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Abstract: The drinking and irrigation water scarcity is a major global issue, particularly in arid
and semi-arid zones. In rural areas, groundwater could be used as an alternative and additional
water supply source in order to reduce human suffering in terms of water scarcity. In this context,
the purpose of the present study is to facilitate groundwater potentiality mapping via spatial-
modelling techniques, individual and ensemble machine-learning models. Random forest (RF),
logistic regression (LR), decision tree (DT) and artificial neural networks (ANNs) are the main
algorithms used in this study. The preparation of groundwater potentiality maps was assembled
into 11 ensembles of models. Overall, about 374 groundwater springs was identified and inventoried
in the mountain area. The spring inventory data was randomly divided into training (75%) and
testing (25%) datasets. Twenty-four groundwater influencing factors (GIFs) were selected based on a
multicollinearity test and the information gain calculation. The results of the groundwater potentiality
mapping were validated using statistical measures and the receiver operating characteristic curve
(ROC) method. Finally, a ranking of the 15 models was achieved with the prioritization rank method
using the compound factor (CF) method. The ensembles of models are the most stable and suitable for
groundwater potentiality mapping in mountainous aquifers compared to individual models based
on success and prediction rate. The most efficient model using the area under the curve validation
method is the RF-LR-DT-ANN ensemble of models. Moreover, the results of the prioritization rank
indicate that the best models are the RF-DT and RF-LR-DT ensembles of models.
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1. Introduction

Mountainous areas cover more than 20% of the Earth’s land surface where 25% of the
global population lives [1]. The mountains areas are well known to provide 50% of freshwa-
ter [2] compared to the other critical resources (i.e., food and wood). These areas constitute
the main recharge areas of several porous and continuous aquifers in downstream lowland
regions [3–5]. Nevertheless, understanding the details of groundwater functioning in a
mountain massif requires a comprehensive knowledge of the most semi-arid areas [6].

Furthermore, mountainous areas assume the deep dynamics of groundwater, denying
us direct access to groundwater outcrops that aid in hydrogeological exploration. An
additional complication arises because mountainous regions are frequently fractured (e.g.,
the Atlas Mountains) and contain a discontinuous aquifer (e.g., a karstic aquifer). The
groundwater potential in mountainous aquifers is governed by several parameters (i.e.,
lithology, geomorphology, topography, secondary porosity, geological structures, fracture
density, permeability, drainage pattern and density, groundwater recharge, piezometric
level, slope, land use/cover and climatic conditions, and their interrelationships) [7].

Overall, there is insufficient geodatabase related to groundwater, notably in fractured
and karstic bedrock aquifers [8]. The knowledge gaps in term of geodatabase make the
development of numerical models difficult and consequently understand the aquifer
functioning in mountainous areas [9]. In order to resolve this issue, various statistical
models and machine learning algorithms have been employed for groundwater potential
modelling and mapping using inventories of springs for dependent variables (i.e., binary
logistic regression (LR) [10], certainty factor (CF) [11], weights-of-evidence (WE) [12],
artificial neural networks (ANNs), random forest (RF), support vector machines (SVMs),
naïve Bayes (NB) and decision tree (DT) [13]). Generally, machine learning methods have
shown more robustness and stability during modelling, and thus, they have been popular
and cost-effective in predicting groundwater potentiality. Furthermore, the application of
machine learning algorithms remains more known in the prediction of natural disasters
such as landslides, floods [14] and gully erosion. Recently, several researchers have tested
machine learning ensemble models to improve the performance of prediction. Furthermore,
other machine learning ensemble methods have been tested to delineate groundwater
potential zones based on spring or well location inventories [15]. The purpose of this
research is to apply four models individually (random forest (RF), logistic regression
(LR), decision tree (DT) and artificial neural network (ANN)) and test different possible
combinations using two, three and four models in each ensemble to produce groundwater
potential maps in a large mountainous area.

In the semi-arid Oum Er-Rbia catchment located in the central part of Morocco, water
resources are threatened by climate change. As a result, the economy and population
requirements will be increased in the future [16–18]. Groundwater resources are derived
from two system types: (1) the multi-layered system of the Tadla plains; and (2) the
karst aquifer of the Atlas Mountains. The first system is overexploited and polluted by
anthropogenic activities [5,19,20]. The second, located in the High Atlas Mountains of Beni
Mellal, is characterized by the emergence of several springs (more than 370). The high
flow rate of these springs indicates the presence of important groundwater reserves in this
mountainous area. Several studies [21–25] using chemical and isotopic tools have been
conducted to determine the water quality, hydrodynamic functioning and recharge area.
In addition, the groundwater potential mapping of this aquifer has not yet worked out. In
fact, mapping potential groundwater areas allow to determine zoning areas, permitting the
identification of new sites that can provide a water supply for both drinking and irrigation.
The results of this paper can be used by water managers and stakeholders to find potential
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water supplies and manage the water resources which are more vulnerable to climate
change and anthropogenic impacts.

The main objectives of this study are the following: (1) Evaluate the performance of
individual and ensemble models in the prediction of groundwater potentiality in karstic
mountainous areas; (2) compare the performance, robustness and stability of these models
using several statistical and validation techniques; (3) test the importance of using a
maximum of groundwater influencing factors and (4) produce reliable maps of the spatial
distribution of groundwater potential in the study area.

2. Study Area
2.1. Geographic and Climatic Context

The study area is located in the Oum Er Rbia catchment, specifically in the High Atlas
Mountains of Beni Mellal. It is bounded by the Tadla plain in the North and in the West, by
the El Aabid River in the South and by the Oum Er-Rbia River in the East (Figure 1).

Figure 1. Geographical situation of study area at (a) national scale, (b) regional scale and (c) digital
elevation model showing altitudes variability of the study area.
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The climate ranges from semi-arid at the borders to sub-humid at high elevations, with
a dominance in both cases of two distinct wet and dry seasons [18]. This Mediterranean
climate is characterized by an annual rainfall varied between 300 to 750 mm and poorly
distributed throughout the year. The average annual temperature is 18 ◦C (with peak
periods of over 40 ◦C in August and 0 to 4 ◦C in January). The snow appears from 900 m of
altitude and the prevailing wind is the Chergui in the summer period.

2.2. Geological and Hydrogeological Setting

The Atlas of Beni Mellal is composed of a Liassic and Middle Jurassic massive
dolomitic and/or calcareous facies [5]. The other formations are composed of (1) Cenoma-
nian conglomerates and sandstones interbedded with clays, gypsum marls and limestones,
(2) limestones and karstic dolomites interlayered with marl horizons of the Turonian,
(3) marls and limestones with evaporitic characters of the Senonian and (4) a complex of
limestones, marls and phosphate sandstones forming the phosphate series (Figure 2) [26].
The geological structure of the basin implies a continuation of the north Atlas thrust fault
toward the Tadla plain [5,27] (Figure 2).

Figure 2. Geological setting of the study area.

In the study area, the groundwater resources are derived from two system types [5,22]:
(1) the shallow and deep aquifers of the Tadla plain and (2) the karst aquifer of the Atlas
Mountains. The first system is composed of four aquifers: (1) Mio-Plio-Quaternary, (2)
Eocene, (3) Senonian and (4) Turonianwhich is the main productive aquifer in the region and
separated by impermeable or semi-permeable horizons. The groundwater of the second
system (the subject of this study) is contained in the aquifer calcareous rocks—of Liasic
age, which are mainly karstic system which possess high storage and conductive capacities.
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These formations are exposed on the mountains and favor water percolation (rainwater
and snowmelt), which constitutes the natural replenishment of the aquifer [22,28].

