
water

Article

Synthesis and Characterization of Sr-Doped ZnSe
Nanoparticles for Catalytic and Biological Activities

V. Beena 1,*, S. L. Rayar 2, S. Ajitha 1, Awais Ahmad 3,* , Munirah D. Albaqami 4, Fatmah Ahmed Ali Alsabar 4

and Mika Sillanpää 5,6,7,8,9,*

����������
�������

Citation: Beena, V.; Rayar, S.L.;

Ajitha, S.; Ahmad, A.; Albaqami,

M.D.; Alsabar, F.A.A.; Sillanpää, M.

Synthesis and Characterization of

Sr-Doped ZnSe Nanoparticles for

Catalytic and Biological Activities.

Water 2021, 13, 2189. https://

doi.org/10.3390/w13162189

Academic Editor: Antonio Zuorro

Received: 7 July 2021

Accepted: 4 August 2021

Published: 11 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics, Nanjil Catholic College of Arts and Science, Manonmaniam Sundaranar University,
Kanyakumari 629153, India; ajithaphyholy@gmail.com

2 Dept of Physics, St. Judes College, Kanyakumari 629176, India; drslrayar@gmail.com
3 Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A,

Km 396, E14014 Cordoba, Spain
4 Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;

muneerad@ksu.edu.sa (M.D.A.); 439203369@student.ksu.edu.sa (F.A.A.A.)
5 Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33027, USA
6 School of Resources and Environment, University of Electronic Science and Technology of China (UESTC),

NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu 611731, China
7 Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia,

Bangi 43600, Malaysia
8 International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS),

Shoolini University, Solan 173212, India
9 Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44,

8000 Aarhus C, Denmark
* Correspondence: drbeenaphysics@gmail.com (V.B.); awaisahmed@gcuf.edu.pk (A.A.);

mikaesillanpaa@gmail.com (M.S.)

Abstract: The development of cost-effective and ecofriendly approaches toward water purification
and antibacterial activity is a hot research topic in this era. Purposely, strontium-doped zinc se-
lenide (Sr-doped ZnSe) nanoparticles, with different molar ratios of Sr2+ cations (0.01, 0.05, and
0.1), were prepared via the co-precipitation method, in which sodium borohydride (NaBH4) and
2-mercaptoethanol were employed as reducing and stabilizing agents, respectively. The ZnSe cubic
structure expanded by Sr2+ cations was indicated by X-ray diffraction (XRD) analysis. The absorption
of the chemical compounds on the surface was observed via Fourier transform infrared (FT-IR)
spectroscopy. The optical orientation was measured by ultraviolet–visible diffused reflectance spec-
troscopy (UV-DRS) analysis. The surface area, morphology, and elemental purity were analyzed
using field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron
microscopy (HR-TEM), and energy-dispersive spectroscopy (EDS) analyses. The oxidation state and
valency of the synthesized nanoparticles were analyzed using X-ray photoelectron spectroscopy
(XPS). Sr-doped ZnSe nanoparticles were investigated for photocatalytic degradation of methyl
orange (MO), and their antibacterial potential was investigated against different bacterial strains. The
antibacterial activity examined against Staphylococcus aureus and Escherichia coli implied the excellent
biological activity of the nanoparticles. Moreover, the Sr-doped ZnSe nanoparticles were evaluated
by the successful degradation of methyl orange under visible light irradiation. Therefore, Sr-doped
ZnSe nanoparticles have tremendous potential in biological and water remediation fields.

Keywords: Sr-doped ZnSe nanoparticles; co-precipitation; antibacterial; dye degradation

