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Abstract: A regional inundation early warning system is crucial to alleviating flood risks and reducing
loss of life and property. This study aims to provide real-time multi-step-ahead forecasting of flood
inundation maps during storm events for flood early warnings in inundation-prone regions. For decades,
the Kemaman River Basin, located on the east coast of the West Malaysia Peninsular, has suffered from
monsoon floods that have caused serious damage. The downstream region with an area of approximately
100 km2 located on the east side of this basin is selected as the study area. We explore and implement a
hybrid ANN-based regional flood inundation forecast system in the study area. The system combines
two popular artificial neural networks—the self-organizing map (SOM) and the recurrent nonlinear
autoregressive with exogenous inputs (RNARX)—to sequentially produce regional flood inundation maps
during storm events. The results show that: (1) the 4 × 4 SOM network can effectively cluster regional
inundation depths; (2) RNARX networks can accurately forecast the long-term (3–12 h) regional average
inundation depths; and (3) the hybrid models can produce adequate real-time regional flood inundation
maps. The proposed ANN-based model was shown to very quickly carry out multi-step-ahead forecasting
of area-wide inundation depths with sufficient lead time (up to 12 h) and can visualize the forecasted
results on Google Earth using user devices to help decision makers and residents take precautionary
measures against flooding.

Keywords: ANN-based models; flood inundation map; self-organizing map (SOM); recurrent
nonlinear autoregressive with exogenous inputs (RNARX)

1. Introduction

Floods are the most common natural disasters, and the increasing trend of flood occurrence
has been frequently reported worldwide over the last few decades [1–3]. As climate change
continues and extensive urbanization worsens, the situation will persist in the vicinities of rivers [4].
Asia and the Pacific Region are the most disaster-prone areas in the world, where floods are the
most frequent disasters and have large economic impacts on the region [5]. Recent disasters in
Southeast Asia—Typhoon Haiyan (Yolanda) in Philippines (2013) and massive floods in Thailand
(2011)—have necessitated the demand for effective flood management schemes, as annual damage
estimates far outstretch current management expenditure. The societal cost-benefit analysis of a flood
forecasting scheme, compared to a flood management scheme, is different from site to site. Early flood
warnings with sufficient lead time offer authorities as well as residents precautions and preventive
measures to alleviate consequences and minimize negative impacts. Consequently, there is the
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increasing need for flood forecasting with lead-times long enough to allow for flood mitigation actions.
Additionally, a real-time flood inundation map showing inundated areas and the corresponding
inundating depths could convey a clear message about the flood’s scope and severity, thus enabling
decision makers and residents to take adequate countermeasures. Subject to various influential factors
like rainfall, soil moisture, river-stage conditions, and geomorphological characteristics, as well as a
lack of sequential flood inundation datasets during storm events, real-time urban flood inundation
forecasting is a great challenge [6].

Several studies have been devoted to developing flood inundation simulation models suitable for
urban flood management and providing sequential high-resolution inundation depths responsive to
storm events [7–9]. Nevertheless, these models required substantial computational efforts in order
to deliver iterative solutions and thus could not effectively make real-time inundation forecasts.
Practically, hydrologists need to deal with the limited response time to flash flood disasters in
urban areas, and therefore multi-step-ahead flood inundation forecasting could be very helpful
in managing contingencies and alleviating flood risks. Researches have now moved on from
mathematical simulation modelling or physical-based flood forecasting methods to collaboration
between methodologies focusing on data-mining approaches and/or physical-based modellers [10,11].
In the last two decades, many studies have developed and/or implemented machine-learning
techniques, e.g., artificial neural networks (ANNs) for typhoon flood forecasting [12], runoff
forecasting [13,14], real-time multi-step-ahead water level forecasting [15], classification of regional
groundwater variations and inter-relations among variables [16], and building multi-relations between
fish species and water quality [17]; support vector machines for river flow prediction [18]; fuzzy
logic for flow forecasting [19], real-time flood forecasting [20], and water level forecasting [21];
extreme learning machine for stream-flow forecasting [22]; and non-dominated sorting genetic
algorithm-II for optimizing water utilization and hydropower output without minimizing flood
risks [23]. ANNs generalize relationships between input and output patterns without requiring
the physical mechanism behind the process, which is suitable for effectively handling regional
rainfall-inundation datasets [24–27]. However, we notice that most of the previous works focused on
one-dimensional processes and only very limited studies attempted two-dimensional flood inundation
forecasts due to highly dynamic complex spatio-temporal processes involved. Thus, there is a
continuous need to conduct in-depth research in regional flood inundation disaster management
using the latest scientific tools such as machine learning techniques.

