongs to the
production of 1 m3 of drinking water. The data were based on a report of the Federal
Ministry for Environment, Nature Conservation and Nuclear Safety, Germany, in 2007 [58].

2.1.3. Life Cycle Impact Assessment (LCIA)

In the LCIA phase, life cycle inventory data were converted into potential impacts for
the product in a quantitative figure by means of characterization factors, based on SimaPro
Life Cycle Analysis software version 9.1, which is registered trademark of PRé Sustainability
B.V in Netherlands. The following methods of impact analysis and evaluation: IMPACT
2002+ V2.14, ReCiPe 2016 Endpoint (H) V1.02, and IPCC 2013 GWP 100a V1.03, were used
in this study.

The IMPACT 2002+ methodology combines the midpoint and damage (or endpoint)
approaches and links all types of life cycle inventory results via 14 midpoint categories to
4 damage categories (see Figure 8). It allocates these midpoint categories to one or more
damage categories and represents changes in the quality of the environment. However,
it has some limitations. For instance, several impact categories are not totally considered,
such as impacts on the marine environment, noise, ecotoxicity, and human toxicity of
metals [59]. The unit of human health damage is DALY (disability-adjusted life-years), i.e.,
it expresses a number of years of fully healthy life lost [60]. The ecosystem quality indicator
is expressed in potentially disappeared fraction (PDF)*m2*year, which is the percentage of
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species that have become extinct in each area and time period due to environmental loads.
The resources indicator is expressed as the surplus energy needed for mineral extraction
and non-renewable energy. The climate change indicator is represented by kg CO2eq
emission into the air. Normalization makes it easier to interpret the results by comparing
each category of the graph with the same units. It also provides an opportunity to discuss
the consequences of weighting. It provides an estimate of the magnitude of the weighting
factors required to differentiate between different categories. Normalization is performed
by dividing the effect (for damage categories) by the appropriate normalization factors
(shown in Table 6), which represents the total impact of the specific category divided by the
total European or world population. The total impact of the specific category is calculated
by summing the products between all European emissions, resource consumption, and the
respective damage factors [59]. Table 6 provides an overview of the normalization factors
for the four damage categories for Western Europe, which were identified based on the
CML impact assessment method for European emissions, referring to the year 2000 [61].

Table 5. Typical desalination plant inventory data for the production of 1 m3 of drinking water [58].

MSF MED RO Unit

Input

Seawater 10 9 3 m3

Heat Energy 290 267.5 - MJ

Electric Energy 4 2 4 kWh

Disinfectant Chlorine 20.5 18.5 3.5 g

Antiscalant
Phosphoric acid - 27 6 g

Sulfuric acid 20 - 195 g

Chlorine removal Sodium bisulfite - 18 9 g

Antifoam Propylene glycol 1 0.9 - g

Coagulant
Aluminum chloride - - 6.75 g

Ferric chloride - - 53.7 g

Flocculant Polyacrylamide - - 6.3 g

Mineral
supplementation Calcium hydroxide 0.5 0.5 0.5 g

Output

Chlorine 0.7 0.7 0.7 g

Phosphoric acid - 10 - g

Sulfuric acid 8 - 6 g

Copper (from corrosion of structural materials) 0.03 20 - mg

Propylene glycol 0.09 0.09 - g

Sodium chloride 45 45 45 kg

Waste heat 73.44 114.24 - MJ

Table 6. Normalization factors for the four damage categories for Western Europe version 1.0 [59].

Damage Categories Normalization Factors Unit

Human health 0.0077 DALY/person/year
Ecosystem quality 4650 PDF*m2*year/person/year

Climate change 9950 kg CO2/person/year
Resources 152,000 MJ/person/year
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ReCiPe provides harmonized characterization factors at 18 midpoints and 3 endpoints
(effect on human health, biodiversity, resource scarcity) that are representative of the
global scale according to three perspectives: individualist, hierarchist, and egalitarian [62].
ReCiPe is considered as the broadest set of midpoint impact categories, using global
impact mechanisms wherever possible. Unlike other methods (Eco-Indicator 99, EPS,
LIME, IMPACT 2002+), the ReCiPe method does not include the possible effects of future
extractions but assumes that these effects have been included in the inventory analysis.
ReCiPe 2016 is a further development of ReCiPe 2008, with its predecessors CML 2000 and
Eco-Indicator 99. Figure 9 shows a scheme of the ReCiPe 2016 framework.
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The IPCC 2013 GWP 100a method is an environmental assessment method which
expresses the emissions of GHGs generated, in kilograms of CO2 equivalent, over a time
horizon of 100 years. The process is much simpler than Eco-Indicator 99, as it only tests one
impact category, meaning there is no possible normalization or weighting. It characterizes
different gas emissions according to their global warming potential (GWP). Aggregation
of different emissions in the climate change impact category is one of the most common
methods in LCIA. The GHG emission characterization values are based on the global
warming potentials published by the IPCC (Intergovernmental Panel on Climate Change).
GWP is proportional to the carbon dioxide effect. GWP is an index for estimating the
relative global warming contribution that shows the effect of atmospheric emissions per
kilogram of a given greenhouse gas compared to the effect of one kilogram of carbon
dioxide emissions [64].