From the areas of recharge in the mountains, the groundwater flows in the aquifer
to the points of discharge outlets: natural springs, underground seepage and pumping
wells in the plain area [5]. The major karst outlets are located along the northern High
Atlas accident of the High Atlas Mountains from Timoulilt in the southwest to Zaouit
Cheikh in the northeast; the most important is Ain Asserdoune, with an average flow
rate of 700 L/s. It is important to note that, in this environment, most karst eminences
are probably underground and are therefore not visible, particularly at the mountain’s
transition of the Tadla plain.

3. Materials and Methods

A spring can be defined as a window through which groundwater flows from an
aquifer to the Earth’s surface [29]. Based on this characteristic, the emergence of springs
reflects the groundwater potentiality. To assess the relationship between source occurrence
and factors controlling groundwater flow, the groundwater potential mapping (GPM) a
tool has been used to provide spatial information [29].

The methodology of this study is summarized in the flowchart (Figure 3). The main
steps are as follows: (1) preparation of the data for modelling (preparation of the spring
inventory map and preparation of the conditioning factors datasets). Two methods were
applied for the factors selection which contribute to springs emergence (IG) and variance
inflation factor (VIF). (2) A frequency ratio method was applied to determine the spatial
relationships between spring occurrence and its predisposing factors. (3) RF, LR, DT and
ANN models were applied for mapping groundwater potential; then, different ensemble of
models were tested in order to find the best rate of prediction, in addition to the production
of various groundwater potentiality maps. (4) Several statistical parameters were applied to
test the results of the models application, and a general comparison was carried out based
on a compound factor (CF) method and priority rank (PR). Geographic Information System
environments and statistics software were used during the current study for database
preparation and groundwater potential mapping, and R packages for machine learning
algorithm modelling were also used (randomForest, C50, neuralnet and calibrateBinary).
Table 1 highlights the spatial datasets used in this study.

Figure 3. Methodology used in this research.
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Table 1. Spatial database of the study area.

Factors Data Layers Data Provider

Spring inventory
Previous studies
Field investigation
Topographic maps

Topographic
factors

Elevation
Aspect
Slope
Curvature
Profile curvature
Plan curvature
Convergence
TWI
SPI
TRI
MeRugNu
MRRTF
MRVBF
LS

SRTM-DEM from
(http://gdex.cr.usgs.gov/gdex/ (accessed on
10 January 2020))
pixel size of 30 m × 30 m.

Geologic factors

Lithology Geological map of Morocco at the scale 1:500,000
Geological map of Morocco at the scale 1:500,000
LANDSAT satellite image at 30 m from
(https://earthexplorer.usgs.gov/ (accessed on
10 January 2020))

Distance to Faults
Faults Density
Distance to lineaments
Lineaments density

Hydrologic
factors

Distance to rivers
Rivers density DEM at 30 m

Land cover
factors

NDVI
LULC

LANDSAT satellite image at 30 m from
(https://earthexplorer.usgs.gov/ (accessed on
10 January 2020))

Climatic factors Rainfall
Climatic stations data from hydraulic basin
agency of Oum Erabia
Tropical Rainfall Measuring Mission

3.1. Groundwater Springs Inventory (SI)

The spring inventory map was developed using an extensive field data. A total of
374 springs were identified, where 280 springs (75%) have been randomly selected for
the training dataset. The remaining springs (25%) were used for the validation dataset
(Figure 4). The springs’ discharge values vary between 0.1 and 1450 L/s.

For spatial modelling, several researchers have recommended the use of equal propor-
tions of spring and non-spring pixels, while, others have suggested to use a high number
of non-spring compared to the number of spring pixels when the study area is generally
large and it cannot ensure a good spatial representativeness of the springs. Due to the large
size of the study area, a high number of non-spring pixels were selected for this study. As
a result, randomly mapped of 840 non-spring points for training data and 282 non-spring
points for testing data were tested (three times the number of spring pixels) (Figure 4).

http://gdex.cr.usgs.gov/gdex/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 4. Location of springs and non-springs in the study area, (a) Training datasets and (b) Testing datasets.

3.2. Groundwater Influencing Factors (GIFs)

The selection of the groundwater potentiality influencing factors is very challenging
due to the complexity of the groundwater functioning phenomenon. Moreover, this
choice is very difficult since there are no exact standard norms. For the present study, our
challenging aim was to combine many factors as possible that may have an influence on
the groundwater potentiality. Consequently, we have prepared a total of 24 geological,
hydrological, climatic, topographic and land cover/use factors (Figure 5).

3.2.1. Climatic Factors

Climate is a key factor directly involved in groundwater availability. In that sense,
rainfall permits and directly encourages the recharge of aquifers. Annual precipitation data
were obtained from the Tropical Rainfall Measuring Mission (TRMM) between 1998 and
2016 (validation of estimated TRMM rainfall data by [30]). According to the rainfall map
produced, the annual average rainfall varies between 119 and 889 mm/year in the study
area. The most significant values are located in the northern part, while in the south, the
precipitation decreases intensely (Figure 5u).

3.2.2. Hydrological Factors

The hydrological factors chosen are the distance from rivers and the density of rivers.
The distance to rivers was calculated by the Euclidean distance method in ArcGIS environ-
ment for the purpose of determining the distance of the spring from the drainage system
(Figure 5n), while river density helps us recognize the spatial distribution of streams in the
study area (Figure 5o). The maps show that the distances to the rivers vary between 0 and
5077 m, and that the rivers are more concentrated in the northwest part (plain area) than in
the southeast part (mountainous area).
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Figure 5. Cont.
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Figure 5. Groundwater influencing factors considered in the present study. (a) Elevation, (b) Aspect, (c) Slope, (d) Curvature,
(e) Profile Curvature, (f) Plane Curvature, (g) Convergence, (h) TWI, (i) SPI, (g) TRI, (k) MeRugNu, (l) MRRTF, (m) MRVBF,
(n) Distance to Rivers, (o) Density of Rivers, (p) LS, (q) Distance to Faults, (r) Density of Faults, (s) Distance to lineament,
(t) Density of lineament, (u) Rainfall, (v) Lithology, (w) NDVI, (x) LULC.
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3.2.3. Geological Factors

There are many geological factors, and they play an essential role in the formation,
availability and recharge of groundwater. The main geological factor is lithology, since
rock types determine aquifer formation and its continuous recharge by controlling the
permeability and water circulation [31]. The 1/500,000 geological map of Morocco is used
to digitalize the main lithological units in this study; the results are presented in Figures 2
and 5v.

In addition, the faults influence the presence/recharge of groundwater and the emer-
gence of springs (secondary permeability of rocks). In our case, the Beni Mellal High Atlas
is largely fractured by a dominant northeast–southwest oriented fault network, which
gives great importance to the investigation of the fault-groundwater potentiality spatial
relationship. Thus, two fault factor maps are produced, one representing the distance to
faults and the other represent the fault density (Figure 5q,r, respectively).

The lineament is very important in the third type of environment, as it will give an
idea of the spatial distribution and density of fractures in the karst landscape. The fractures
frequently participate in groundwater recharge and spring emergence [32]. In this study,
lineaments were detected through the interpretation of Landsat OLI imagery; the maps of
distance to lineaments and lineament density are shown in Figure 5s,t.

