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Abstract: The ecological compensation scheme of water pollution in the basin is a result of the
interplay between upstream and downstream cities, which is of great significance to the guidance of
regional economic development. The purpose of this paper is to propose a multi-attribute scheme
decision algorithm, which is expressed in the form of interval number, to reduce the uncertainty of
decision results and improve the reliability of decision results. This method first uses the Monte Carlo
simulation technique to produce a large number of random samples in the various attributes of
the decision matrix to construct the random decision-making matrix (DMM). Then, according to
the overall dispersion and local concentration of the random DMM, the clustering method of the
projection pursuit is adopted. By accelerating the genetic algorithm, the weight and the best projection
eigenvalues of each scheme are optimized, and the sorting results of the decision-making cases are
obtained based on the projected eigenvalues. The results of the case study show that the uncertainty
of the decision results is greater when the number of random simulations is very low; as the number
of random simulations increases, the result of the decision becomes more and more stable and
clear, and the uncertainty decreases. The results of the Duncan test show that, scheme 2, which is
composed of financial compensation and remote development, is better than other schemes, and the
decision making is more reasonable. The result of this decision has certain values for the ecological
compensation scheme in Suzhou and Jiaxing cities, and the proposed method can be applied in
similar range multi-attribute scheme decision-making issues.

Keywords: multi-attribute decision making; ecological compensation; water pollution;
interval number; projection pursuit cluster

1. Introduction

Watershed ecological compensation is a form of payment for environmental services [1–3],
in which a beneficiary or a destroyer of the ecological environment gives a certain degree of economic
compensation to an environmental protector by measuring the value of ecological service to its
own value in order to motivate its environmental behavior [4]. In order to reduce the occurrence
of water pollution in basins, the ecological compensation mechanism is designed to force polluters
to reduce emissions and compensate for damage to the ecological environment, which has become
a popular topic [5].

As a result of a polluter’s willingness to pay, there would be multiple compensation schemes
from which to choose in practical work. In 2007, based on questionnaires and comparative research
in three American regions, Kosoy et al. found that the ecological compensation opportunity
cost for upstream ecological compensation was greater than the actual payment of downstream
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ecological compensation. A method of ecological compensation for the basin was then proposed
according to the opportunity cost [6]. Opportunity cost can be defined as the loss of potential gain from
other ecological compensation schemes when one scheme is chosen [7]. Wunder et al. suggested that
ecological services should be fully market-oriented, including ecological destruction of the basin and
the ecological reconstruction and construction compensation of the basin, which would achieve optimal
ecological compensation [8]. In 2014, Sand et al. studied the ecological compensation mechanism in
rural Kenya, and proposed that ecological compensation should be embedded in a broader institutional
framework and receive more financial resources to facilitate the adaptation of ecosystem services to
climate change [9]. Furthermore, Cheng et al. reviewed the mature theory and scientific mechanism
of ecological compensation in basins and analyzed the defects and shortcomings of the theory of
ecological compensation [10], which will contribute to decisions on compensation schemes.

The reason that we are willing to pay is to elicit the problem that upstream and downstream
cities are faced with various compensation plans that have been made by the experts from the
ecological compensation work group, and how to make decisions on the choice of these schemes.
However, most previous results were obtained by studying one aspect of the ecological compensation
scheme of water pollution in a basin separately; meanwhile, the comprehensive influence of various
factors is ignored in the selection of ecological compensation schemes [11], and the analysis of the main
behavior of the participation of ecological compensation is lacking. Therefore, the comprehensive
evaluation of multiple attributes is required.

Liu et al. and Zhang et al. suggested that the evaluation of the ecological compensation
scheme of water pollution in basins was a multi-attribute decision-making problem, and that different
compensation modes and compensation capitals, and the combination of compensation time could
constitute alternative approaches to ecological compensation [11,12]. Accordingly, when we determine
the ecological compensation scheme, we need to take into account the impact of the compensation
mode, the compensation capital and the compensation time to upstream and downstream regions,
and achieve the sustainable development of the whole basin.