1. Introduction

Water contamination is a vital environmental issue that exhibits catastrophic conse-
quences for the world [1]. The largest water pollution sources are organic pollutants, dyes,
and inorganic heavy metals [2,3]. The industries that are declared as the main sources
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of these water pollutants include the pharmaceutical, textile, dyeing, and metallurgical
industries, among others. [4,5]. Dye waste from various industries, including some tex-
tiles, leather, pharmaceuticals, paper mills, and so on, is one of the primary pollutants
of the water, posing a serious threat to individuals and the environment [6,7]. Purposely,
various chemical, physical, and biological methods have been used for wastewater treat-
ment, which includes filtration, advanced oxidation, flocculation and coagulation, catalysis,
photo and chemical degradation, and adsorption [8,9]. In this way, photocatalysis pro-
vides a low-cost and reliable treatment for water purification [10–12]. As a consequence,
scientific research is focused on the development of new eco-friendly and cost-effective
materials for the elimination of harmful contaminants from wastewater streams. Because of
their intriguing chemical and physical characteristics, semiconductor nanostructures have
shown some efficiency regarding the photocatalytic removal of industrial effluents [13,14].
Numerous semiconductors have also been developed for the treatment of contaminated
waters. Metal oxides, such as TiO2 [15], ZnO [16], SnO2 [17], as well as group II–VI com-
pounds, such as CdS [18], CdTe [19], HgS [20], and ZnS [21], are among the most frequently
employed photocatalysts.

In addition, bacteria present a serious health threat, requiring the development of
novel and more efficient antibacterial therapeutics [10,22]. Recently, nanomaterials exhibit-
ing potential antibacterial activity have been observed as novel materials in the treatment
of bacterial infections [23,24]. Accordingly, scientists are now focused on nano-bioscience
because of its specific antibacterial potential. AgO and CuO [25], Sr-Ag [26], Cu [27],
ZnO [28], CdS [29], and many more compounds are reported as efficient antibacterial
agents in different biological activities.

Among these materials, ZnSe is a promising semiconductor material with appropriate
physical and chemical properties, enabling it to be an ideal material for a wide range of
applications [30,31]. ZnSe nanoparticles have been used in a vast array of laser and optical
devices. They possess a wide bandgap and transmittance range, as well as a high lumi-
nescence efficiency, low absorption coefficient, and excellent infrared transparency [32].
The improved photocatalytic capabilities of doped ZnS NPs prepared through the hy-
drothermal route make them attractive candidates for the degradation of different organic
dyes [33]. However, the catalytic efficiency and biological activity of ZnSe nanoparticles can
be enhanced by the incorporation of various dopants, such as Er [34], Mn [35,36], Cd [37],
Mo [38], etc. Physicochemical parameters, e.g., temperature, capping, reducing agents,
etc., exert a strong impact on the shape and size of nanoparticles, which makes them a
potential candidate for different applications, such as catalysis, sensing, and environmental
remediations. Increasing the temperature yields smaller particles and a narrow size distri-
bution [39,40]. In addition, capping agents such as surfactants, polymers, etc. affect the
morphology of nanoparticles [41]. A decrease in particle size has also been observed with
an increase in pH [41]. According to this research, Sr-doped ZnSe materials may reveal
catalytic activity against dye molecules, and their lower valency induces the release of ions,
which can control cell multiplication.

The present work investigated the degradation of methyl orange dye and action
against noxious bacteria by Sr-doped ZnSe nanoparticles. The Sr-doped ZnSe nanoparticles
were synthesized via the co-precipitation method, and different characterization techniques,
i.e., XRD, FTIR, UV-DRS, FE-SEM, EDX, HR-TEM, and XPS, were used to analyze their
structural, morphological, and catalytic properties.

2. Materials and Methods
2.1. Chemicals and Reagents

Strontium nitrate (Sr(NO3)2, zinc acetate dihydrate (C4H6O4Zn · 2H2O), 2-mercaptoethanol
(C2H6OS), sodium borohydride (NaBH4), methyl orange dye (C14H14N3NaO3S), and
sodium hydroxide (NaOH2) were used as chemicals in the synthesis of nanoparticles. All
the chemicals were bought from HiMedia, India (99% purity). The chemicals were used
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without any further processing. Double distilled water was used as a solvent for solution
preparation and washing.