3.2.4. Topographic Factors

Topographic factors play an essential role in controlling hydrological conditions, such
as the flow of groundwater and soil moisture. In this study, 14 topographic factors were
used: elevation, aspect, slope, curvature, profile curvature, plan curvature, convergence,
topographic wetness index (TWI), sediment power index (SPI), terrain ruggedness in-
dex (TRI), Melton ruggedness number (MeRugNu), multi-resolution ridge top flatness
(MRRTF), multi-resolution valley bottom flatness (MRVBF) and slope length (LS). These
topographic factors are shown in Figure 5.

The elevation and slope factors generally negatively control the groundwater potential
where in flat areas and low elevation the rainwater has much more time to infiltrate and
recharge groundwater [33]. For the aspect factor, the exposure of the slopes favors more
water infiltration on slopes exposed to humid winds and protected from solar radiation [15].
In this study, the potential of groundwater will be higher on the north- and northwest-facing
slopes. The curvature influences groundwater recharge. The same influence may also be
related to the LS factor. The MRRTF and MRVBF indicate the flatness and size of valley
bottoms; low values show a smaller possibility of the existence of a groundwater aquifer,
and high values indicate the potential zones [15]. In this study, the highest values for these
two parameters are calculated in the plains bordering the Atlas Mountains towards the
North. The TWI factor shows the influence of topography on runoff generation and flow
accumulation; a high groundwater potentiality is favored when TWI values increase. The
SPI expresses the erosive influence and power of water flow [34], and the TRI indicates the
difference in elevation between adjacent cells of a digital elevation grid [35].

3.2.5. Land Use/Cover Factors

Land use/cover factors (LULC) strongly influence hydrological processes, such as
infiltration, evapotranspiration and surface runoff, and they consequently play a significant
role in groundwater potentiality. Two factors in relation to land cover have been prepared:
land use/land cover (LU/LC) and normalized difference vegetation index (NDVI).

The LULC map of the study area was prepared using supervised classification and
a maximum likelihood algorithm in ArcGIS environment from three merged images of
the Landsat Operational Land Imager (OLI); their dates of acquisition are July 9 and 18,
2019. From the same merged images, we calculate the NDVI to determine the density of
the vegetation. The LULC map contained six different classes: Waterbody, Built-up, Bare
soil, Vegetation, Agriculture and Forest (Figure 5x). The NDVI map is shown in Figure 5w.
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3.3. Groundwater Influencing Factors (GIFs) Analysis
3.3.1. Multicollinearity Analysis and Confusion Matrix

Multicollinearity analysis was used in statistics to detect the linearity between the
conditioning factors of a given phenomenon, and detect and quantify information redun-
dancies between the parameters that may have a negative impact on the model performance.
Multicollinearity refers to the non-independence of conditioning factors that may occur
in datasets. It is widely used in the prediction of several phenomena, such as landslides,
gully erosion and groundwater potentiality. In this study, the multicollinearity for the
groundwater influencing factors was identified using confusion matrix, tolerances and
variable inflation factor (VIF) methods, according to Equations (1) and (2):

Tolerance = 1− R2
j (1)

VIF =

[
1

Tolerance

]
(2)

where:
R2

j is the coefficient of determination.
When VIF ≥ 10, there are linear relationships between conditioning factors.

3.3.2. Selection of Groundwater Influencing Factors

The ability to estimate groundwater potentiality depends on the factors introduced
into the model. Indeed, some factors can decrease this capacity. As a result, a preliminary
selection of the factors is necessary. To meet that condition, we used the information gain
method to select GIFs. The information gain (IG) value for a groundwater influencing
factor Xi and a class Y is calculated using Equations (3)–(5):

IG(Y, Xi) = H(Y)− H(Yi|Li) (3)

where:
H(Y) = −∑

i
P(Yi) Log2(P(Yi)) (4)

H(Yi|Li) = −∑
i

P(Yi) ∑
j

P(Yi|Li)Log2((P(Yi|Li)) (5)

where:
H(Y) is the entropy value of Yi;
H(Yi|Li) is the entropy of Y after associating the values of the landslide conditioning

factor Li;
P(Yi) is the prior probability of the out-class Y;
P(Yi|Li) are the posterior probabilities of Y given the values of the conditioning

factor Li.
Factors that have a negative IG are considered to have no effect on groundwater

potential, and therefore, they will be eliminated from the analysis.

3.3.3. Weight of the Groundwater Influencing Factors

In order to assign a weight of each class of factor before the modelling phase, several
researchers recommend the use of the frequency ration (FR) method. The FR method helps
to determine the spatial relationship between the predisposition factors and the dependent
factor [36]. Each factor is segmented into several classes; Fr index value is calculated for
each class of factors using the following equation (Equation (6)):

Fr =
PSi
PDi

=

(
NSi
NSt

)
× 100(

NAi
NAt

)
× 100

(6)



Water 2021, 13, 2273 14 of 34

where:
PSi denotes the percentage of spring pixels for each class i of influencing factors,

relative to the total number of spring pixels in the study area;
PDi is the percentage of each class i of influencing factors, relative to the total area;
NSi is the number of spring pixels in a thematic class i;
NSt is the number of pixels of all springs;
NAi is the total number of pixels in a thematic class i;
NAt is the total number of all pixels.
The results obtained represent the correlation between each class of influencing factors

and the groundwater spring areas. The final step is the standardization of the FR to give
equal importance to the different factors. The method used is to arrange the values of FR
between 0.01 and 0.99 by the max-min normalization method according to Equation (7):

FRN =
FR−Max(FR)

Max(FR)−Min(FR)
× (0.99− 0.01) + 0.01 (7)

where:
FRN is the normalized FR matrix;
FR is the original data matrix.

3.4. Methods
3.4.1. Random Forest (RF) Model

Random forest model has been developed based on the classification and regression
trees (CARTs) [37]. The objective of the method is to evaluate the relationships between
all factors: the springs are dependent factors and the GIFs are independent factors. The
purpose is to identify the most appropriate model to build the GPM map and determine
the weight of each factor. The approach is based on the creation of several decision trees,
and for each tree, there will be a random selection of a set of predictive factors that will
be used at each node to improve the prediction [38]. Consequently, all trees’ prediction
results are averaged to build the final set of model predictions [39], and the data that are
not involved in the analysis are defined as the out-of-bag (OOB) error.

The basic parameters to build the RF model are mtry and ntree. mtry designates the
number of factors to be considered in each tree-building process, and ntree designates the
number of trees. The advantage of the RF model is that mtry and ntree can be changed
and varied to test different possibilities to choose the best performance pathways and
the minimum OOB error. In addition, the RF method also allows to classify the factors
according to their importance. The calculation of the weights is done by measuring the
mean decrease in prediction accuracy.

3.4.2. Logistic Regression (LR) Model

Logistic regression is a machine learning method developed to solve classification
problems. The LR predictive analysis algorithm accepts continuous or discrete variables
for model input, and it does not require that they have a normal distribution [40]. The
approach is based on the concept of using probability to determine the relationship between
independent factors (GIFs) and the dependent factor (SI). To achieve this objective, the
dependent factor is coded as 1’s and 0’s (binary variable), where important groundwater
potential is coded as a 1 and weak groundwater potential is coded as a 0. Nevertheless,
independent factors can be continuous or categorical. In this study, we chose to classify all
GIFs into numerical values representing their weights based on the frequency ratio method.