Owing to the high degree of uncertainty in the compensation schemes, such as the pollution load,
the pollution degree, the compensation capital, and the compensation mode, compensation schemes are
difficult to agree on the upstream and the downstream. To address this problem, Zhang et al. proposed
a method of decision making based on prospect theory to measure the uncertainty in ecological
compensation schemes and improve the accuracy of the decision results [12]. Prospect theory is a theory
in cognitive psychology that describes the way people choose between probabilistic alternatives that
involve risk, where the probabilities of outcomes are known [13–15]. However, in a study by Zhang [12],
small changes in the upper and lower boundary range were found to lead to a greater impact on
the result of compensation schemes, and bring new uncertainty [16,17], since the method only used
information on the interval and the lower boundary to make the decision.

In this study, we propose that the new uncertainty is mainly caused by the interval number
algorithm, which can be overcome by improving the interval number algorithm. Therefore, we use
the Monte Carlo technique to simulate random samples of a large number of decision schemes in
the interval range. We are able to obtain the decision results of the various schemes, the overall
distribution trend of the various schemes, and also to reduce the uncertainty of the traditional interval
number algorithm.

By observing the spatial distribution of the projection eigenvalues of all schemes, the random
sample projection eigenvalues have the characteristics of total dispersion and local aggregation,
which are similar to the clustering problems in system engineering [18]. Projection pursuit cluster
(PPC) is an important system evaluation and decision-making method that has been applied in a large
number of studies in the field of water protection and utilization [18–20]. Therefore, we propose
the sorting decision of the ecological compensation scheme by using the projection trace clustering
algorithm to cluster the simulated scheme, and also to propose using the projection pursuit algorithm
to cluster the simulated ecological compensation scheme.



Water 2018, 10, 1280 3 of 12

The purpose of this paper is to propose a method to solve the problem of multi-attribute scheme in
the form of interval number decision-making matrix (DMM) by the Monte Carlo method, and reduce
the uncertainty of decision making. At the same time, PPC is used to make the decision of each scheme,
obtain the weight of each attribute and subsequently classify the decision classification according to
the projection eigenvalues, and carry out the statistical analysis. The rest of this paper is organized,
as follows: Section 2 gives the methodological framework and introduces the main principles of PPC;
Section 3 gives the results of a case study and a discussion, and the decision is made in the case
of different random simulations; and, Section 4 summarizes the main research results of this paper,
and suggests that the proposed method of decision making is more accurate and reasonable than
other methods. This study is expected to provide guidance for regional socio-economic development.

2. Materials and Methods

Firstly, the interval DMM of the watershed ecological compensation schemes is obtained by using
the expert rating method. Secondly, the Monte Carlo method is used to generate a number of random
samples in the various attributes of decision intervals, and the processing of the dimensionless is
carried out. Then, the PPC object function is constructed, the accelerating genetic algorithm is used to
optimize the projection vector, and statistical analysis is carried out to determine the sorting results of
each scheme quantitatively. The method is diagrammatically outlined in Figure 1.
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Figure 1. Diagram of multi-attribute decision making for ecological compensation.

2.1. Randomize Decision-Making Matrix

Let lbhj and ubhj be the lower bound and upper bound of the jth attribute of the hth scheme in
interval DMM, and x0

ij be the jth attribute of the ith random sample, where i = 1, 2, . . . , k × n, j = 1,
2, . . . , m, h = 1, 2, . . . , k, n is the number of random simulations of each scheme, m is the number of
attribute, and k is the scheme number of watershed water pollution decision making.

In the interval of the various attributes, the random number of the uniform distribution is
generated by the use of Equation (1) below. The number of random simulations for each scheme
are selected as 10, 50, 100, 500, and 1000, respectively, to make the random sampling results
statistically significant.

x0
ij = lbhj +

(
ubhj − lbhj

)
× rand() (1)

where rand() is a function that can generate [0,1] uniform random number.
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2.2. Dimensionless Data Treatment

The dimensionless formulation is given as:

xij =
x0

ij − x0
j min

x0
jmax − x0

j min
(i = 1, 2, · · · , k× n; j = 1, 2, · · · , m) (2)

where x0
j max and x0

j min are the maximum and minimum values of attribute j in the random
samples, respectively.