This study aims at establishing a flood early warning system for inundation-prone regions of the
Kemaman River Basin in Malaysia. The study basin and its vicinities have frequently suffered from
monsoon floods, impacting the socio-economic, agricultural and sub-urban areas of the settlement.
We propose an integrated methodology that couples flood inundation simulation and machine learning
models to create real-time multi-step-ahead flood inundation maps during storm events. The forecasted
regional flood inundation map can be shown on Google Earth to help decision-makers and residents
take necessary countermeasures against flooding.

2. Study Area and Materials

Floods in Malaysia have great social-economic impacts, and are considered threatening.
Being located in the southern part of Terengganu on the east coast of West Malaysia (Figure 1a),
the Kemaman River Basin is a region that experiences frequent and severe floods. Flooding has been a
major issue in the study catchment since the early 1990s. Storm events result in flooding with short
concentration times and a rise in the power and speed of the river flow, causing severe damage to
settlements and infrastructures, especially in downstream regions. For instance, the concentration
time for Event 7 was less than 12 h and the maximum flow rate reached 1142 m3/s (Table 1).
Therefore, the downstream region that covers an area of approximately 100 km2 located on the
east side of the Kemaman River Basin is selected as the study area for building real-time regional
multi-step-ahead flood inundation forecast models (Figure 1e,f).
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The climate of the study basin is generally tropical monsoonal—uniform temperature around 26 ◦C,
high humidity (70–95%) and average annual rainfall of 2770 mm. Historical rainfall and water level
data of 10 rainfall and three runoff gauge stations spreading over the study area were collected from
the Department of Irrigation and Drainage (DID) of Malaysia; they were used for model calibration and
verification. Based on the availability of rainfall and discharge data, eight recent extreme flood events
occurring between 2000 and 2015 were selected for this study, as shown in Table 1. The rainfall and river
flow stations in the Kemaman River Basin are illustrated in Figure 1b,c, respectively.
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Table 1. Real storm events and their characterization.

Event
Beginning

(yy/mm/dd)
Ending

(yy/mm/dd) Duration (h)
Maximum Flow (m3/s) Accumulated Average

Rainfall (mm)
Maximum Average

Inundation Depth (m)St*. #4131453 St. #4232401 St. #4332401

1 2001/12/20,
5:00 a.m.

2001/12/27,
9:00 a.m. 172 731 814 84 453 1.70

2 2003/12/5,
12:00 p.m.

2003/12/12,
9:00 a.m. 165 554 433 183 396 1.67

3 2006/12/20,
2:15 a.m.

2006/12/26,
8:30 a.m. 150 534 207 87 268 1.48

4 2008/12/31,
19:30 a.m.

2009/1/8,
7:30 a.m. 180 478 487 96 390 1.74

5 2012/1/10,
7:15 a.m.

2012/1/17,
4:00 p.m. 177 453 506 39 255 1.70

6 2012/12/13,
0:15 a.m.

2013/1/13,
0:00 a.m. 744 509 920 75 973 3.28

7 2013/11/28
9:30 p.m.

2013/12/6,
9:30 p.m. 192 745 1142 63 996 4.17

8 2014/12/13,
12:00 p.m.

2015/1/1,
4:00 p.m. 460 634 801 57 1653 3.35

* River flow station.

The ranges of event duration, maximum average inundation depth, and accumulated average
rainfall were recorded as 150 h, 744 h; 1.48 m, 4.17 m; and 255 mm, 1653 mm, respectively. The highest
accumulated flood depth (4.17 m) occurred in Event 7, where the accumulated average rainfall reached
996 mm and the maximum flow achieved 1142 m3/s. In this study, rainfall in a flood depth hydrograph
denotes the average rainfall of each sub-catchment at a time-step of 3 h.