The groundwater probability potentiality is calculated according to Equations (8) and (9):

P =
1

1 + e−z (8)

Z = β0 + β1 x1 + β2 x2 + . . . + βn xn (9)
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where:
P is the probability;
Z is the linear combination of the independent variables;
β0 is the intercept of the model;
β1,β2 . . . βn are the coefficients of the logistic regression model;
x1,x2 . . . xn are the independent variables;
n is the number of independent variables.

3.4.3. Decision Tree (DT) Model (C 5.0)

A decision tree is used to classify future observations based on an already classified
data set. The base of the tree corresponds to a root. Then, a series of branches whose
intersections are called nodes end in leaves that each correspond to one of the classes to be
predicted. Each node of the decision tree makes a binary decision that separates one class,
or several classes, from the other classes [41]. In this study, we have chosen to use the C 5.0
classification algorithm, which is more efficient than its predecessor C 4.5 and offers similar
results with smaller decision trees [42]. The algorithm uses the adaptive boosting method
to improve the model accuracy, and it is based on the concept of entropy. A calculation of
the information gain of the variables is carried out beforehand to classify them according
to the maximum values; this helps to eliminate the leaves of null or weak values, which
improves the classification accuracy [39,43].

3.4.4. Artificial Neural Network (ANN) Model

In this study, the multi-layer perceptron (MLP) architecture was chosen, which con-
tains three layers connected by several neurons: the input layer, the hidden layer and
the output. For the input layer, which has one input and several output pathways for
each neuron, each node is connected with the different determining factors (GIFs). Hid-
den nodes, where there are several inputs and output connections for each neuron, use
weighted connections to learn and process the problem; weights can take positive or nega-
tive values. Usually, for the modelling phase, the ANN method starts with the adjustment
of the weights of the different connections between neurons during the training phase;
then, the output prediction stage is based on the constructed models [44]. In the ANN
method, the input (xi) and output (yi) layers can be expressed by the following equations
(Equations (10) and (11)):

net =
n

∑
i=0

wixi (10)

yi = f (net) (11)

where:
xi are the inputs;
wi are the corresponding weights;
yi is the output.

3.5. Ensembles of Models

To improve the performance and accuracy of model prediction, ensembles of models
have been used and tested by many researchers. They have confirmed their effectiveness
and efficiency in landslide prediction and soil erosion assessment. However, those who
have tested the method for assessing groundwater potential remain limited. The choice of
ensemble in this study was based on a weighted aggregation of the individual RF, LR, DT
and ANN models to determine the best possible combination. Three different combinations
were tested: two models, three models and four models. The equation used is:

EM =
∑n

i=1(AUCSi×Mi)
∑n

i=1 AUCS
(12)

where:
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EM is the ensemble of models;
AUCSi is the area under the success rate curve for the model Mi;
Mi is the individual model.

3.6. Performance Metrics and Comparison

Validation of the results in modelling is an essential step to confirm the validity of
the results and the performance of the models. However, when the database partition
changes, it is important to assess the stability of the computations. To do this work, we
have examined the success and prediction rate gains of the following sample divisions:
25/75%, 50/50% and 75/25%. Then, statistical metrics and the area under the receiver
operating characteristic curve (AUC) were used for the testing dataset to evaluate the
performance of the RF, LR, DT and ANN models and the different ensembles.

3.6.1. Statistical Metrics

The validation approach is based on the calculation of four parameters, True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN). Their determination
is based on the calculation of spring pixels which are correctly or incorrectly classified as
springs in the training and testing datasets. The sensitivity is the proportion of spring pixels
that are correctly classified as spring occurrences, while the specificity is the proportion
of the non-spring pixels that are correctly classified as non-spring [45]. In addition, other
parameters have been calculated to improve the comparison between the models: accuracy,
precision, FP-Rate, MCC, RMSE, MAE and the Kappa index. Higher values of sensitivity,
specificity, accuracy, precision, FP-Rate and MCC indicate better performance of a model,
especially if the RMSE and MAE values are close to 0. A Kappa index value of 1 indicates a
perfect model, whereas −1 represents a non-reliable model. All the equations used in the
calculation of these parameters are written below:

Sensitivity =
TP

TP + FN
(13)

Speci f icity =
TN

FP + TN
(14)

Accuracy =
TN + TP

TP + FP + TN + TP
(15)

Precision =
TP

TP + FP
(16)

FPRate =
FP

FP + TN
(17)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(18)

Kappa =
Accuracy− B

1− B
(19)

where:

B =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)√

TP + TN + FN + FP
(20)

RMSE =

√
1
n

n

∑
i=1

(XP − XA)2 (21)

MAE =
1
n

n

∑
i=1
|(XP − XA)| (22)
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3.6.2. ROC Curve

In terms of the excellence and the performance of machine learning models, the
ROC curve represents the most useful way to validate the results [45]. For this method,
a comparison was done between the groundwater potentiality map, the training, and
validation of spring inventory maps. The receiver operating characteristics curve is a
graphical representation that plots the true positive percentage in the y-axis and the
cumulative false positive percentage in the x-axis [46]. Finally, the area under the curve
was calculated (AUC) from the ROC curve, and the precision of the model was evaluated.
The area under the ROC curve varies between 0 and 1; it can be categorized as low (0.5–0.6),
medium (0.6–0.7), good (0.7–0.8), very good (0.8–0.9) and excellent (0.9–1.0) [47,48].

3.6.3. Model Prioritization Using Compound Factor

The compound factor (CF) method was used to rank the different models and to
compare their performance and accuracy. The method is based first of all on the ranking
of all models and ensembles of models with respect to AUC values and statistical metrics.
Then, to find the best fit model for producing GPMs, the CF—based prioritization was
calculated in terms of the accuracy, precision, specificity, sensitivity, FP-Rate, MCC, Kappa
index, AUC, MAE and RMSE values among the 15 models. The CF calculation is performed
according to the equation below (Equation (23)):

CF =
1
n

n

∑
i=1

R (23)

where:
R is the variable rank;
n is the number of variables.

4. Results
4.1. GIF Selection and Analysis

After the first step of the analysis, which included the realization of an inventory
map of springs and non-springs that constituted the basic document to start the modelling
phase, an analysis of the influencing factors was undertaken to select the most useful GIFs
and eliminate those that have no effect or those that have a multicollinearity.

Primarily, the multicollinearity analyses of the 24 groundwater influencing factors
show that tolerance values vary between 0.231 for the TRI factor to 0.983 for the aspect
factor. In the same way, the VIF values fluctuate between 1.017 for the aspect factor and
4.323 as the maximum value for the TRI factor (Table 2). These results are acceptable: the
tolerance values are greater than 0.1 and the VIF values are less than 10, which confirms
that all of the selected GIFs have no multicollinearity. However, the confusion matrix
diagram results indicate a linear relationship between several variables, including TRI
(0.75), slope (0.74), LS (0.75), faults density (0.69), distance to faults (0.69), LULC (0.49) and
NDVI (0.49). To avoid data redundancy, we conducted many experiments, including the
elimination of redundant factors, by testing the success and prediction rates for all models.
Results show that there is no significant impact on the rates of learning and prediction
of the various models except DT model, where the prediction rate has been decreased
significantly from 0.738 to 0.609. These findings indicate that the redundancy of data from
some factors has only a little impact on performance, indicating that all factors must be
taken into account in this analysis.

Afterwards, the results of the analysis using the information gain method show that
the lithology, fault density and distance to faults factors have the highest values (0.073, 0.030
and 0.029, respectively), followed by the rainfall (0.025), MRRTF (0.020), MRVBF (0.019),
elevation (0.017), and lineament density (0.016) (Table 2 and Figure 6). The minimum IG
values were calculated for the distance to rivers and MeRugNu factors (0.003 and 0.002,
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respectively). However, the 24 GIFs had a positive information gain, and for that reason,
all of them were included in this analysis.