2.3. Projection Pursuit Cluster

Let a (a1, a2, . . . , am) be the m-dimensional unit projection vector, then zi, the one dimensional
projection eigenvalue of xij, can be shown as follows:

zi =
m

∑
j=1

ajxij (i = 1, 2, · · · , k× n) (3)

where, z = (z1, z2, . . . , zk×n) is the projection eigenvalue set. According to the projection vector,
the weight of each attribute can be calculated by Equation (4).

wj = a2
j (j = 1, 2, · · · , m) (4)

The PPC theory requires that the distribution of the projection eigenvalue z(i) is as dense as
possible, and it is best to build up a number of points; and, the overall projection dots are as scattered
as possible. According to the maximum entropy principle [21,22], the attribute weight of the projection
vector distribution should have the maximum entropy. The larger the entropy, the less the constraint
and the assumption that people add. Based on this concept, the projection indicator function Q(a) can
be constructed as:

Q(a ) = Sz × Dz × Hw (5)

where, Sz is the standard deviation of z(i) series, Dz is the local density of z(i), and Hw is the entropy of
attribute weights. Those formulas are shown as:

Sz =

√√√√k×n

∑
i=1

(z(i)− Ez)
2/(k× n− 1) (6)

Dz =
k×n

∑
i=1

k×n

∑
i=1

(
R− rij

)
u
(

R− rij
)

(7)

Hw = − 1
ln(m)

m

∑
j=1

wj ln
(
wj
)

(8)

where Ez is the mean of z(i) series, R = 0.1Sz denotes the windows radius of local density, rij = |z(i) −
z(j)|, and u(t) is the unit step function, which is equal to 1 when t ≥ 0, and 0 when t < 0.

When the value of Q(a) reaches a maximum, it obtains the optimal projection vector and clustering
results. Then the model can be described as a nonlinear optimization question whose formula is given
in Equation (9) below. This study uses the accelerating genetic algorithm to answer this question [23,24].{

maxQ(a )

s.t. ||a ||= 1
(9)
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2.4. Compensation Scheme Decision Making

The optimal projection value series z∗i is calculated according to Equation (3) by the optimal
projection vector a* that is obtained by Equation (9). The mean and standard deviation of each scheme
is calculated, and the Duncan significance test is carried out to compare the mean of each scheme in
order to guide the practice of policy.

Statistical characteristics and significance tests are performed while using the SPSS 15.0 software
(SPSS Inc., Chicago, IL, USA).

2.5. Study Area

The research area is located in the Taihu basin in China. The Taihu basin is divided into the
cities of Jiangsu, Zhejiang, Shanghai, and Anhui province, and the basin flows through eight cities,
Shanghai, Suzhou, Wuxi, Changzhou, Zhenjiang, Hangzhou, Jiaxing, and Huzhou. This study takes
the upstream of Suzhou city and the downstream of Jiaxing city as study areas.

The water quality from Suzhou to Jiaxing is dominantly grade V and above, with an average water
quality of grade V observed in 16.7%, higher than grade V in 80%, and grade IV in 3.3%. The water of
Jiaxing was so polluted that there was no clean river in the city. The water quality is embodied in the
characteristics of organic pollution, and it is completely impossible to meet the basic requirements of
drinking water safety. According to the experts from the working group of ecological compensation,
the literature [12] has proposed four alternatives to ecological compensation, as shown in Table 1.
The experts were mainly concerned with the idea that the plan should be acceptable to both upstream
and downstream cities, as well as with the level of economic development in both Suzhou and Jiaxing.

Table 1. Schemes of alternative ecological compensation [12].

Schemes Compensation Mode Compensation Capital Compensation Time

S1 Money compensation (MC) 300 million Yuan 30 day after pollution occurs

S2
Development in different

place (DDP) and MC
200 million Yuan for MC,

and 300 million Yuan for DDP

15 day after pollution occurs,
and 60 day after making DDP

compensation scheme

S3 Aid project (AP) and MC 250 million Yuan for MC,
and 250 million Yuan for AP

15 day after pollution occurs,
and 60 day after making AP

compensation scheme

S4 AP and DDP 500 million Yuan 60 day after making DDP and
AP compensation scheme

Table 1 describes the four schemes, include three attributes: C1, compensation mode, C2,
compensation amount, and C3, compensation time.