2.2. PESTLE Risk Analysis

PESTLE analysis includes political, economic, social, technological, legal, and en-
vironmental factors that could have a direct or long-lasting impact on processes and
technologies [65]. PESTLE identifies opportunities and external risks which may be too
abstract but should be considered and not ignored. These factors can vary between dif-
ferent regions and countries, but there can be many socio-cultural differences within a
country as well. PESTLE is most effective when it is applied from different perspectives.
Carrying out a PESTLE analysis should start with collecting the information to answer
the following questions: how the government might influence the economy or a certain
industry and legal drivers locally, nationally, or internationally (political and legal); how
the economy performs (economic); how to affect the community socially (social); how
innovations in technology may impact operations and activities (technological); and how
to influence the surrounding environment (environmental). PESTLE analysis should be
conducted regularly or on an ongoing basis for greater effectiveness. This tool provides the
framework for the critical generality evaluation of desalination management [66,67]. How-
ever, the previously published literature is only concerned with the economic, social, and
environmental factors, or it does not fully analyze the six factors of PESTLE. In this article,
desalination technologies were evaluated based on all the factors of PESTLE: political-legal,
economic, social, technological, and environmental, from the results of an assessment of
environmental and social aspects of the LCA methodology and the documents collected.

2.3. Multi-Criteria Decision Analysis (MCDA)

Multi-criteria decision analysis (MCDA) is an aid tool for this process of decision
making, which is able to relatively easily evaluate multiple (conflicting) criteria. Several
MCDA approaches have been suggested in order to choose the optimal options, such as
MAXMIN, MAXMAX, SAW, AHP, TOPSIS, SMART, and ELECTRE [68]. TOPSIS (Technique
for Order Preference by Similarity to the Ideal Solution) is simple, comprehensive, and
capable of measuring the relative performance of each alternative from best to worst.
TOPSIS’s basic concept is selecting the alternative according to the standard closest to the
ideal solution [69]. The classical TOPSIS method relies on numerical data from decision
makers, which helps to construct problems and conduct analysis, comparison, and ranking
of the alternatives. In this article, MCDA of desalination technologies based on PESTLE
analysis with the classical TOPSIS method for a single decision maker was used; thus, the
input values must be numerical, in accordance with the following steps [69]:

1. Construction of the normalized decision matrix from decision matrix X = (xij), where
xij is the value of i-alternative with respect to j-criterion, and nij is a normalized value.

nij =
xij√

∑m
i=1 x2

ij

, for i = 1, 2, . . . m; j = 1, 2, . . . n (1)
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2. Construction of the weighted normalized decision matrix, where vij is a weighted
normalized value.

vij = wjnij, for i = 1, 2, . . . m; j = 1, 2, . . . n and ∑n
j=1 wj = 1 (2)

3. Determination of the positive (A+) and negative ideal solutions (A−):

A+ = (v+1 , v+2 , . . . , v+n
)

(3)

where v+1 , v+2 , v+n are the maximum value of the benefit criteria and the minimum value of
the cost criteria;

A− = (v−1 , v−2 , . . . , v−n
)

(4)

where v−1 , v−2 , v−n are the maximum value of the cost criteria and the minimum value of
the benefit criteria.

4. Calculation of the separation measure:

d+i =

√
∑n

j=1

(
vij − v+j

)2
, for i = 1, 2, . . . m (5)

d−i =

√
∑n

j=1

(
vij − v−j

)2
, for i = 1, 2, . . . m (6)

5. Calculation of the relative closeness to the positive ideal solution:

Ri =
d−i

d−i + d+i
, for i = 1, 2, . . . m (7)

where 0 ≤ Ri ≤ 1.
6. Rank the preference order by selecting the closest to 1 out of the alternatives.