2.2. Synthesis of Sr-Doped Znse Nanoparticles

Sr-doped ZnSe nanoparticles, synthesized following a co-precipitation method, were
obtained using a two-step process [42]. The first step was mixing Sr2+ at different molar
concentrations (0.01, 0.05, and 0.1) and 0.5 M zinc acetate with 2-mercaptoethanol using a
magnetic stirrer. 2-Mercaptoethanol acted as a capping agent that provided steric stabiliza-
tion to the synthesized nanoparticles [43,44]. At the same time, 0.5 M metal selenium was
dissolved by an NaBH4 solution to attain the sodium hydrogen selenide (NaHSe) solution.
The dissolved solution was mixed with strontium and zinc, the combined solution was
subjected to heating at 100 ◦C, and the pH was maintained at 10 which was controlled by
using NaOH solution. The annealing temperature affected the size and morphology of
nanoparticles.

The second step was a time-consuming process. The mixed solution reactions were
carried out within 24 h. The Sr2+ doped ZnSe nanoparticles were obtained in the form of a
precipitate. The precipitate was processed by double distilled water and ethanol to remove
the impurities. The precipitate was kept in the oven at 80 ◦C for 48 h, followed by heating
at 200 ◦C. The synthesis scheme is demonstrated in Figure 1.
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Figure 1. Synthesis process of the Sr-doped ZnSe nanoparticles.

2.3. Characterization

The structural nature and crystalline phase were identified from XRD analysis (PAna-
lytical X-ray diffractometer) (JDX-3532, JEOL, Tokyo, Japan), with Cu-Kα wavelength and
2θ ranging from 10◦ to 80◦. The surface variations, particle size, and elemental analysis
were recorded from FESEM with EDX ((JSM-5910, JEOL, Tokyo, Japan) and HRTEM (JEOL-
2100). The absorbed molecules were analyzed by using an FTIR spectrometer (Perkin
Elmer), while the optical behaviors were calibrated by UV–Vis DRS (UV Shimadzu-2700).
The binding between the orbitals and their energy was captured by the XPS technique
(XPS, PHI 500, California, USA).
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2.4. Antibacterial Activity

The Sr2+ doped ZnSe nanoparticles (0.1 M) were investigated for the antibacterial
activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The disc
diffusion method was used to evaluate antibacterial activity. The bacteria was evolved
in Mueller Hinton broth (24 h). The evolved bacteria were separated and streaked on
sterilized Petri plates (100 µL× 10−7 cm CFU broth conditions). The 6 mm disc was located
by three different diluted concentrations of Sr-doped ZnSe nanoparticles (25 µL, 50 µL,
and 100 µL). The nanoparticle-conceived discs were kept in an incubator for 24 h at 37 ◦C.
The incubated discs revealed information about Sr-doped ZnSe nanoparticles. The formed
zone from the disc denoted the antibacterial activity of the Sr-doped ZnSe nanoparticles.

2.5. Photocatalytic Activity

The ZnSe- and Sr- modified ZnSe nanoparticles were found to be highly responsive to
visible light, acting as photocatalysts in a robust way to achieve the elimination of pollutants
from the environment. MO was used as a model pollutant for the dye degradation study at
a concentration of 10 ppm (100 mL). The Sr-doped ZnSe nanoparticles were used as catalysts
in an amount of 10 mg at three different concentrations of Sr-doped ZnSe nanoparticles.
The dye and catalyst were mixed using a magnetic stirrer in the dark for 30 min to achieve
an absorption–desorption equilibrium condition. The mixed solution was stirred, and
visible light was irradiated by the combined solution. After an interval of 15 min, the
samples were taken out and centrifuged at 5000 rpm to remove the catalyst from the
dye solution. The obtained samples were measured by UV–Vis at 465 nm [45]. The dye
degradation efficiency “η” (%) was calculated using Equation (1) [7].

η % =
Co− Ct

Co
× 100 (1)

Here, Co corresponds to the initial absorbance value of the dye molecules, and Ct
denotes the irradiate absorbance value of the dye molecules.