The four alternatives (schemes) are rated by experts with a score of 1 (worst) to 10 (best);
the decision matrix is given in Table 2. In order to facilitate the comparison of the PPC model
with the existing model [12], the original decision matrix from [12] is adopted in this paper.

The last line in Table 2 is a subjective weight range of each attribute, as determined by the same
experts from the working group of ecological compensation mentioned above. The subsequent decision
study on the ecological compensation scheme of the basin was based on the interval DMM in Table 2.
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Table 2. Interval decision-making matrix and range of index weights [12].

Scheme
C1 C2 C3

Lower Upper Lower Upper Lower Upper

S1 3 5 5 7 3 5
S2 7 9 8 10 2 4
S3 7 9 7 9 3 5
S4 8 10 2 4 7 9

weight 0.2 0.5 0.6 0.8 0.1 0.2

3. Results

3.1. Random Schemes and Dimensionless Treatment

Random schemes simulated for 10, 50, 100, 500, and 1000 times are shown in Table 3 based on
Table 2 about each decision-making interval of each scheme, which was given by experts that are
involved in the ecological compensation working group. Due to space limitations, Table 3 only shows
the results for 10 times.

Table 3. Random samples of each water pollution ecological compensation scheme.

Scheme No.
Original Random Samples Dimensionless Samples

C1 C2 C3 C1 C2 C3

S1

1 3.103 6.496 4.318 0.015 0.562 0.331
2 3.490 5.569 4.980 0.070 0.446 0.426
3 4.247 6.077 4.379 0.178 0.510 0.340
4 4.982 6.708 3.414 0.283 0.589 0.202
5 4.424 6.678 3.798 0.203 0.585 0.257
6 3.781 6.053 4.034 0.112 0.507 0.291
7 4.772 5.132 3.660 0.253 0.392 0.237
8 3.394 6.093 4.814 0.056 0.512 0.402
9 3.886 6.447 4.455 0.127 0.556 0.351

10 3.305 5.496 3.974 0.044 0.437 0.282

S2

11 8.539 8.028 3.988 0.791 0.753 0.284
12 7.583 9.017 2.413 0.655 0.877 0.059
13 8.895 8.593 2.956 0.842 0.824 0.137
14 8.488 8.913 3.189 0.784 0.864 0.170
15 7.325 8.553 3.022 0.618 0.819 0.146
16 8.219 8.452 2.642 0.746 0.806 0.092
17 8.488 8.545 2.608 0.784 0.818 0.087
18 7.161 9.251 3.920 0.594 0.906 0.274
19 8.467 9.230 2.750 0.781 0.904 0.107
20 7.286 9.947 2.038 0.612 0.993 0.005

S3

21 8.847 8.275 2.616 0.835 0.784 0.088
22 8.736 7.933 3.318 0.819 0.742 0.188
23 7.971 8.283 2.080 0.710 0.785 0.011
24 7.027 8.071 2.424 0.575 0.759 0.061
25 8.446 8.694 3.541 0.778 0.837 0.220
26 7.016 7.505 3.150 0.574 0.688 0.164
27 8.740 7.716 2.938 0.820 0.715 0.134
28 7.421 7.682 2.676 0.632 0.710 0.097
29 8.499 8.551 2.125 0.786 0.819 0.018
30 8.359 8.145 2.658 0.766 0.768 0.094

S4

31 8.315 3.527 8.064 0.759 0.191 0.866
32 9.716 2.629 7.334 0.959 0.079 0.762
33 8.521 3.911 7.885 0.789 0.239 0.841
34 8.222 2.794 7.536 0.746 0.099 0.791
35 8.607 2.202 8.576 0.801 0.025 0.939
36 8.798 3.723 7.960 0.828 0.215 0.851
37 9.825 2.481 7.063 0.975 0.060 0.723
38 9.622 3.164 8.462 0.946 0.146 0.923
39 8.808 3.626 8.296 0.830 0.203 0.899
40 8.581 3.433 7.148 0.797 0.179 0.735
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A dimensionless processing of the original random samples of C1–C3 is carried out using
Equation (2). The calculation results of the mean and standard deviation of the random generation
schemes under each scheme are listed in Table 4.