3. Results and Discussion
3.1. Political and Legal Aspects

Political and legal aspects determine the extent to which the government may manip-
ulate a certain industry or the economy. Through tax policies, fiscal policy, trade tariffs,
quotas, resources, import–export laws, etc., the government may promote or inhibit the
development of industries [65]. The expansion of desalination is shown to be geograph-
ically uneven. The leading countries in terms of total installed desalination capacity are
the Arabian Gulf countries, such as Saudi Arabia and the UAE. How are the Arabian
Gulf countries leading in terms of thermal desalination? In addition to the geographical
advantages of the high salinity and temperature of seawater, abundant cheap fuel resources
and political policies also greatly contribute to promoting the development of desalination
plants. The strategy of the UAE government regarding water security is closely linked
to desalination. Therefore, desalination operations’ continuity is ensured. In September
2017, the Ministry of Energy and Infrastructure revealed the UAE Water Security Strategy
2036, which will provide future water needs more sustainably by expanding the use of
membrane desalination technologies and the use of renewable energy sources, extending
the use of treated wastewater, encouraging water harvesting, and diminishing groundwater
extraction [70]. This strategy that promotes the use of solar energy is gaining popularity.
Moreover, the UAE government encourages private participation in the development of the
country’s infrastructure. In May 2019, the first large-scale solar-powered RO desalination
plant, which is worth more than USD 700 million, with the capacity of 909,000 m3/d
of seawater, was built at Taweelah, Abu Dhabi, by the Spanish group Abengoa and the
Chinese EPC contractor Sepco III. It can be seen that solar-powered RO desalination will
become a driving force in the region’s freshwater supplies in the years to come. The UAE
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aims to boost the share of clean energy in its total energy to 50% by 2050 and decarbonize
the electricity sector by 70%, as part of the Energy Strategy 2050 plan.

In Europe, several countries have used desalination of seawater such as Spain, Bel-
gium, and the Netherlands. Spain built Europe’s first desalination plant about 40 years ago
and is the leading country of desalination technology in the Western world. The Spanish
government saw an opportunity for desalination development, due to its geographical
and climatological location. The government created the Actions for the Management and
Use of Water (A.G.U.A.) program during the eighth parliamentary term from 2004 to 2008,
which was intended to reorient the water policy to meet new needs in the Mediterranean
including the construction, expansion, and renovation of a significant number of desali-
nation plants [71]. In addition, the Spanish government also obtained an agreement with
the European Commission for the construction of desalination plants, claiming that it was
an environmental investment, of which up to 80% of the investment was received from
European Cohesion Funds [72]. Article 13 of the Consolidated Text of the Water Act (TRLA
in Spanish), which was approved by Royal Legislative Decree 1/2001 July 20th, concerns
the laws governing desalination. Both public desalination operations and private initiatives
are allowed, and both sections are treated equally as the product of private parties as well
as public parties can be used to supply residential buildings, holiday resorts, etc., that lack
sufficient resources, and irrigation [71].

3.2. Economic Aspects

Desalination water product costs depend on the implemented technology, types of
material utilized, price of energy within the local area, plant size, and feedwater quality. It
is well known that desalination is an energy-intensive process; consequently, the energy
cost reserves a significant proportion, up to 30%, of the total cost. Thermal desalination
technologies are about 1.53 times more capital-intensive than RO, and the total capital cost
of MSF plants is USD 2 million/million liters per day, while that of MED and RO plants is
USD 1.5 million and USD 1.3 million, respectively. The operation and maintenance costs
of desalination plants by technology are significantly different: the total annual recurrent
costs of RO, MSF, and MED plants are about USD 0.2, 0.1, and 0.06 million/million liters
per day, respectively [8]. The capital expenditure (CAPEX) and operational expenditure
(OPEX) of typical desalination plants are shown in Figures 10 and 11. Compared to the
CAPEX of thermal plants (Figure 10a), the construction cost share of total capital costs of RO
plants is 17.5% lower, but other costs are higher, such as engineering, project development,
financing, and contingency costs. Most of the modern thermal desalination plants in
the world are much larger in scale than those of RO technology (see Table 3), meaning
construction costs are also higher. The percentage of energy costs in total operational costs
of RO technology outperforms that of thermal technology, decreasing from 66% to 41%,
(Figure 11). While variable costs (thermal, electrical energy, chemicals, membrane) as a
share of the total recurrent costs tend to be higher for thermal technology, the fixed costs
(labor, maintenance, other) of RO technology are higher. The cost of desalination is generally
associated with technology improvements and the ability to recover more energy from the
desalination process.