3. Results and Discussion
3.1. XRD Analysis

The structural crystallinity, size, and shape were analyzed using XRD. The Sr-doped
ZnSe nanoparticle XRD pattern displayed in Figure 2 shows the crystallographic structure
and phase nature of the samples. The Sr2+ cations were doped into interstitials of the ZnSe
nanostructure. Therefore, was is no extra phase observed, but the FWHM was slightly
increased; this increasing FWHM denotes the increase of crystallite size. The raw ZnSe
nanoparticle crystallite size was 12 nm, and the substitution of Sr2+ increased the size of
the samples. The obtained peaks suggest that the sample was in crystalline nature, and
their 2θ values were 27.3◦, 45.3◦, 53.7◦, 66.03◦, and 72.7◦, corresponding to the plane values
of (1 1 1), (2 2 0), (3 1 1), (4 0 0), and (2 0 3), respectively. The average crystallite sizes were
calculated using the Sherrer formula expressed in Equation (2) [46].

D =
kλ

β Cos θ
(2)
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Figure 2. X-ray diffraction patterns of Sr (0.01 (a), 0.05 (b), and 0.1 (c))-doped ZnSe nanoparticles.

Here, D signifies the average crystallite size of the nanoparticles; k denotes the constant
shape factor, which is 0.9; λ specifies the X-ray wavelength; β relates to the full width at
half maximum (FWHM), and θ expresses Bragg’s angle.

The calculated D values were 21, 26, and 35 nm for the 0.01, 0.05, and 0.1 molar ratios
of Sr, respectively. The raw ZnSe nanoparticle size was low compared with Sr-doped
ZnSe nanoparticles [45]. The Sr2+ doping was doped into the interatomic gaps of the ZnSe
nanoparticles. Particularly, sample C showed high-intensity peaks, which indicated good
substitution of Sr into the ZnSe nanoparticles. In the Sr lattice fully doped with the ZnSe
setup, the peaks demonstrate the doping as well as quantitative phase of the Sr-doped
ZnSe nanoparticles. Therefore, there was no extra peak in the XRD spectrum, but the sizes
increased with the addition of Sr2+ cations. The obtained peaks were well coordinated with
the std. JCPDS card no. of 88-2345 of the ZnSe cubic system [47]. Sample C (0.1) had high
accordance and better crystallinity than samples B (0.05) and A (0.01).

3.2. FTIR Analysis

The functional groups of the synthesized nanoparticles were observed in the FTIR
spectrum and ranged from 4000 to 400 cm−1. The Sr-doped ZnSe nanoparticles in various
concentrations of FTIR spectra are depicted in Figure 3. The low concentration of Sr2+

cations into the ZnSe nanoparticles exhibited strong peaks of 1575 cm−1, 1359 cm−1,
1249 cm−1, and 1021 cm−1, responsible for the OH-bending, C-O stretching, C-H bending,
respectively. The increase in Sr2+ could shift the peaks toward the lower wavelength side.
This peak-shifting indicates the substitution of Sr2+ cations to the ZnSe nanoparticles. The
characteristic peaks of 725 and 486 cm−1 denote the formation of ZnSe nanoparticles in the
Zn-Se stretching vibration.

The addition of Sr resulted in extra elemental peaks in the FTIR spectrum. Peaks
of 800–400 cm−1 corresponded to Sr2+ cations in the Zn-Se stretching vibration. The Sr
reduction to the ZnSe nanoparticles was indicated by the decrease of the O-H stretching
and the appearance of new peaks from the pure ZnSe nanoparticles. The Zn2+ and Sr
reduction and stabilization were confirmed, and Sr2+ substitutions were also confirmed by
the peaks at 1000–400 cm−1. The FTIR spectra are evidence of the reduction of Sr and Zn,
and Se stabilized to the Sr-doped ZnSe nanoparticles was identified [48–51].
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3.3. UV-DRS Analysis

The data for the optical and electronic transition of the synthesized samples were
collected from UV-DRS studies. The UV-DRS absorbance spectrum of Sr-doped ZnSe
nanoparticles, illustrated in Figure 4a,b, determined the absorbance of Sr-doped ZnSe
nanoparticles. The observed peaks for doped nanoparticles lay in the visible region,
but the absorption for undoped ZnSe nanoparticles lay in the UV region. Such region
transformation referred to the transition between the electrons. The Sr 3d orbitals electrons
moved to the confined ZnSe arrangement. The ZnSe (Zn 2p and Se 3d) nanoparticle
surfaces were modified with the Sr atoms. Therefore, the optical absorption moved from
the UV region to the visible region [52].
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Figure 4. (a) UV–Vis DRS spectra and (b) bandgap spectrum of the Sr [0.01 (a), 0.05 (b) and 0.1 (c)] doped ZnSe nanoparticles.