Taking Event 7 as an example, Figure 2 illustrates the rainfall histogram and the average
inundation depth hydrograph of Event 7.
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Figure 2. Rainfall histogram and average inundation depth hydrograph for Event 7.

3. Forecast Models

To establish a flood early warning system, we propose an integrated methodology that
couples flood inundation simulation models and machine learning-based forecast models to provide
multi-step-ahead flood inundation maps during storm events. The hybrid modelling process explored
in this study consists of five stages: (1) dividing the study area (100 km2) into 10,744 grids (75 m × 75 m);
(2) synthesizing the sequential regional inundation depths for real and designed events by using a
two-dimensional flood routing simulation model; (3) clustering regional inundation maps by using the
self-organizing map (SOM) algorithm; (4) building a forecast model by using the recurrent nonlinear
autoregressive with exogenous inputs (RNARX) for obtaining the average regional inundated depth
(ARID) under rainy conditions; and (5) adjusting the weight of the selected neuron in the SOM
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based on the forecasted ARID to obtain a real-time adapted regional inundation map. It is noted
that we removed the cells covering river channels and the cells with highest observed inundation
depths less than 10 cm (for example, inundation did not occur at cells at relatively high elevations).
Consequently, about 40% of the cells were removed, i.e., the number of grids reduced from 17,778 to
10,740. Thus, the input dimension (number of grids) of the SOM largely reduced, such that the model
(SOM) is easier to train and converge. Besides, because the study area is located downstream (estuary)
and its terrain in general is relatively flat, we consider the designed grid size (i.e., 75 m × 75 m) suitable
for presenting flood inundation variation during storm periods.

The average regional inundation depth (ARID) is calculated by the following equation:

ARID =
∑ inundation depth in each grid

the number o f grids
(1)

These models are briefly introduced in the following subsections.

3.1. Simulation Model

Historical observed data of inundation depths are rarely available, such that there are almost no
historical hydrographs of regional inundation depths of historical storm events. Hydraulic models,
in general, are a more physical-based approach to modeling the motion of a water body through
its geo-morphological environment, taking into account the effects of gravity and friction at the
water/bed interface to produce flood levels at various locations along the river and the flood plain [28].
Therefore, the flood routing simulation model would be the best alternative for generating the synthetic
hydrographs of flood depths for various storm events; it will help understand the induced flood
hazards and identify the responses of mitigation measures. InfoWorks ICM (ICM Suite upgrade, HR
Wallingford Asia Sdn Bhd, Kuala Lumpur, Malaysia), a commercial software package and an advance
of Infoworks RS, is a two-dimensional flood routing simulation tool that combines an advanced flow
simulation engine, hydrological and hydraulic models, GIS, and database in a single environment [28].
This model relies profoundly on the accuracy of topographical data [29]. InfoWorks ICM (RS) has
been satisfactorily utilized to develop flood risk maps for Northern Ireland [30] and Malaysia’s River
Basin [31]. This tool offers explanations for the effects of varying runoff rates from sub-catchments and
forms a tight-coupling of GIS functionality and hydrodynamic flow simulation.

In this study, InfoWorks ICM is implemented to mimic the effects of flood mitigation measures
under various real and synthetic events. The main components of the InfoWorks ICM consist of an ISIS
flow simulation engine, a geographic information system (GIS), and a database. The model carries out
two-dimensional flood routing simulation in consideration of hydraulic facilities/modeling [32,33].
The two-dimensional (2D) hydrodynamic model routes water over in the Digital Elevation Model
(DEM) forced by upstream boundary conditions such as a meteorological forcing, or a hydrograph
and downstream boundary conditions of water levels. The model generates accurate and reproducible
flood extent maps, which not only show the extent and depth of a flood, but can also be animated to
show the progression of a flood event. The scenario setting for simulating events was designed and
described as follows.

(1) Observed distribution: 8 real events (rainfall data).
(2) Synthetic distribution: a total of 12 designed events were generated, based on different

combinations of rainfall durations (12, 24, 48 and 72 h) and return periods (20, 50 and 100 years)
at main gauge stations.