Additionally, the economic factors are affected by the use of chemicals, market share,
research and development investment, the impact of water on the local/national economy,
and national and regional political plans [66]. The increasing water scarcity and the growing
water demand are expected to increase the demand for desalination globally. The world
desalination market was valued at USD 17.7 billion in 2020 and is expected to increase
to USD 32.1 billion by 2027. The global desalination industry is predicted to grow with a
strong compound annual growth rate (CAGR) of 9.51% from 2020 to 2027 [10].
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3.3. Social Aspects

The social aspects consider all factors that affect the market and community socially,
including the advantages and disadvantages to the people of the areas in which desalination
plants are operated [65]. The social aspect of desalination was investigated with the
IMPACT 2002+ V2.14 and ReCiPe 2016 Endpoint (H) V1.02 methods. The damage category
is human health, and the impact categories are listed in Figures 8 and 9 and are described
in more detail in Section 2.1.3.

Figure 12 shows a comparison of the base case of the three technologies (RO, MSF,
MED) based on the human health damage category of the ReCiPe 2016 and IMPACT 2002+
methods. Table 7 contains the exact values for the human health damage category in the
corresponding unit.

Table 7. Results for the human health category for the three technologies based on the ReCiPe 2016
and IMPACT 2002+ methods.

Method RO MSF MED Unit

IMPACT 2002+ 2.98 × 10−6 1.43 × 10−5 9.86 × 10−6 DALY
ReCiPe 2016 9.05 × 10−6 3.89 × 10−5 3.35 × 10−5 DALY
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Figure 12 presents an observation of the human health damage due to desalination. It
shows that RO is the least harmful to human health, with thermal technologies damaging
it 3.3–4.8 times more. The results from the two evaluated methods are quite similar: the
best is RO, followed by MED, and MSF is in last place. However, the IMPACT 2002+
and ReCiPe 2016 midpoint impact categories and damage pathways are different (see
Figures 8 and 9), meaning these values are not the same either. As the analysis was based
on 1 m3 of drinking water, it returned rather small values for the human health damage
category, but if it is applied to an average capacity plant, which is on the order of 10,000 or
even 100,000 m3, it returns a value close to 1 for human health. This means that this would
correspond to about 1 year spent in illness. It is important to emphasize that this should
not be understood as an individual person but rather considered for the whole population.

We compared these results with the results of Meisam Tabatabaei et al. [73] on LCA for
medical mask (surgical and N95 masks) production in China in 2020 based on the IMPACT
2002+ method using SimaPro 9.0.0 software. The estimation of the human health impact
of annual medical mask production using fossil-based plastics was 2.03 × 103 DALY. The
equivalent health impact for 1 kg of medical masks was 3.1 × 10−6 DALY, which is about
0.96, 4.6, and 3.2 times lower than producing 1 m3 of water with the RO, MSF, and MED
desalination technologies, respectively. It is worth mentioning that Meisam Tabatabaei et al.
considered only raw materials of the production, and the packaging and transportation of
masks were not taken into consideration.

Next, the technologies that have caused a shift in traditional energy sources to different
energy sources were compared one by one. By default, for thermal technologies, thermal
energy was provided by an oil-based thermal power plant, and in all three cases, electricity
was covered by the Saudi Arabian electricity mix at the starting points. The comparison
with cases where energy needs are covered by nuclear, solar, and wind energy, and for the
two distillation methods, also prepares a case where the oil-based thermal power plant
is replaced by a natural gas base, which is also typical of Saudi Arabia. Gas-fired power
plants are also typical of Saudi Arabia, the proportion of the two types is close to 50–50%,
and a desalination plant connected to a gas-fired power plant is also located in the country.
The study of nuclear desalination will also play an important role, as Saudi Arabia is
currently planning to build two large nuclear reactors that are projected to provide 15% of
the current energy needs by 2040. In addition, there are plans to build additional smaller
reactors specifically for desalination and to build more than 40 GWe of solar capacity. In
addition to solar energy, there are also plenty of opportunities to harness wind energy, as
the country has vast land areas. In terms of the nuclear reactor, a pressurized water reactor
has provided the energy needs. For this type of reactor, it makes up almost 70% of the
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reactors operating worldwide, and in the case of nuclear desalination, it is also the most
common one that is used. In the case of solar cells, single-crystal and polycrystalline-Si
panels were compared; however, a significant difference was not found in the results.
Analysis with a polycrystalline-Si solar cell was performed. For thermal processes, two
different types of solar collectors were available in the software database (flat plate collector
and vacuum tube solar collector) to provide thermal energy. In terms of wind farms, the
comparison examined both onshore and offshore wind farms, as their implementation can
take place in parallel.