Table 2. Multicollinearity diagnosis, average information gain and parametric statistics (LR model)
for the groundwater influencing factors.

Information Gain Collinearity Statistics LR Model

Influencing Factors Average Merit Tolerance VIF β

Elevation 0.017 0.530 1.886 0.967

Aspect 0.008 0.983 1.017 2.758

Slope 0.012 0.411 2.434 0.021

Curvature 0.004 0.667 1.499 −0.751

Profile Curvature 0.003 0.696 1.436 −0.116

Plan Curvature 0.006 0.773 1.294 0.389

Convergence 0.008 0.754 1.327 −2.774

TWI 0.004 0.907 1.103 −0.081

SPI 0.011 0.471 2.122 0.522

TRI 0.009 0.231 4.323 −0.965

MeRugNu 0.002 0.707 1.414 −0.947

MRRTF 0.020 0.615 1.625 1.687

MRVBF 0.020 0.546 1.832 1.232

Distance to Rivers 0.002 0.977 1.024 1.971

Density of Rivers 0.019 0.899 1.112 2.136

LS 0.010 0.330 3.034 0.749

Distance to Faults 0.029 0.407 2.456 0.510

Density of Faults 0.030 0.503 1.988 1.380

Distance to lineament 0.006 0.975 1.026 1.962

Density of lineament 0.016 0.949 1.054 2.979

Rainfall 0.025 0.829 1.207 1.836

Lithology 0.073 0.741 1.350 1.519

NDVI 0.013 0.681 1.469 2.313

LULC 0.008 0.681 1.469 −0.540

Constant −12.0977

The rank of the weights of the different GIF classes by the FR analysis shows a
positive correlation between the spring potentiality and high values of TWI, since the class
15.39–25.87 holds the highest FR weight (1.811). This class is closely followed by class
10 of lithology relating to Lias limestones, with a value of 1.808. Even if the slope factor
has a very low GI value, its class 34.16–76.42 shows a high FR value of 1.792, followed
by the class 0.99–24.32 of the curvature factor and the class 19.66–106.67 of the TRI factor.
The values of FR which follow are on the order of 1.696, 1.592, 1.583, 1.565 and 1.546,
characterizing the classes 3484.68–7467.17 (distance to lineaments factor), Forest (LULC
factor), 13.41–26.83 (LS factor), 0.21–0.30 (NDVI factor) and 1379.67–2299.45 (SPI factor),
respectively. Finally, the lowest (null) FR values are calculated for the classes 2.30–3.45
(MRRTF), 3.45–5.65 (MRRTF), 4.04–5.88 (MRVBF), 26.83–190.03 (LS), 18,419.36–34,536.29
(distance to faults), (1, 2, 3, 4, 5, 6, 8, 14 and 15) lithology and waterbody (LULC), indicating
their minimal effect on groundwater potentiality.
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Figure 6. Predictive capabilities using information gain method: (a) importance of GIFs derived from Random Forest model;
and (b) correlation matrix of the twenty-four GIFs (c).

Following the developed methodology, the random forest method was employed
for estimating the importance of the GPM related factors that were selected by the IG
method (Figure 6). The values of RF ranged between −0.598 and 19.313, with the lowest
value corresponding to the variable plane curvature and the highest to variable lithology.
In decreasing order of RF importance value, after the lithology factor, we have fault density,
elevation, distance to faults, lineament density, rainfall and river density, with values of 12.187,
11.419, 10.446, 9.095, 8.921 and 8.913, respectively. The factors of least importance are the
distance to rivers, plane curvature, profile curvature, aspect, convergence and curvature.
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4.2. Models Building and Hyperparameters Tuning

This is a critical step in modeling using machine learning algorithms. To do this,
we randomly subdivided the data Training (75%) and Testing (25%) dataset, then the
cross-validation method is applied on the Training data to minimize the splitting error. The
findings show that the RF model has an average accuracy of 0.71 and a kappa value of 0.16.
The optimization of the RF parameters was applied using a random search and based on
the OBB error rate (Figure 7a). Then, accuracy was used to select the optimal model using
the largest value (Table 3). The final value used for the RF model was mtry = 13. These
results confirm that the subdivision of the data does not have a great impact on accuracy,
which allowed us to apply the other models without fearing a degradation of the accuracy
for the different partitions. For the ANN model, after several tests, the optimum number
of hidden layers is equal 2 (Figure 7b).

Figure 7. Number of trees optimized based on OOB estimates of the error rate in RF model (a) and
diagram of ANN model (b).
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Table 3. Resampling results across tuning parameters using RF model. Accuracy was used to select
the optimal model using the largest value. The final value used for the model was mtry = 13.

Accuracy Kappa Resample

1 0.7321429 0.21052632 Fold02
2 0.6785714 0.10000000 Fold01
3 0.7017544 0.17637059 Fold04
4 0.7079646 0.12196845 Fold03
5 0.6902655 0.09309791 Fold06
6 0.6696429 −0.01369863 Fold05
7 0.7232143 0.19480519 Fold08
8 0.7678571 0.31578947 Fold07
9 0.7142857 0.20000000 Fold10
10 0.7232143 0.25301205 Fold09

4.3. Groundwater Potential Mapping

The main objective of this study is to produce groundwater potentiality maps (GPMs)
using individual and ensemble machine learning models. Fifteen GPMs were produced
based on the application of four models, both individually and in ensembles: random forest,
logistic regression, decision tree and artificial neural network. The GPMs produced were
divided into five classes based on Jenk’s natural breaks classification method (calibration
results). The five classes are very low, low, moderate, high and very high. The results are
shown in Figure 8. Accordingly, the spatial distribution are: (1) very low and low classes
which are dominant; (2) the areas with the highest potential are located in the middle of the
study area, and in the northern parts, especially in the mountains–plains transition zone;
and (3) the regions with the least potential are those located in the southern, western and
eastern parts of the study area.

For the individual models four groundwater potential maps are shown in Figure 8.
The rate of springs in each class showed that all of the training and validation springs were
identified in the very high class for the RF, DT and ANN models, with a maximum training
value for the RF GPM (100% of springs in the high class) and a maximum validation
value identified for the ANN GPM (46.81%). In the case of the GPM based on the LR
model (Figure 8b), the high class makes up the major part of the training (35.00%) and
validation (32.98%) springs, followed by the moderate class (25.36% for training and 26.60%
for validation).