Figure 3 shows the maximum simulated flood map derived from the 2D flood model (InfoWorks
ICM) based on a 5 m resolution digital elevation and rainfall information of a storm event (a
cumulated rainfall of 1653 mm in December 2014). We note that this simulation model may not
necessarily yield the exact flood depths but can provide the magnitudes of water depths and flood
extents. Consequently, the simulation model (InfoWorks ICM) with designed rainfall hyetographs are
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implemented to generate the regional inundation maps and provide the inundation depth of each grid
element for all scenarios. The generated inundation maps could then be used to train and validate
ANN-based models.

Coupling the observed and simulated datasets, the RNARX firstly makes 3 h-up to 12 h-ahead
forecasts (ARID); next, the forecasted ARID can be mapped onto the SOM topological map to select
the best matched cluster in the SOM, and then all the weights in the matched cluster can be adjusted
using linear interpolation to obtain a 3 h- (or, 6 h-, 9 h-, 12 h-) ahead regional flood inundation map.
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December 2014).

3.2. ANN-Based Models

In this study, we explore a hybrid SOM−RNARX model that integrates the SOM and the RNARX
to sequentially forecast regional multi-step-ahead flood inundation maps. The key idea is to integrate
the essence of both ANNs to produce two-dimensional visible regional flood inundation maps.

3.2.1. Self-Organizing Map (SOM)

The SOM is an effective clustering method that can classify high-dimensional datasets to form a
meaningful topological map; it offers the advantages of information extraction and visualization [34].
For instance, the SOM was implemented as a clustering tool to classify inundation maps [35], groundwater
levels [36,37], fishery data [17,38], and river flow stations [39]. The SOM consists of an input layer and
a clustering layer with nodes distributed over a two-dimensional map. Bearing in mind its clustering
capability and visual interpretation, the SOM in this study is implemented to form a two-dimensional
topological map that presents the main features of regional flood inundation depths and extends under
various hydrological conditions during storm events (Figure 4). The map size of the SOM must be
determined, which is usually done by trial-and-error procedures, because there are no theoretical guidelines
to determine optimal map size [40]. Due to the large input dimension (i.e., 10,744 grids) and relatively
stable variations of regional inundation depths, we only try three different map sizes (i.e., 3 × 3, 4 × 4,
and 5 × 5) to form regional inundation topological maps in this study case.

3.2.2. Recurrent Configuration of Nonlinear Autoregressive with Exogenous Inputs (RNARX)

The nonlinear autoregressive with exogenous input (NARX) network is a powerful dynamic
model for time series prediction [41]. Several studies have demonstrated that the recurrent
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configuration of the RNARX network (RNARX) could suitably forecast time series with long-range
dependence present in data [42–45]. Besides, there is a common lack of real-time observed inundation
depths, which is a great challenge for building a reliable real-time model. To solve the problem,
the RNARX network offers the advantage of using model outputs as parts of inputs to train the
model and use the configured model for real-time forecasting in test (or real) cases. To tackle the
problem of no actual real-time observations available during model construction, the recurrent scheme
of the RNARX network utilizes model outputs as parts of model inputs in training, validation and
testing stages. That is to say, this recurrent network could be trained with imperfect information but
similar characteristics of input-output patterns in all three phases (i.e., training, validation and testing
phases), such that the configured network would maintain a similar forecasting capability in all phases.
The constructed network and its synaptic weights would be fixed in the validation and testing phases
to evaluate its reliability with new events. For multi-step-ahead forecasting tasks, current forecast
values could be sequentially fed back to the input layer to provide one-step further forecasts.
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Assuming the unit time delay and the output-memory order are given, this nonlinear function of
the RNARX can be expressed by Equation (2):

z(t) = f [z(t − 1), . . . , z(t − q); U(t)] (2)

where U(t) and z(t) are the input vector and output value at a time step t, respectively, and f [·] is the
nonlinear function, q denotes the number of time steps.