Figures 13 and 14 describe the comparison of desalination technologies used with
different energy sources with the human health category based on the ReCiPe 2016 and
IMPACT 2002+ methods, and the detailed results are described in Tables 8 and 9. All in all,
in the case of the two distillation processes, switching to a gas-fired and renewable resource
power plant already significantly reduces human damage. Wind energy has slightly better
results than solar energy. Replacing basic energy sources with renewable or nuclear energy
sources significantly reduces the impact on human health. For the MSF technology, the
impact reduction is the greatest, e.g., based on the ReCiPe 2016 method, the impact on
human health is reduced by 99.72% with onshore wind energy, 99.68% with offshore wind
energy, 97.44% with solar energy, 97.16% with nuclear energy, and 48.32% with natural gas.
Following the MSF technology is MED, and, finally, RO has the least impact on human
health when replacing the used energy source. With RO, there is no big difference when
using a combination of wind or solar energy, where it only reduces the impact by about
93%, and nuclear energy decreases it by 92.12%.
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Table 8. Summary of impact assessment results for the human health category for the three technologies used with different
energy sources based on the ReCiPe 2016 method.

Basic Case Natural Gas Nuclear
Energy Solar Energy Wind Energy,

Onshore
Wind Energy,

Offshore Unit

MSF 3.87 × 10−5 2.00 × 10−5 1.10 × 10−6 9.89 × 10−7 1.10 × 10−7 1.23 × 10−7 DALY
MED 3.24 × 10−5 1.51 × 10−5 1.09 × 10−6 1.05 × 10−6 2.46 × 10−7 2.35 × 10−7 DALY
RO 8.66 × 10−6 0 6.82 × 10−7 5.58 × 10−7 5.59 × 10−7 5.59 × 10−7 DALY

Table 9. Summary of impact assessment results for the human health category for the three technologies used with different
energy sources based on the IMPACT 2002+ method.

Basic Case Natural Gas Nuclear
Energy Solar Energy Wind Energy,

Onshore
Wind Energy,

Offshore Unit

MSF 1.13 × 10−5 4.80 × 10−6 6.62 × 10−7 5.03 × 10−7 5.01 × 10−8 5.26 × 10−8 DALY
MED 9.94 × 10−6 3.38 × 10−6 6.41 × 10−7 5.26 × 10−7 1.11 × 10−7 1.08 × 10−7 DALY
RO 2.86 × 10−6 0 3.21 × 10−7 2.44 × 10−7 2.45 × 10−7 2.44 × 10−7 DALY

3.4. Technological Aspects

The technological factors concerning innovations in technology are transforming the
operations of the industry and the market. Some categories that were considered for
technological evaluation such as technical features of the desalination plant, typical unit
size, energy consumption, CO2 emissions, distillate quality, and unit product cost are listed
in Table 3.

In the future, the next generation of RO and MED desalination systems will be fo-
cused on improving their performance; more efficient desalination membranes, innovative
thermal membranes or hybrid desalination technologies, and improvements have been an-
nounced, such as graphene membranes [74] and nanocomposite membranes, e.g., cellulose
nanofibers (CNFs) [75,76] and cellulose nanocrystals (CNC) [77]. The low energy consump-
tion is also an advantage compared to other systems. However, the trend of desalination
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technology development is energy saving, processes, and equipment optimizing, while
the current limitations of thermal desalination processes are reducing, the hybridization
of technologies, and the combination of renewable energies [3]. Some solutions to the
brine discharge problem have been considered, such as near-field and far-field modeling
approaches, dilution with cooling water from power plants, environmental monitoring
plans (EMPs), zero liquid discharge (ZLD), resource recovery (brine mining), and minimal
liquid discharge (MLD). Regarding energy consumption problems, co-generation power–
desalination plants, efficient energy usage plants, and energy recovery devices will be a
good solution [17]. The use of waste heat (WH) is one of the strategies for the optimization
of conventional desalination technologies. It improves productivity and efficiency in the
thermal desalination process. The combination of waste heat and/or renewable energy
sources generates economic benefits and a healthy environment by eliminating or reducing
the input of fuel and energy. This will lead to a reduction in desalination production costs
and GHG emissions associated with fuel consumption.

Environmentally friendly “green” antiscalants and corrosion inhibitors are capable
alternative chemicals to use in desalination. These substances are phosphorus free and
biodegradable, such as polyaspartate (PASP), polyepoxysuccinate (PESA), polyacrylic acid
sodium salt (PAAS), and copolymers of maleic and acrylic acid (MA/AA) [78].