Following the completion of the GPMs for the different models individually, the
different possible combinations were tested. The first sets of models tested involved two
models, so six ensembles were considered: RF-LR, RF-DT, RF-ANN, LR-DT, LR-ANN and
DT-ANN. The GPMs that were derived and the statistical results of the spatial distribution
of the different classes are shown in Figure 8. On first examination, it is clear that the very
low and low classes cover the major part of the territory; the percentages of the very low
class vary from 47.92% for the DT-ANN ensemble (the maximum value) to 25.01% for
RF-LR (the minimum value). For the low classes, the values vary from 32.23% (RF-DT) to
15.70% (DT-ANN). On the other hand, the area covered by the high and very high classes
represent the lowest percentages for all model ensembles. From the point of view of the
spring percentage, it has been observed that the training springs largely cover the high and
very high classes. Indeed, except for the LR-ANN ensemble, where the high class holds
the major part of the training springs (33.93%), all of the other ensembles show very high
class which contains the most important percentages of training springs: 92.14%, 86.07%,
93.21%, 50.36% and 67.14% for RF-LR, RF-DT, RF-ANN, LR-DT and DT-ANN, respectively.
To finish, the highest percentage of validation springs are located at the very high-class
level, with 30.85% for RF-DT, 41.49% for RF-ANN, 26.60% for LR-DT, 29.79% for LR-ANN
and 35.11% for DT-ANN. Only for the RF-LR ensemble does the moderate class contain the
majority of the validation springs (32.98%), followed by the very high class (31.91%).
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Figure 8. GSPM obtained from RF (a), LR (b), DT (c), ANN (d), RF-LR (e), RF-DT (f), RF-ANN (g), LR-DT (h), LR-ANN (i),
DT-ANN (j), RF-LR-DT (k), RF-LR-ANN (l), RF-DT-ANN (m), LR-DT-ANN (n) and RF-LR-DT-ANN (o) models.

Combining three models at the same time has allowed to produce four new GPMs: RF-
LR-DT, RF-LR-ANN, RF-DT-ANN and LR-DT-ANN. The results and the spatial distribution
of the different classes of potentiality are presented in Figure 8. Generally, the percentages
covered by the different potentiality classes’ decrease from the very low class to the very
high class. From the point of view of the spatial distribution of the springs, all ensembles
of three models show that the training springs are mostly located in the very high class,
with values of 87.14%, 86.07%, 78.21% and 48.57% for the RF-DT-ANN, RF-LR-DT, RF-
LR-ANN and LR-DT-ANN ensembles, respectively. For the validation springs, the very
high classes of the RF-LR-ANN and RF-DT-ANN ensembles contain the highest percentage
(32.98%), followed by the LR-DT-ANN ensemble (30.85%) and the high class (30.85%) of
the RF-LR-DT ensemble.

Finally, a set of all four models was used to produce one more GPM. The map produced
and the statistics relating to the spaces occupied by the different potentiality classes are
shown in Figure 8. Given the spatial distribution, very low is the dominant class, with a
percentage of 37.67%, followed by the low class (22.66%), the moderate class (16.60%), the
high class (12.43%) and finally, the very high class (10.63%). Inversely, the percentage of
training and validation springs increases from the very low to the very high classes.
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4.4. Performance Metrics and Comparison

In this part, a comparison was realized to test values of success and prediction rate
25/75%, 50/50% and 75/25% (Table 4). The table reveals a considerable stability in the
overall performance in all tests (25%, 50% and 75%) except the prediction rate of LR and
DT, where a slight instability was observed. For other individual or ensemble models, the
success and prediction rates increase generally from 25% to 75% for the sample.

Table 4. Gain in success and prediction rate using the partition Training/Testing progresses from 25/75% to 75/25% with
redundant factors elimination.

25/75% of Overall
Sample

50/50% of Overall
Sample

75/25% Of Overall
Sample

Elimination of
Redundant Factors

Models Success
Rate

Prediction
Rate

Success
Rate

Prediction
Rate

Success
Rate

Prediction
Rate

Success
Rate

Prediction
Rate

RF 1.000 0.719 1.000 0.767 1.000 0.786 1.000 0.780
LR 0.729 0.780 0.780 0.755 0.784 0.744 0.781 0.746
DT 0.939 0.612 0.911 0.596 0.964 0.738 0.946 0.609
ANN 0.788 0.693 0.776 0.743 0.784 0.744 0.782 0.743

RF-LR 0.999 0.773 0.999 0.775 0.999 0.779 0.999 0.773
RF-DT 0.996 0.722 0.997 0.742 0.998 0.787 0.997 0.725
RF-ANN 0.999 0.722 1.000 0.760 1.000 0.775 1.000 0.770
LR-DT 0.920 0.759 0.904 0.739 0.949 0.779 0.931 0.702
LR-ANN 0.783 0.753 0.796 0.750 0.794 0.749 0.784 0.746
DT-ANN 0.922 0.697 0.919 0.714 0.954 0.771 0.933 0.700

RF-LR-DT 0.995 0.757 0.995 0.758 0.996 0.790 0.995 0.732
RF-LR-ANN 0.985 0.757 0.981 0.766 0.983 0.772 0.980 0.765
RF-DT-ANN 0.995 0.723 0.995 0.748 0.997 0.789 0.996 0.730
LR-DT-ANN 0.915 0.745 0.905 0.739 0.943 0.780 0.920 0.713

RF-LR-DT-ANN 0.987 0.750 0.984 0.756 0.989 0.791 0.985 0.738

The success rate of all samples is stable. In order to verify the obtained results, the
GPMs and the spring inventory locations were compared (Figure 8). For the four individual
models, we see that the majority of the validation and training springs fall into the high
and very high susceptibility classes. In addition, the very low susceptibility class either has
very weak or no spring occurrence in all GPMs. Even better, for the model sets, the results
show an increase in the percentages of validation and training springs in high and very
high classes, especially for RF-LR, DT-ANN and RF-ANN. It is clear from these results that
the field-recorded spring locations have a better fit with the RF, DT, ANN, RF-LR, DT-ANN
and RF-ANN maps than with the other GPMs.

The results of validation techniques and accuracy prioritization based on the training
datasets are shown in Table 5, and the results based on the testing datasets are shown in
Table 6. Ten parameters have been calculated to improve the comparison between the
models: accuracy, sensitivity, specificity, precision, FP-Rate, MCC, KAPPA, AUC, RMSE
and MAE. For the training datasets, the accuracy ranges from 0.754 to 1.000; the highest
value is identified for the RF model, and the lowest is from the LR-ANN and ANN models.
Like accuracy, the maximum sensitivity value (1.000) was found for the RF individual
model and the minimum for the LR model (0.257). Specificity varies between 0.797 (ANN
model) to 1.000 (RF and RF-ANN models). For precision, the values range from 0.311
(ANN) to 1.000 (RF). The FP-Rate calculation indicates that the best result is always for
the RF model (0.334), and the worst result is for LR (0.086). In additon, for the other
parameters, RF is better, with values of 1.000 for Kappa and AUC. The minimum values
are Kappa = 0.233 (LR-ANN) and AUC = 0.784 (LR and ANN models). For the reliability,
which has been assessed by applying the MAE and RMSE methods, the training results
indicate minimum values for the RF model (0.000) and maximum values for LR (0.137) and
ANN (0.496).
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Table 5. Results of validation techniques and accuracy prioritization based on training datasets.