The RNARX is commonly trained in two modes: parallel (P) and series-parallel (SP) modes. In the
P mode, the forecasted outputs (z (t − i), i = 1 − q) are fed back into the input layer, represented by
Equation (2). In the SP mode, the output regressor in the input layer is formed by observational values
(d (t − i), i = 1 − q), as shown in Equation (3):

z(t) = f [d(t − 1), . . . , d(t − q); U(t)] (3)

The architecture of the RNARX model is illustrated in Figure 5.
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Figure 5. Architecture of the RNARX network. X and Ẑ denote observed and forecasted values, respectively.

In this study, we implement the RNARX for flood forecasting. The RNARX model is configured
by using model outputs as parts of model inputs, and its weights are adjusted by using the
conjugate gradient back-propagation learning algorithm to search for the minimum errors during
network training.

3.3. ANNs-Based Regional Inundation Depth Forecasting

We next discuss how to integrate the SOM and the RNARX for forecasting regional flood
inundation maps. The hybriding process consist of three major schemes (Figure 6). The first scheme
involves clustering regional inundation maps using the SOM. The second scheme involves building
a forecast model using the RNARX to obtain the ARID under rainy conditions. The third scheme
involves adjusting the weight of the selected neuron in the SOM based on the forecasted ARID to
obtain a real-time adapted regional inundation map. To be more specific, the ARID of a neuron in the
SOM can be obtained by weightedly summing (averaging) the inundation depths in all grids of the
neuron, and then the neuron with a value that is the closest to the forecasted value is selected as the
best matched (selected) neuron. The ARID of the selected (winning) neuron can be further modified
by a linear interpolation method to adjust all the regional inundation depths in the neuron. Using this
approach, the regional inundation maps stored in the SOM can be instantly updated during storm
events, and the accuracy of the forecasted inundation map will significantly increase. We would like to
note that real-time rainfall information might be the only information available for modelling in real
applications, and therefore the proposed methodology does provide an effective and promising way
for real-time forecasting regional flood inundation maps and their extents. The proposed methodology
can be repeatedly implemented for obtaining multi-step-ahead forecasts.
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3.4. Evaluation Indexes

The performance of the proposed approach is evaluated by the coefficient of determination (R2)
and the root mean square error (RMSE), as shown below:

R2 =

 ∑N
i = 1

(
Di − D

)(
Yi − Y

)√
∑N

i = 1
(
Di − D

)2
∑N

i = 1
(
Yi − Y

)2

2

(4)

RMSE =

√
∑N

i = 1(Di − Yi)
2

N
(5)

where Di and Yi are the forecasted value and the observed (simulated) value of the ith data, respectively.
D and Y are the mean values of the forecasted values and the observed values, respectively.
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4. Results and Discussion

4.1. SOM Clustering

There are 225 (relevant to Events 1, 3, 5 and 7) datasets (i.e., regional inundation depths) to be
classified into the neurons of the SOM in the training phase. Each neuron in the SOM contains 10,774 grids
distributed over the study area. The classification results of the spatial distributions of inundation maps
are shown in Figure 7. We find that the SOM networks with map sizes of 4 × 4 can produce well the
clustering topology of regional inundation depths. The two-dimensional (4 × 4) topological map clearly
presents the overall results of the neurons, which exhibits the variation trend of regional inundation depths
ranging from [0–1 m] to [0–over 7 m]. The topological relationships between individual neurons and their
neighboring neurons are visible and distinguishable. In Figure 7, the ARID of each neuron is shown at the
top right corner of the neuron. The bottom-left section of each neuron is light yellow in color, showcasing
the lowest input values (ARID = 0.055 m), while the top-right section of each neuron is dark blue in color,
denoting the highest input values (ARID = 3.439 m).
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The constructed topological map can easily display the difference between these two corners
(bottom-left neuron and top-right neuron); moreover, the topological images of the neurons nearby
each of these two corners are quite similar. These figures show that the SOM network can effectively
cluster high-dimensional (10,744 grids) data to extract (and present) meaningful topological structures.