3.5. Environmental Aspects

Table 10 describes a summary of the impact assessment results for three desalination
technologies: MSF, MED, and RO, using SimaPro software with the IMPACT 2002+, ReCiPe
2016, and IPPC 2013 methods. In the case of the ReCiPe 2016 method, the quality of the
ecosystem provides the number of species lost in one year. The reduction in resources is
expressed in US dollars. A significant part of the reduction in resources is also determined
by the energy used, as shown by the individual prices; in the case of the two thermal
technologies, it is about USD 1.79–2.20, but in the case of RO—where no heating is required—
it is only about USD 0.61. In the case of IMPACT 2002+, the numbers for the ecosystem
are already much higher, which shows us how many species we can lose per square meter
in one year. In this case, too, this large-scale degradation is largely due to the use of non-
renewable energy sources, which is more significant for the two thermal technologies due
to their much higher energy requirements. This trend can also be observed in the results
on climate change and resources, correlated with the energy needs of the technologies. In
the case of the IPCC 2013 method, the time for monitoring the effects is set at 100 years.
In terms of the results, this method returns almost the same values as IMPACT 2002+ for
the climate change category. In this case, the main source is the energy demand of the
processes, and the values increase proportionally. Compared with previously published
results (Table 3), the results of this paper have a difference in the absolute value of CO2
emissions of the studied technologies, but they are similar in arrangement. MSF emits the
most CO2, three–four times higher than that emitted by RO, followed by MED, two–three
times higher than that emitted by RO. Overall, RO has the least pollution, and the two
thermal technologies return nearly similar results.

Tables 11–13 show the comparison of the desalination technologies used with different
energy sources: fossil energy, solar energy, wind energy, and nuclear energy. All in all,
in the case of the two distillation processes, switching to a gas-fired power plant already
reduces pollution. There is not much difference between climate change and resource
depletion, but the improvement in ecosystem quality is already more significant.

Looking at the results, in the RO case, it can be said that drastic reductions can already
be achieved by using nuclear energy instead of fossil fuels. In general, these results are
already comparable to renewables. This case returns slightly higher values for ecosystem
quality than renewables but is significantly more environmentally friendly than fossil fuels.
However, in the cases of MSF and MED, nuclear energy is only beneficial in terms of the
environment, with ecosystem quality being almost equal, and in terms of resources, it is
much worse than fossil fuel. In terms of carbon dioxide emissions, the difference compared
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to renewables is even smaller, and in some cases, it is fully comparable with solar energy.
An exception, in this case, is the resource results of IMPACT 2002+, which are almost
doubled compared to the fossil fuel cases. This increase is due to the fact that the rate of
resource reduction in this method is given in MJ, which gives the amount of energy needed
to produce energy and extract the energy source. However, with the ReCiPe 2016 method,
the rate of reduction in energy resources is given in US dollars, and thus operating with
nuclear power proves to be cheaper than fossil fuels.

With regard to renewable energy sources, it can also be said, in general, that there is a
huge improvement in all methods and damage categories. Wind energy returned slightly
better results than solar energy. Within wind energy, there is no significant difference
between onshore and offshore power plants in either case. Therefore, in terms of the
operational phase, and apart from other conditions, wind energy can be said to be the most
environmentally friendly. The combination of wind energy and MSF technology obtains the
best improvement, where it can reduce 99.7% of CO2 emissions into the environment, from
16.371 kg CO2 eq in the case of the basic case to 0.038 kg CO2 eq if replaced by onshore wind
energy. This combination is followed by MED technology, which reduces CO2 emissions
into the environment by 99.5%, and, finally, RO, with only a 96.5% reduction. Thermal
desalination requires a much larger amount of energy than membrane technology, meaning
that if that energy is replaced with renewable energy, the environmental, ecosystem, and
resource impact will be even greater.

Table 10. Summary of impact assessment results for the three technologies based on the IMPACT 2002+, ReCiPe 2016, and
IPCC 2013 methods.

Method Damage/Impact Category Unit RO MSF MED

IMPACT 2002+
Ecosystem quality PDF*m2*yr 1 0.228 0.816 0.706

Climate change kg CO2 eq 4.174 16.123 13.196
Resources MJ primary 67.289 228.518 184.145

ReCiPe 2016
Ecosystems Species*yr 1.88 × 10−8 8.77 × 10−8 7.37 × 10−8

Resources USD2013 0.610 2.204 1.788

IPCC 2013 IPCC GWP 100a kg CO2 eq 4.279 16.371 13.387
1 Asterisk “*” means a multiplication operator.

Table 11. Summary of impact assessment results for RO used with different energy sources.