Moreover, Tauc plots were used to measure the bandgap of the synthesized materials.
The Sr distribution over the ZnSe nanoparticles decreased the gap between the electrons
and the holes of the materials. Their modification increased the cavity to the surface. The
bandgap values were 2.66 eV, 2.44 eV, and 2.29 eV for samples A, B, and c, respectively.
The obtained bandgap values indicated the formation of the nanoparticles [53]. The
nanoparticles with low bandgap values produced high quantum fields, which is a major
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characteristic responsible for the UV–Vis region photocatalyst. The low bandgap and low
crystallite size produced enhanced catalytic activity toward the dye molecules.

3.4. FE-SEM Analysis

The surface morphology of the synthesized Sr-doped ZnSe nanoparticles was analyzed
via FE-SEM images, as shown in Figure 5a–c. The surface of the synthesized nanoparticles
varied with the addition of dopant content in the ZnSe. The surfaces of undoped ZnSe
nanoparticles resembled spherical-shaped particles, but their surfaces were engaged by
the incorporation of Sr2+ ions [54]. Figure 5a shows the nanosheet-like shape at a low
concentration of Sr. The Sr increase induced the structure nanosheet to nanoflower in
Figure 5b,c. The sample was nanoflower-like, which exhibited a large surface area com-
pared with pure ZnSe nanoparticles. The high surface area promoted enhanced catalytic
and bactericidal activity.
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3.5. EDS Analysis

The elemental composition of the synthesized samples was evaluated by the EDS
spectra displayed in Figure 5d–f. The EDS analysis confirmed the existence of metal in the
synthesized sample. The zinc, selenium, and strontium peaks represent optical absorption
of the energy of different values. The elements atomic and weight percentage of the
synthesized samples are tabulated in Figure 5d–f. The higher amount of Sr2+ decreased
the zinc distribution and increased the selenium distribution to the surface. The higher Sr
content produced a larger area of optical absorption at the surface.

3.6. HR-TEM Analysis

The surface morphology, shape, and particle size were evaluated by HR-TEM analysis.
Figure 6 shows the morphology of the synthesized Sr-doped ZnSe nanoparticles. The Sr2+

penetrated the ZnSe lattice. The undoped ZnSe nanoparticles exhibited a spherical shape,
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while the dopants of Sr2+ reformed the spherical shape [55]. The Sr-ZnSe nanoparticles
exhibited hexagonal shapes, as shown in Figure 6a,b. The obtained size of 36 nm provided
evidence of Sr doping into the ZnSe lattice system. The particle size values are in accordance
with the average crystallite size value. The particles’ poly-dispersive nature came from the
addition of rich Sr2+ cations. These results suggest that nanoparticles with larger surface
areas displayed better photocatalytic activity.
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Figure 6. HR-TEM images of Sr (0.1)-doped ZnSe nanoparticles at 100 nm (a) and 200 nm (b).

3.7. XPS Analysis

The chemical compositions and valency of the synthesized Sr-doped ZnSe nanoparticle
were analyzed by XPS spectra. Figure 7 represents the survey (a), Sr (b), Zn (c), Se (d), and
C (e) spectrum of the Sr-doped ZnSe nanoparticles. The survey (6a) spectrum lists out the
existing samples of Sr-doped ZnSe nanoparticles, such as the Sr, Zn, Se, and C elements of
the samples. The core Sr metal peak spectrum was established at the binding energy of
Sr-3d at 134.93eV [56].

Water 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 7- XPS spectra of Sr (0.1)-doped ZnSe nanoparticles; (a) wide spectrum, (b) Sr-3d spectrum, 

(c) Zn-2p spectrum, (d) Se-3d spectrum, and (e) C-1s spectrum. 