4.2. Forecasting Average Regional Inundation Depths (ARID)

Four ARID forecasting models are individually constructed for three- up to twelve-hour-ahead
forecasting by using RNARX networks based on a large number of rainfall-total inundated volume
patterns. There are 7 real events and 12 designed events used to build and/or test the forecast models.
Data allocation for model construction is shown in Table 2. The inputs consist of the current observed
three-hour rainfall of three sub-catchments and the recurrently forecasted ARIDs at time step of T
+ n − 1 while the output is the n-step-ahead (T + n) ARID. Table 3 shows the input combinations
of the RNARX models at various time steps. For instance, the input dimension is 4 (three observed
values and one recurrent forecasted value) and the output dimension is only 1 for T + 4 (12 h-ahead).
After implementing an intensive trial-and-error procedure based on the training and validation
datasets, the most suitable RNARX network is identified to have only one hidden layer with five nodes,
which would in general produce admirable forecast performances.

Table 2. Dataset allocation for constructing RNARX models.

Dataset Real Events Designed Events

Training

Event 3
Event 5
Event 6
Event 7

100yearreturnperiod_12hourRainfall
50yearreturnperiod_24hourRainfall
20yearreturnperiod_48hourRainfall
50yearreturnperiod_48hourRainfall
20yearreturnperiod_72hourRainfall

100yearreturnperiod_72hourRainfall

Validation Event 2
Event 4

20yearreturnperiod_12hourRainfall
20yearreturnperiod_24hourRainfall

100yearreturnperiod_48hourRainfall

Testing Event 8
50yearreturnperiod_12hourRainfall

100yearreturnperiod_24hourRainfall
50yearreturnperiod_72hourRainfall

Table 3. Input combinations for the RNARX model.

Forecast Time-Step
Input Factors Kemaman River

Average Rainfall
Cherul River

Average Rainfall Flood Depth

T + 1 (3 h-ahead) T − 2 T − 2 -
T + 2 (6 h-ahead) T − 1 T − 1 -
T + 3 (9 h-ahead) T T -
T + 4 (12 h-ahead) T T T + 3

Table 4 shows the summarized RNARX results for 3 h-up to 12 h-ahead forecasting of ARID in
terms of RMSE and R2. The R2 values of 3–9 h ahead forecasting are greater than 0.90 in these three
phases, which indicate that the constructed models can well forecast ARIDs with very high correlation,
while those of 12 h-ahead forecasting are also greater than 0.87. It appears that the models can forecast
ARIDs accurately and reliably. We notice that the 3 h-ahead, 6 h-ahead and 9 h-ahead forecasting
models produce very similar results because these three models have the same inputs and parameters.
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Table 4. Performance of 3 h-up to 12 h-ahead forecasting of ARID using RNARX based on 7 real events
and 12 designed events.

Forecasting Time-Step
RMSE (m) R2

Training Validation Testing Training Validation Testing

3 h-ahead 0.28 0.30 0.34 0.92 0.90 0.90
6 h-ahead 0.28 0.30 0.34 0.92 0.90 0.90
9 h-ahead 0.29 0.30 0.33 0.91 0.90 0.90
12 h-ahead 0.31 0.34 0.35 0.90 0.87 0.89

Figure 8 illustrates the simulated and forecasted ARIDs obtained from the RNARX model at
two different horizons for Event 7. The results indicate that the RNARX perform well at both shorter
forecast horizon (3 h) and longer forecast horizon (12 h). Therefore, it is suitable to use the RNARX to
make forecasts on ARIDs.
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4.3. ANNs-Based Models for Forecasting Regional Inundation Maps

In this hybrid stage, the forecasted ARID of the RNARX network is used to adjust the selected
SOM neuron whose ARID is the closest to the forecasted ARID of the RNARX network. Table 5 shows
the results of the simulation model for Event 7 in the study area (10,744 grids) with respect to different
inundation depths (i.e., All, 0–1 m, 1–2 m, 2–3 m, and >3 m) and time steps ranging from the beginning
of flooding at T = 75 to the end of flooding at T = 120. As shown, when T = 75 and T = 81, more
than half of the grids have small inundation depths (i.e., 0–1 m) and the numbers of grids for higher
inundation depths (i.e., 2–3 m and over 3 m peak) gradually increase over time. When T = 105, almost
half the grids have inundation depths exceeding 3 m, and ARIDs reach the maximum at T = 120 and
then decrease toward the end of flooding.
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Table 5. Numbers of grids with respect to different inundation depths obtained from the simulation
model over time for Event 7.