Method Damage
Category Unit Basic Case Nuclear

Energy
Solar

Energy

Wind
Energy,

Onshore

Wind
Energy,

Offshore

IMPACT
2002+

Ecosystem
quality PDF*m2*yr 1 0.228 0.072 0.063 0.063 0.063

Climate
change kg CO2 eq 4.174 0.172 0.137 0.138 0.138

Resources MJ primary 67.289 56.394 2.952 2.967 2.962

ReCiPe 2016
Ecosystems Species*yr 1.88 × 10−8 1.31 × 10−9 9.96 × 10−10 9.99 × 10−10 9.98 × 10−10

Resources USD2013 0.610 0.022 0.019 0.019 0.019

IPCC 2013 IPCC
GWP 100a kg CO2 eq 4.279 0.185 0.149 0.149 0.149

1 Asterisk “*” means a multiplication operator.
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Table 12. Summary of impact assessment results for MSF used with different energy sources.

Method Damage
Category Unit Basic Case Natural

Gas
Nuclear
Energy

Solar
Energy

Wind
Energy,

Onshore

Wind
Energy,

Offshore

IMPACT
2002+

Ecosystem
quality PDF*m2*yr 1 0.816 0.236 0.195 0.022 0.004 0.004

Climate
change kg CO2 eq 16.123 13.778 0.767 0.379 0.035 0.045

Resources MJ primary 228.518 248.792 1129.494 5.472 0.742 0.858

ReCiPe
2016

Ecosystems Species*yr 8.77 × 10−8 5.12 × 10−8 6.86 × 10−9 1.70 × 10−9 2.04 × 10−10 2.37 × 10−10

Resources USD2013 2.204 2.035 0.064 0.018 0.005 0.006

IPCC
2013

IPCC
GWP 100a kg CO2 eq 16.371 14.614 0.801 0.409 0.038 0.048

1 Asterisk “*” means a multiplication operator.

Table 13. Summary of impact assessment results for MED used with different energy sources.

Method Damage
Category Unit Basic Case Natural

Gas
Nuclear
Energy

Solar
Energy

Wind
Energy,

Onshore

Wind
Energy,

Offshore

IMPACT
2002+

Ecosystem
quality PDF*m2*yr 1 0.706 0.171 0.199 0.042 0.026 0.026

Climate
change kg CO2 eq 13.196 11.034 0.722 0.379 0.071 0.062

Resources MJ primary 184.145 202.847 1020.431 5.581 1.319 1.214

ReCiPe
2016

Ecosystems Species*yr 7.37 × 10−8 4.00 × 10−8 6.51 × 10−9 1.87 × 10−9 5.23 × 10−10 4.92 × 10−10

Resources USD2013 1.788 1.632 0.062 0.021 0.009 0.008

IPCC
2013

IPCC GWP
100a kg CO2 eq 13.387 11.767 0.755 0.408 0.075 0.066

1 Asterisk “ * “ means a multiplication operator.

3.6. MCDA Results

The investigated PESTLE factors were used as numerical input for MCDA, in which
the social and environmental factors were derived from the impact assessment results
based on the IMPACT 2002+ method (see Table 14); political and legal, technological,
and economic factors were evaluated by their TOPSIS score, where a higher score is
better (Table 15). The political and legal review demonstrates that, considering the de-
velopment of desalination technology is the same, there is not much difference between
countries in the Western Europe region. The assessment of the economical factor was
based on previously published unit product costs (see Table 3). The price of 1 m3 of clean
water from the RO technology is the cheapest (0.52–0.56 USD/m3), followed by MED
(0.52–1.01 USD/m3) and, finally, MSF (0.52–1.75 USD/m3). The future trend of the RO
technology was evaluated to have potential, meaning RO is given a higher score than the
other two technologies in the technology factor. The MCDA results of the PESTLE factors
with TOPSIS score was described in Figure 15.

Table 14. Summary of impact assessment results, with the weighting as a single score, using the
IMPACT 2002+ method.

Damage Category Unit RO MSF MED

Human health mPt 0.403 1.600 1.330
Ecosystem quality mPt 0.017 0.060 0.052

Climate change mPt 0.422 1.630 1.330
Resources mPt 0.443 1.500 1.210

Total mPt 1.280 4.790 3.920
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Table 15. The alternative ratings for the qualitative criterion in the case of the classical TOPSIS
method. 1—poor; 3—medium poor; 5—fair; 7—medium good; 9—good; 2, 4, 6, 8—intermediate
values in between.