Training Rank Total

Ac R Sen R Sp R Pr R FPR R MCC R Ka’1 R AUC R MAE R RMSE R RT CF PR

RF 1.000 1 1.000 1 1.000 1 1.000 1 0.334 1 1.000 1 1.000 1 1.000 1 0.000 1 0.000 1 10 1 1
LR 0.765 13 0.257 15 0.935 13 0.567 13 0.086 15 0.262 13 0.234 14 0.784 14 0.137 15 0.485 13 138 13.8 13
DT 0.942 8 0.861 5 0.969 11 0.903 12 0.287 5 0.843 8 0.843 8 0.964 9 0.012 2 0.241 9 77 7.7 7
ANN 0.754 15 0.512 13 0.797 15 0.311 15 0.092 13 0.256 15 0.244 13 0.784 14 0.098 13 0.496 15 141 14.1 15
RF-LR 0.956 6 0.825 7 1.000 1 1.000 1 0.275 7 0.883 6 0.876 6 0.999 3 0.044 10 0.209 7 54 5.4 6
RF-DT 0.968 2 0.886 2 0.995 6 0.984 6 0.295 2 0.914 2 0.911 2 0.998 4 0.025 3 0.179 2 31 3.1 2
RF-ANN 0.963 5 0.850 6 1.000 1 1.000 1 0.283 6 0.900 5 0.895 5 1.000 1 0.038 7 0.194 5 42 4.2 4
LR-DT 0.929 9 0.793 9 0.974 9 0.910 9 0.264 10 0.804 9 0.801 9 0.949 11 0.038 8 0.194 6 89 8.9 9
LR-ANN 0.763 14 0.264 14 0.929 14 0.552 14 0.088 14 0.257 14 0.233 15 0.794 13 0.130 14 0.487 14 140 14 14
DT-ANN 0.929 10 0.793 10 0.974 9 0.910 9 0.264 10 0.804 10 0.801 10 0.954 10 0.032 6 0.267 10 94 9.4 10
RF-LR-DT 0.967 3 0.882 3 0.995 6 0.984 6 0.294 3 0.911 3 0.909 3 0.996 6 0.026 4 0.182 3 40 4 3
RF-LR-ANN 0.910 11 0.646 11 0.998 4 0.989 5 0.215 11 0.754 11 0.728 11 0.983 8 0.087 12 0.300 11 95 9.5 11
RF-DT-ANN 0.966 4 0.871 4 0.998 4 0.992 4 0.290 4 0.909 4 0.906 4 0.997 5 0.030 5 0.184 4 42 4.2 5
LR-DT-ANN 0.893 12 0.639 12 0.977 8 0.904 11 0.213 12 0.700 12 0.683 12 0.943 12 0.073 11 0.327 12 114 11.4 12
RF-LR-DT-ANN 0.950 7 0.814 8 0.955 12 0.983 8 0.271 8 0.865 7 0.859 7 0.989 7 0.043 9 0.224 8 81 8.1 8
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Table 6. Results of validation techniques and accuracy prioritization based on testing datase.

Testing Rank Total

Ac R Sen R Sp R Pr R FPR R MCC R Ka R AUC R MAE R RMSE R RT CF PR

RF 0.753 7 0.213 14 0.933 5 0.513 6 0.071 14 0.207 15 0.181 15 0.786 5 0.141 9 0.497 8 98 9.8 15
LR 0.756 5 0.223 11 0.933 6 0.525 5 0.074 11 0.220 13 0.193 14 0.744 13 0.143 10 0.494 6 94 9.4 14
DT 0.737 11 0.511 2 0.813 13 0.475 8 0.170 1 0.316 1 0.316 2 0.738 15 0.019 3 0.512 12 68 6.8 3
ANN 0.756 6 0.520 1 0.792 15 0.277 15 0.080 9 0.245 8 0.227 7 0.744 14 0.117 8 0.494 6 89 8.9 11
RF-LR 0.761 3 0.234 10 0.936 4 0.550 4 0.078 10 0.240 10 0.211 10 0.779 7 0.143 11 0.489 3 72 7.2 6
RF-DT 0.737 12 0.468 4 0.827 11 0.473 9 0.155 3 0.296 3 0.296 4 0.787 4 0.003 1 0.512 12 63 6.3 1
RF-ANN 0.761 4 0.213 14 0.943 2 0.556 3 0.071 15 0.230 11 0.197 12 0.775 9 0.154 13 0.489 3 86 8.6 9
LR-DT 0.735 13 0.500 3 0.813 14 0.470 11 0.166 2 0.306 2 0.306 3 0.779 7 0.154 14 0.489 3 72 7.2 7
LR-ANN 0.764 2 0.223 11 0.943 3 0.568 2 0.074 12 0.243 9 0.209 11 0.749 12 0.151 12 0.486 2 76 7.6 8
DT-ANN 0.729 15 0.436 5 0.827 12 0.456 14 0.145 4 0.267 4 0.267 5 0.771 11 0.010 2 0.520 15 87 8.7 10
RF-LR-DT 0.748 8 0.351 7 0.880 8 0.493 7 0.117 6 0.261 5 0.255 6 0.790 2 0.072 6 0.502 9 64 6.4 2
RF-LR-ANN 0.767 1 0.223 11 0.947 1 0.583 1 0.074 13 0.251 6 0.215 9 0.772 10 0.154 15 0.483 1 68 6.8 4
RF-DT-ANN 0.735 14 0.340 8 0.866 9 0.457 13 0.113 7 0.229 12 0.225 8 0.789 3 0.064 5 0.515 14 93 9.3 13
LR-DT-ANN 0.740 9 0.362 6 0.866 10 0.472 10 0.120 5 0.250 7 0.339 1 0.780 6 0.058 4 0.510 10 68 6.8 5
RF-LR-DT-ANN 0.740 10 0.277 9 0.894 7 0.464 12 0.092 8 0.208 14 0.197 13 0.791 1 0.101 7 0.510 10 91 9.1 12
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In the case of testing datasets (Table 6), validation results indicate that the RF-LR-ANN
ensemble is the best performing model in terms of accuracy (0.767), specificity (0.947),
precision (0.583) and RMSE (0.483). For sensitivity, the maximum value is identified
for the ANN model (0.520), and for the FP-Rate and MCC parameters, the best results
were calculated for DT (FPR = 0.170, MCC = 0.316). The calculated Kappa index values
show a maximum value of 0.339 for the ensemble of three LR-DT-ANN models, and the
minimum value of the MAE parameter was calculated for the RF-DT ensemble model
(MAE = 0.003). Finally, the most efficient model in terms of AUC was the ensemble of four
models, RF-LR-DT-ANN (AUC = 0.791).

Additionally, the estimation of prediction capability for the fifteen models is obtained
by comparing the spring training and validation inventories with the GPMs. Then, the
rate curves were created (ROC), and the areas under each curve (AUCs) were calculated
(Figure 9). For training datasets, the prediction-rate curve showed that the maximum AUC
values were 1.000, 0.999 and 0.998 for the RF and RF-ANN, RF-LR and RF-DT models,
respectively. Moreover, in the prediction-rate curve obtained by comparing the spring
validation data with GPMs, it was observed that all models present tolerable performance
for groundwater potentiality mapping (AUC > 0.7). The RF-LR-DT-ANN ensemble model
achieved the best performance (AUC = 0.791), followed by the RF-LR-DT ensemble model
(AUC = 0.790), the RF-DT-ANN model (AUC = 0.789) and the RF-DT model (AUC = 0.787).

Figure 9. Cont.



Water 2021, 13, 2273 29 of 34

Figure 9. ROC curve: (a) success rate of individual models, (b) prediction rate of individual models, (c) success rate of
ensemble of two models, (d) prediction rate of ensemble of two models, (e) success rate of ensemble of three models,
(f) prediction rate of ensemble of three models, (g) success rate of ensemble of four models and (h) prediction rate of
ensemble of four models.

Furthermore, we have calculated the prioritization rank based on all evaluation
criteria; the results are shown in Tables 5 and 6 and Figure 10. The prioritization results by
compound factor (CF) analysis using the training GPMs of all models found that the RF
and RF-DT models had the best success rates; it ranked RF at 1 and RF-DT at 2. Moreover,
for prediction aptitude using testing GPMs, the prioritization analysis indicates that the
best models are RF-DT and RF-LR-DT. Taking into account the results in terms of success
and prediction rate, the two best models for mapping the groundwater potential in our
mountainous study area are RF-DT, followed by RF-LR-DT.
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Figure 10. Prioritization results of all models using compound factor (CF) analysis used in the
training and testing processes.