Table 4. Statistical characteristics of decision-making schemes under each random time.

Random Times
Mean Standard Deviation

C1 C2 C3 C1 C2 C3

10 7.248 6.540 4.430 2.061 2.288 2.129
50 7.214 6.515 4.461 2.066 2.358 2.150

100 7.232 6.501 4.495 1.973 2.325 2.130
500 7.255 6.478 4.490 2.005 2.372 2.133
1000 7.259 6.503 4.487 2.005 2.367 2.134

It can be seen from Table 4 that as the number of random simulations increases, the mean and
standard deviation of random sample statistics become stable. The PPC method is subsequently used
to calculate the weight and the projection eigenvalues.

3.2. Weights of Each Index by PPC Method

The random samples were optimized by accelerating genetic algorithm, the projection vector of
the three attributes was optimized and the attribute weight was obtained. The optimized results are
shown in Table 5.

Table 5. Weights of each attribute.

Random Times
Projection Vector a Attribute Weights

H(w)
C1 C2 C3 C1 C2 C3

10 0.542 0.776 0.323 0.294 0.602 0.104 0.820
50 0.540 0.775 0.328 0.292 0.601 0.107 0.824

100 0.543 0.775 0.323 0.295 0.601 0.104 0.821
500 0.544 0.775 0.321 0.296 0.601 0.103 0.819
1000 0.544 0.775 0.321 0.296 0.601 0.103 0.819

The projection vector results shown in Table 5 are positive, and the three attributes are consistent
with the performance indicators. The direction of each projection is stable as the number of
simulations increases. The direction of each projection vector is put into Equation (4) and the weight of
each attribute is obtained. The calculated attribute weights of the 1000-times simulated samples are
0.296, 0.601, and 0.103 for C1, C2, and C3, respectively; this is consistent with the subjective weight,
which showed that C2 is the most important attribute. C1 is also a matter of concern for the government.

The information entropy value obtained by the distribution of the attribute weights is listed in
the last column of Table 5. The value of H(w) shows that the entropy of information decreases with
the stability of the weight distribution, which indicates that the amount of information transmitted by
the attribute weight distribution increases. Therefore, increasing the number of random simulations
can reduce the uncertainty of the decision results.

3.3. Decision-Making of Each Scheme

3.3.1. Scatter Plot of Each Scheme

The projected eigenvalues of each scheme are calculated by using Equation (3) of the optimal
projection vector. In this study, the projected eigenvalue scatter diagram is plotted (Figure 2) under
each number of random simulations, and the characteristics of the clustering and dispersion of
each projection eigenvalue are observed. Due to space limitations, Figure 2 only shows 10, 100,
and 1000-times simulation samples.
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Figure 2 shows that all schemes display clear aggregation characteristics when the number of
random simulations increases. Overall, the projection eigenvalues of the S2 are the largest, followed
by S3, S4, and S1. It can also be seen from Figure 2 that S2, S3, and S4 have a lot of mixed data points.
In this case, if the decision solution is made using a small number of decision data, the optimal decision
results are likely to occur in S4 > S3 > S2.

However, Figure 2 is only a qualitative comparison of the pros and cons of all schemes.
We additionally need to make quantitative comparisons of the schemes.

3.3.2. Statistical Analysis of Projection Eigenvalues

For each of the random simulation times, the projection eigenvalues of each scheme are analyzed
and the Duncan test method is used to make a significance test, as shown in Table 6.

Table 6. Results of statistical characters and significance analysis.

Random Times S1 S2 S3 S4

10 0.569 ± 0.066 dC 1.099 ± 0.045 aA 1.02 ± 0.082 bA 0.838 ± 0.062 cB
50 0.536 ± 0.083 D 1.113 ± 0.068 A 1.013 ± 0.073 B 0.849 ± 0.078 C
100 0.550 ± 0.079 D 1.110 ± 0.077 A 1.015 ± 0.076 B 0.842 ± 0.076 C
500 0.557 ± 0.075 D 1.114 ± 0.074 A 1.010 ± 0.074 B 0.834 ± 0.077 C

1000 0.557 ± 0.076 D 1.113 ± 0.077 A 1.018 ± 0.077 B 0.838 ± 0.077 C

Note: abcd is the significance level under α = 0.05, and ABCD under α = 0.01.