PESTLE Category RO MSF MED

Political and legal 7 7 7
Technological 9 7 7

Economic 9 5 7
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The weight of the criterion was determined and is shown in Table 16. The weight of
factors is a subjective input, which is usually not even and strongly depends on the personal
opinion of the decision maker. In this paper, the environmental factor was considered as
the leading factor with the biggest weight, followed by the social and economic factors.
Finally, technological, political, and legal factors were the least important factors.

Table 16. The scale of criterion weights in the TOPSIS method. 0.005—very very low (VVL);
0.125—very low (VL); 0.175—low (L); 0.225—medium low (ML); 0.275—medium (M); 0.325—medium
high (MH); 0.375—high (H); 0.425—very high (VH); 0.475—very very high (VVH).

Political and Legal Social Technological Economic Environmental

Scale VVL-VL MH VVL-VL L H
Weight 0.0625 0.325 0.0625 0.175 0.375

The final result of the MCDA is shown in Figure 16. The best alternative was found
to be RO with a TOPSIS score of 1.00. RO was followed by MED with a score of 0.11. The
evaluation shows that the worst alternative is the MSF-based technology. The TOPSIS score
of MSF is zero because all of its factor levels were evaluated as negative ideal solutions.
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4. Conclusions

This analysis compared the base cases of three technologies: MSF, MED, and RO, in
which fossil fuels provided the energy requirements for the studied processes. Overall, the
results of the effect categories of the different impact analysis procedures follow a similar
trend, where it is shown that RO using basic fossil energy was the most environmentally
friendly, having the lowest impact on the ecosystem, resources, and human health. It is
important to note that this analysis only examined the operational phase. The price of 1 m3

of clean water from the RO technology is cheaper than MSF and MED. On the other hand,
it can be said that these distillation methods are already well-developed technologies, and
no significant development is expected, in contrast to membrane technology, in which
there is still a lot of potential, and there is continuous development in this field. This is
also confirmed by the worldwide trend, with RO increasingly taking over the desalination
market. However, during the distillation plant lifetime and operation, this does not require
any serious intervention other than mandatory maintenance operations. In contrast, during
RO, membrane processes frequently encounter scaling/fouling problems, and their lifespan
is currently 5–7 years.

As far as energy sources are concerned, switching from a fossil energy source to any
other energy source reduced the value of the damage categories by at least an order of
magnitude. Renewable energy sources (solar and wind energy) showed a similarly huge
improvement compared to the base cases, returning even slightly more favorable values
compared to nuclear energy. However, no significant difference was found between solar
and wind energy. Their great advantage is that after the investment, their operation does
not involve any emissions, but the investment cost itself is high. The biggest drawback is
that the availability of these energy sources is far from constant but seasonal, and since the
problem of energy storage is currently unresolved, we cannot rely solely on renewables. It
should also be taken into account that the lifespan of these power plants is much shorter
than that of a conventional power plant. Additionally, this also calls into question their
economic efficiency.

These problems do not exist in the case of nuclear power plants, where the nuclear
energy itself is cheap, no carbon dioxide is produced during nuclear fission, and nuclear
energy provides a constant source of energy. However, their disadvantage is that they are
not very popular in the public consciousness, their operation generates radioactive waste,
which must be safely disposed of for a long period, and the start-up and shut-down of
nuclear power plants are both complicated operations.

There is currently no unique solution to this issue, and energy diversification is needed.
The use of renewables is indeed a step forward, but until the issue of energy storage is
resolved, it cannot be overly proportionate because it will render the system unstable. It is
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therefore important that we seize every opportunity and do so as effectively as possible.
The greatest potential can be seen with RO combined with various energy sources; this
technology may still evolve in the future to produce longer-lasting, cheaper membranes,
and the energy requirements of this process are steadily declining over the years thanks to
modern energy recovery systems.
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RO Reverse Osmosis
MSF Multi-Stage Flash Distillation
MED Multi-Effect Distillation
TVC Thermal Vapor Compression
MF Microfiltration
UF Ultrafiltration
NF Nanofiltration
MB Membrane Bioreactor
MD Membrane Distillation
ED Electrodialysis
FO Forward Osmosis
PV Photovoltaic
RE Renewable Energy
TDS Total Dissolved Solids
LCA Life Cycle Analysis
LCIA Life Cycle Impact Assessment
DALY Disability-Adjusted Life-Years
PDF Potentially Disappeared Fraction
MCDA Multi-Criteria Decision Analysis
TOPSIS Technique for Order Preference by Similarity to the Ideal Solution
GWP Global Warming Potential
CAPEX Capital Expenditure
OPEX Operational Expenditure
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