3.8. Antibacterial Activity 

Figure 8 shows the antibacterial activity of Sr-doped ZnSe nanoparticles against E coli 

(Gram-negative) and S.aureus (Gram-positive) bacteria. The zone of inhibition is tabulated 

in Table 1 and Figure 8a and b. The dissolution rate determined the antibacterial activity 

of the same nanoparticles at various concentrations. The lowest concentration produced 

the lowest activity compared with the 50 μL and 100 μL concentrations [45]. 

 

Commented [M6]: Please check if there is an 

explanation of Figure 8a in Figure 8 caption 

Figure 7. XPS spectra of Sr (0.1)-doped ZnSe nanoparticles; (a) wide spectrum, (b) Sr-3d spectrum, (c) Zn-2p spectrum,
(d) Se-3d spectrum, and (e) C-1s spectrum.



Water 2021, 13, 2189 9 of 15

The Sr substitution increased the electron mobility to the Zn and Se atoms. The zinc
atom binding energies were 1022.50 eV and 1045.46 eV, which may represent the valency
state of Zn 2p1/2 and Zn 2p3/2, respectively [57]. As the zinc atoms shared the energies
with Se and Sr atoms, the two peaks of selenium metal binding energies represent Se,
which is responsible for Se 3d5/2 (55.34 eV) and Se 3d3/2 (59.01 eV). Selenium was attached
to Zn atoms [58]. The combined ZnSe was decorated by Sr atoms. The Sr combination
with ZnSe tremendously increased the release of ions to the target in the photocatalytic
dye degradation and biological activities. The instrument peak of carbon binding energy at
285.13 eV appeared because of the calibration of the instrument. The results demonstrated
that Sr depended on ZnSe nanoparticles comprising the compound of Sr, Zn, and Se. Hence,
the synthesized nanoparticles could be suitable for photocatalytic applications as well as
bactericidal activities.

3.8. Antibacterial Activity

Figure 8 shows the antibacterial activity of Sr-doped ZnSe nanoparticles against E coli
(Gram-negative) and S.aureus (Gram-positive) bacteria. The zone of inhibition is tabulated
in Table 1 and Figure 8. The dissolution rate determined the antibacterial activity of the
same nanoparticles at various concentrations. The lowest concentration produced the
lowest activity compared with the 50 µL and 100 µL concentrations [45].
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Figure 8. Antibacterial activity of Sr (0.1)-doped ZnSe nanoparticles.

Table 1. Antibacterial activity of Sr-doped ZnSe nanoparticles.

Sr-Doped ZnSe NP’s B. subtilis E. coli

25 µL 0.5 mm 0.8 mm
50 µL 2 mm 1.5 mm
100 µL 5 mm 5.1 mm

Mechanism of Antibacterial Activity

The mechanism for antibacterial activity using Sr2+ doped ZnSe nanoparticles is dis-
played in Figure 9. The Sr-doped ZnSe nanoparticles’ antibacterial activity is prominently
based on reactive oxygen species (ROS). Superoxide and hydrogen peroxide were released
from the reactive oxygen group. ROS affected DNA and protein production, which led to
cell destruction. Both actions can destruct cellular growth and function. In addition, the
nanoparticle interactions with the cell membrane could break because of their electrostatic
interactions (the negatively charged cell interacts with the positively charged nanopar-
ticles). The cell wall breakage is a starting point for the dissolved ions to enter into the
bacterial system. These factors suggest that Sr-doped ZnSe nanoparticles play a robust role
in bactericidal activity.
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Figure 9. Antibacterial activity mechanism of Sr-doped ZnSe nanoparticles.

3.9. Photocatalytic Dye Degradation

Figure 10 demonstrates the photocatalytic dye degradation of the samples for the dye
degradation activity of the MO dye solution under visible light irradiation. The pure ZnSe
nanoparticles achieved a dye degradation of 75%, and the Sr-doped ZnSe nanoparticles
exhibited a dye degradation of 79%, 81%, and 88% for 0.01, 0.05, and 0.1 molar ratios of
Sr-doping in 120 min. The Sr-doping to the ZnSe nanoparticles increased the degradation
efficiency of ZnSe and decreased the bandgap, which could induce the charge carriers. The
Sr (0.1)-doped ZnSe nanoparticles expressed superior photocatalytic activity compared
with the remaining two catalysts.
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Figure 10. Photocatalyst dye degradation of (a–c) Sr-doped ZnSe nanoparticles against the MO
dye spectrum.