5. Discussion

The discussion will focus on three main points: (1) the analysis and selection of GIFs;
(2) role of factors in the occurrence of karst springs, and (3) the performance of individual
and ensemble machine learning algorithms in GWP mapping in large-scale areas.

5.1. GIF Selection and Analysis

According to IG analysis, lithology, fault density, distance to faults and rainfall were
identified as factors that were highly predictive of the presence of groundwater; moreover,
MeRugNu, distance to rivers, profile curvature and curvature were identified as the least
predictive. This seems logical given the very important role of the rock type in the genesis
and recharge of aquifers, in addition to the structuring factors (faults and fractures) that
facilitate recharge and the emergence of springs at the same time. According to FR analysis
results, groundwater potentiality is more likely to be found within Liasic limestone areas,
in areas with a high wetness index and within steep slopes. These last two factors underline
the importance of topographic control on hydrological processes and on GPMs in mountain
areas in particular. The results, showing the importance of high TWI values in the prediction
of groundwater potential.

As in the IG factor rankings, geological factors were classified as the best predictor
variables of GPM in our study according to the RF importance value. The importance given
to the elevation factor in this study may be related to the fact that the lower elevation zones
correspond to the Tadla and Tassaout plains, where the emergence of springs is very rare
due to their low slopes (<10%). Elevation is a key factor in the production of groundwater
potential maps in our region and in other mountainous regions around the world. The
rainfall factor also remains a very good predictor, since it is the source of aquifer recharge
in addition to the snow cover that characterizes these mountainous areas, especially during
the winter and spring seasons [28], which is in line with several previous studies [49,50].
Another factor that presents a robustness of prediction under the RF importance calculation
is the river density, since rivers represent an important source of exchange between aquifer
systems and surface hydrology. The importance of the predictors such as rainfall and river
density in GPM has been seen in other semi-arid regions around the world [11,51].

According to the results obtained from this study on GIF selection and analysis, it
is recommended to take into account many factors as possible in the analysis and in the
modelling processes, especially in regional studies where GIFs vary spatially and influence
groundwater potentiality from one location to another.



Water 2021, 13, 2273 31 of 34

5.2. Role of Factors in the Occurrence of Karst Springs

Geological factors were identified as the top predictor variables of GPM based on the
RF importance value and IG results. Certainly, lithology is the most relevant factor, followed
by fault density and distance to faults. Indeed, the karstic environment is largely composed
of the Lias limestones [22] which explains the importance of faults and lineaments in the
karstification process. These findings are in accordance with results reported by previous
studies in similar geological contexts, which detect higher groundwater potentiality in
limestone-dominated karstic areas with severe fracturing [52].

According to the results of this study in the Beni Mellal, Atlas Mountains, the factors
controlling the karst springs development can be divided into four categories: lithology,
geological structure, topography and climate condition: The liasic and Middle Jurassic
limestone contains 85% of the inventoried springs in the research region. The remaining
springs are found in Middle Jurassic and Pliocene–Pleistocene continental and alluvium
deposits. This confirms the important role of carbonated lithology in the emergence of
these springs by the effect of underground dissolution by rainwater. In addition, near to
the faults the probability of emerging sources increases, the same result is observed in
areas where the density of the faults is important. Regarding the topographic factors, the
altitude controls the most of this phenomenon, which mainly explains the emergence of
most springs in the transition area between the mountains and the Tadla plain (Dir). Finally,
the non-homogeneous appearance of the springs in this large mountain region appears
strongly controlled by the spatial variation of the precipitation, this will be mainly related
to the importance of the rains on the northern slopes compared to those of the south.

5.3. Machine Learning Algorithm Performance

Generally, the use of the RF, LR, DT and ANN individual learning machine models
has given good results, even though there is little stability between the success and the
prediction rate of some models (e.g., RF and DT models). Indeed, the RF and DT models
have a very high success rate (AUC = 1.000 for RF and AUC = 0.964 for DT), but the
prediction rate has decreased significantly for both models (AUC = 0.786 for RF and
AUC = 0.738 for DT).

In order to improve the performance and prediction rates of the models, combinations
of these four models were used. Different combinations were tested, and the prioritization
rank method was used to select the best models for groundwater potentiality mapping
in mountainous areas by integrating the maximum number of influencing factors in the
analysis. Thus, a significant difference between the individual models and ensembles
of models based on the predictive performance can be perceived. Indeed, the average
prediction rate using AUC values showed an interesting progression. The average pre-
diction rate for the four individual models was 0.753; then, it increased to 0.773 for the
ensembles of two models. Then, it increased to 0.783 on average for the ensembles of
three models, and finally, the AUC recorded its maximum value, which was reached by
the ensemble based on all four models, RF-LR-DT-ANN (0.791). This is confirmed by the
compound factor method, which has allowed us to draw up a general ranking of individual
models and ensembles of models using several statistics metrics applied to the training
and validation datasets. The results of the prioritization clearly indicate that the ensembles
of models improve performance and reduce some errors related to data preparation or
modelling processes. The best set of models for groundwater potentiality mapping in our
study are the RF-DT and RF-LR-DT ensembles. This is also the situation in several studies
that compare the predictive performance of either optimized, hybrid or ensemble models.
This is also confirmed by previous studies [53] that indicated that hybrid models show
better accuracies than individual models. However, in our study, while the majority of the
model ensembles performed better, others were marked by a decrease in performance: for
example, LR-ANN’s success rate and RF-DT-ANN’s prediction rate. This requires us to
make the maximum number of groupings possible in order to select the best ensemble of
models.
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6. Conclusions

In the present study, a wide variety of methodologies were applied based on GIS,
remote sensing and the use of individual and ensemble machine learning algorithms to
evaluate GP in large-scale mountainous areas. In addition, the novel aspect of this study is
that we have tried to integrate many of groundwater potentiality influencing variables as
possible, which include geological, topographical, hydrological, climatic and land cover
factors; 24 factors have been considered. Then, after a test of multicollinearity and an
information gain calculation, all of the factors were retained to produce groundwater
potentiality maps. In the same way, the importance of GIFs has been estimated from the
random forest method. Lithology represents the factor that most influences groundwater
potentiality in our karstic zone, followed by tectonic factors (faults and lineaments) and
a climatic factor (rainfall). Alternatively, several machine learning algorithms were used
for GP mapping. The RF, LR, DT and ANN models were chosen due to their satisfactory
results in other regions of the world. The application of individual models indicates that
RF represented the best model in terms of success and prediction rate. To improve the
performance and robustness of the prediction, ensemble models based on combinations of
the RF, LR, DT and ANN models were developed to investigate their capability to predict
groundwater potentiality in our large-scale mountainous area. According to the results,
the ensembles of models showed better performance, especially from a prediction rate
point of view. The AUC recorded an interesting progression: the maximum value was
calculated for the RF-LR-DT-ANN ensemble model, with AUC = 0.791. Furthermore, to
test the performance and reliability of different models and ensembles of models, several
statistics metrics were applied, and a prioritization rank was carried out based on the
compound factor method. Consequently, the best results were obtained for the RF-DT and
RF-LR-DT ensembles. Finally, the methodology developed in this study may be useful
for detecting groundwater potential zones, especially in mountainous areas with difficult
access and where the application of geophysical methods of exploration remains costly
and difficult to initiate for very large areas.
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