Time (h) All 0–1 m 1–2 m 2–3 m >3 m

T = 75 10,744 7274 1361 1231 908
T = 81 10,744 6530 1617 1376 1251
T = 87 10,744 4488 2176 1964 2146
T = 93 10,744 3466 2053 2452 2803

T = 108 10,744 1400 1195 2473 5706
T = 120 10,744 614 780 1707 7673

Table 6 shows the forecast performance (R2 and RMSE) of the hybrid SOM−RNARX model
with respect to different inundation depths over time for Event 7, taking the simulation model as a
benchmark. We find that the forecast model in general can provide very accurate and reliable results,
in terms of small RMSE values and very high R2 values.

Table 6. Performances of the SOM−RNARX model (time step = 3 h) with respect to different inundation
depths over time for Event 7, taking the simulation model as a benchmark.

Time (h) Time Step
All 0–1 m 1–2 m 2–3 m >3 m

RMSE * R2 RMSE RMSE RMSE RMSE

T = 75

T + 1 (=3 h) 0.45 0.94 0.52 0.38 0.16 0.09
T + 2 (=6 h) 0.44 0.94 0.51 0.36 0.14 0.10
T + 3 (=9 h) 0.45 0.94 0.52 0.38 0.17 0.09
T + 4 (=12 h) 0.49 0.94 0.55 0.45 0.25 0.17

T = 81

T + 1 0.65 0.97 0.53 0.79 0.81 0.84
T + 2 0.64 0.97 0.52 0.77 0.79 0.81
T + 3 0.66 0.97 0.53 0.79 0.82 0.85
T + 4 0.68 0.97 0.54 0.81 0.85 0.90

T = 87

T + 1 0.38 0.99 0.36 0.45 0.40 0.34
T + 2 0.37 0.99 0.35 0.43 0.39 0.31
T + 3 0.39 0.99 0.36 0.45 0.41 0.35
T + 4 0.08 1 0.06 0.08 0.08 0.12

T = 93

T + 1 0.19 1 0.16 0.2 0.2 0.19
T + 2 0.19 1 0.10 0.16 0.19 0.19
T + 3 0.19 1 0.16 0.21 0.21 0.19
T + 4 0.12 1 0.09 0.12 0.13 0.12

T = 108

T + 1 0.25 1 0.11 0.07 0.12 0.32
T + 2 0.25 1 0.11 0.07 0.12 0.32
T + 3 0.24 1 0.11 0.07 0.11 0.31
T + 4 0.18 1 0.12 0.08 0.08 0.23

T = 120

T + 1 0.42 1 0.48 0.57 0.34 0.42
T + 2 0.42 1 0.48 0.57 0.34 0.42
T + 3 0.42 1 0.48 0.57 0.34 0.42
T + 4 0.34 1 0.49 0.61 0.43 0.34

* Unit: m.

Figure 9 shows the regional flood inundation depths over time (from T = 75 to T = 120) for Event 7 in
consideration of (1) forecasted results, (2) simulated results, and (3) differences between the forecasted
and simulated results. We can find that the inundation depths range from low value (T = 75) to high
value (T = 120) and the forecasted results agree with the simulated results. It appears that the proposed
model could perform well because the differences in all the grids of the region are relatively small (less
than 0.3 meter in most regions and time-steps). We conclude that the constructed models can produce
suitable and reliable multi-step-ahead inundation forecasts and can be used to build a flood early warning
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system for the study area. We also notice that the proposed methodology can very quickly carry out
multi-step-ahead (3 h up to 12 h) forecasting of area-wide inundation depths, with computation time less
than few seconds, and thereby leading to real-time regional flood inundation forecasting.

Water 2018, 7, x FOR PEER REVIEW  14 of 18 

 

models can produce suitable and reliable multi-step-ahead inundation forecasts and can be used to 

build a flood early warning system for the study area. We also notice that the proposed methodology 

can very quickly carry out multi-step-ahead (3 h up to 12 h) forecasting of area-wide inundation 

depths, with computation time less than few seconds, and thereby leading to real-time regional flood 

inundation forecasting. 