3.10. Kinetics of Photodegradation

The dye degradation efficiency spectrum is shown in Figure 11a. It was witnessed that
degradation efficiency increased with time for all Sr-doped ZnSe nanoparticle compositions.
The maximum efficiency was displayed by the highest Sr content in the nanoparticles.
Moreover, the degradation rate constant was calculated using Equation (3) [59]:

In
Ct
Co

= kt (3)

where k is the rate constant, t is the reaction time, Ct is the concentration of the dye molecules
at any time interval, and Co is the initial concentration of the dye molecules. The rate of
degradation was determined by the potential of the photocatalytic activity by plotting the



Water 2021, 13, 2189 11 of 15

changing concentration of the dye against time, as shown in Figure 11b. The degradation
rate was found in a descending order of 0.01119 (0.01) < 0.01288 (0.05) < 0.01349 (0.1) min−1

for Sr-doping to the ZnSe nanoparticles. The Sr-doping increased the activity of the MO
photodegradation. Hence, the maximum photocatalytic and bactericidal activity was
displayed by the maximum dopant concentration of Sr in ZnSe nanoparticles because of
its large surface area, reduced bandgap, nano size, and improved electronic properties.
Therefore, the Sr-doped ZnSe nanoparticles could have great applicability with respect to
environmental and biological remediations.
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Figure 11. Photocatalytic dye degradation efficiency (a) percentage and (b) pseudo-first-order kinetics
of the Sr/ZnSe nanoparticles.

Mechanism of Photodegradation

The detailed photocatalytic dye degradation mechanism is expressed in Equations (4)–(9).
Figure 12 also illustrates the mechanism of photocatalytic degradation of methyl orange.
The light irradiation induced the electron–hole pair recombination in the process of oxida-
tion and reduction. It could produce OH radicals from the oxygen surface. The photogen-
erated free radicals and superoxide radicals strongly degraded the organic dye molecules
and produced noxious compounds in the environment.

Sr-ZnSe + hν→ Sr-ZnSe + e−CB + h+VB (4)

h+VB + OH− → OH− (5)

h+VB + H2O→ OH* + H+ (6)

OH* + MO + O2 → CO2 + H2O (7)

e−CB + O2 → O−2 (8)

e−CB + h+VB→ heat (9)
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Figure 12. Photocatalytic dye degradation mechanism of the Sr-doped ZnSe nanoparticles.

4. Conclusions

Sr-doped ZnSe nanoparticles, exhibiting three different molar ratios of Sr, i.e., 0.01,
0.05, and 0.1, were prepared via the cost-effective co-precipitation method. The average
crystallite sizes in nanodimensions indicated the synthesis of nanoparticles. The FTIR
spectra suggested the formation of metallic bonds. UV-DRS displayed the reduced bandgap
with the incorporation of Sr dopant. The FE-SEM and HR-TEM images corresponded to
the XRD analysis such that the hexagonal crystals obtained also possessed a nano size.
Lattice reorientation was analyzed using XPS analysis. Sr2+ doping (0.01–0.1) to the
ZnSe nanoparticles revealed enhanced structural, optical, and morphological properties.
The Sr2+-doped ZnSe nanoparticles showed boosted antibacterial activity toward both
bacterial strains. The photocatalytic dye degradation of MO dye using Sr2+-doped ZnSe
nanoparticles achieved the degradation efficiency in a concentration-dependent manner,
i.e., 79% < 81% < 88% for 0.01, 0.05, and 0.1 molar ratios, respectively. The dye degradation
and their pseudo-first-order kinetics distinctly advocated that the Sr (0.10)-doped ZnSe
nanoparticles were superior to the other compositions. Thus, Sr-doped ZnSe nanoparticles
could act as an efficient photocatalyst for wastewater treatment and a suitable bactericidal
agent in biomedical applications.
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