 

Figure 9. Regional flood inundation depths at different time steps ranging from T = 75 (beginning) to 

T = 120 (ending) for Event 7 in consideration of (1) forecasted results, (2) simulated results, and (3) 

differences between the forecasted and simulated results, respectively. 

Figure 9. Regional flood inundation depths at different time steps ranging from T = 75 (beginning) to
T = 120 (ending) for Event 7 in consideration of (1) forecasted results, (2) simulated results, and (3)
differences between the forecasted and simulated results, respectively.
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4.4. Development of the Flood Early Warning System

The final output of this study is the display of the on-line real-time flood early warning system,
where the inundation status in the study area can be visualized online. The system display embeds
Google Map in the webpage of this system and provides Keyhole Markup Language (KMZ) files for
download. Users can see the regional flood inundation depths and quickly find a location’s inundation
depth. Figure 10 shows the real-time regional flood inundation forecasting results displayed on the
Web. It consists of three parts: Header, Main Page, and Footer. The header composes of the title of the
system, the legend and the KMZ download button, which visualize the forecasted results on Google
Earth in user devices. The left portion of the main page includes time of issue, lead time, tree views of
boundary and administration for selecting the forecasted results of interest on Google Map. The rest
of the main page is partitioned into two sub-parts: control panel and Google Map. The legend of the
flood inundation level is shown in the upper left corner (Figure 10). A quadri-color flood warning
system is built in this study, where blue denotes a warning of Level 1 indicating 0.1–0.3 m flood depths;
green denotes a warning of Level 2 indicating 0.3–0.9 m flood depths; yellow denotes a warning of
Level 3 indicating 0.9–1.5 m flood depths; orange denotes a warning of Level 4 indicating 1.5–2.5 m
flood depths; and red denotes a warning of Level 5 indicating flood depths exceeding 2.5 m. The main
function of the display interface is to show the inundation area over Google Map, to display the
maximum inundation depth with its location in each sub-district, and to provide a KMZ file download
of results that can be browsed on Google Earth.
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5. Conclusions

This study aims at exploring an inundation forecasting approach for future forecast horizons based
on the combination of a clustering technique (SOM) of a set of high-resolution inundation maps and an
inundation depth forecasting model based on an artificial neural network (RNARX). We then establish
a web-based (online) flood early warning system that enables the issuing of an advanced warning of
possible flash floods and/or regional inundation depth. We propose a novel hybrid SOM−RNARX
model for real-time forecasting of the spatial distribution of flood inundation in the study area of
the Kemaman River Basin in Malaysia. We demonstrate that the regional inundation maps stored in
the SOM can be instantly updated during storm invasion periods and the accuracy of the forecasted
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inundation maps can be significantly increased through real-time ARID forecasts obtained from the
RNARX network. The proposed methodology and the primary results are summarized as follows:

(1) The input datasets for the SOM consist of high-dimensional spatial inundation depths (with a
grid resolution of 75 m × 75 m) of the study area obtained from the 2-D simulation model based
on a number of real storm events. The main features of the spatial inundation distributions can be
well distinguished by an SOM with 4 × 4 neurons to obtain a distinguishable topology. The SOM
network can effectively cluster the high-dimensional (10,744 grids) inundation depths to extract
and present their topological structures.

(2) The results suggest that the RNARX network configured with current regional rainfall information
and the model’s recurrent output can well capture the main features of the input-output patterns
to provide stable and reliable forecasts of ARIDs.

(3) The proposed model integrates the favorable essence of both networks (SOM & RNARX) and
fuses their corresponding results to provide real-time visible regional multi-step-ahead flood
inundation maps with high resolution; their nowcasts are reliable and adequate (with small
RMSE and high R2 values).

(4) Regarding the execution efficiency of the developed system for the study area, the system can
very quickly (in just a few seconds) carry out three to twelve-hour-ahead forecasting of area-wide
inundation maps and thereby lead to real-time flood forecasting.
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