Table 6 shows that the mean and the standard deviation of random samples are stable with
the increase in the number of random simulations. When the number of random simulations is
10, the statistical results showed a large difference compared to the results when 1000 simulations
are performed. This indicates that the uncertainty of the decision is very large and leads to inaccurate
decision results, when using a small number of data or directly using the decision matrix interval to
make a decision. Therefore, we suggest making decisions by simulating the attribute values of all
schemes, thereby reducing the uncertainty of the decision results.
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According to the results of the Duncan test, the significance results showed that S2 is better than
S3, that S3 is better than S4, and that S4 is better than S1 under the significance level of α = 0.05.
When the number of random simulations is 50, 100, 500, and 1000, the decision results under the 0.01
significance level is S2 > S3 > S4 > S1, so that abcd symbols are not marked in Table 6. However, under
the significance level of 0.01 and 10 simulations, S2 is less significant than S3.

In conclusion, the significance test results show that the optimal scheme is S2.

3.4. Analysis of Decision-Making Results

3.4.1. Reasonableness of Decision-Making Results

Based on the original decision matrix in Table 1, the analysis of the sorting rationality of all schemes
is carried out. When compared with S4 and S1, the C1 and C3 attribute values of S4 are significantly
greater than those of S1, and the C2 attribute of S4 is slightly less than that of S1. Accordingly, the result
that S4 is superior to S1 is reasonable.

As compared with S2 and S3, the C1 attribute of S2 is equal to that of S3, the C2 attribute of S2 is
slightly larger than that of S3 and the C3 attribute of S2 is slightly less than S3. Considering that the
importance of the C3 attribute is significantly less than that of the C2 attribute, S2 can also be reasonably
considered to be better than S3.

Although the C1 and C3 attribute of S4 are greater than that of S2, as compared with S2 and S4,
the C2 attribute of S4 is much less than that of S2. Based on the expert opinion, S2 can also be reasonably
considered to be better than S4. S3 and S4 are similar.

Based on the above analysis, the sorting result S2 > S3 > S4 > S1 is reasonable. In order to further
illustrate the accuracy of the PPC results, these results are compared with other methods.

3.4.2. Results of Comparison with Other Methods

In [11], while using the recovery cost method the decision result was calculated that Suzhou
should pay between 232 million and 662 million Yuan in compensation to downstream Jiaxing city.
This amount of compensation money is so large that it is bad for the coordination of the upstream
and downstream cities, as it does not give a specific compensation scheme that could be accepted by
both cities.

In [12], Zhang et al. adopted the prospect theory method that the upstream Suzhou city tended to
adopt the S1, which was only 300 million Yuan in compensation, and the compensation money was paid
30 days after the pollution loss occurred. However, the compensation money is so close to the economic
loss limit for ecological pollution of 232 million Yuan that the downstream Jiaxing city may not accept
that scheme. From the PPC results, the scheme S1 suggested in [12] has the worst performance,
which further explained that the scheme S1 is not suitable for selection as an implementation scheme.

The S2 scheme of this paper has the best performance; each expert is inclined to choose the
combination compensation, which is combined with the DDP and MC mode. The suggested
compensation amount of scheme S2 is 200 million Yuan, close to the economic loss limit for ecological
pollution of 232 million Yuan, indicating that the compensation amount of scheme S2 is almost in line
with the economic loss that is associated with ecological pollution. Meanwhile, the S2 scheme also
provides compensation for DDP with a step-by-step payment of 300 million Yuan, which is beneficial
to both Suzhou and Jiaxing cities. When the upstream Suzhou city implements the DDP compensation
mode, it would set up an economic development zone in the downstream Jiaxing city and provide
continuous financial support (in S2, the total amount for DDP is 300 million Yuan), which could not
only make the upstream Suzhou city gain economic benefits, but also drive the development of the
downstream Jiaxing city. Then, the DDP mode in S2 is a kind of economic compensation with growth
and sustainability, so as to achieve a “win-win” situation for economic development and ecological
and environmental protection.



Water 2018, 10, 1280 11 of 12

4. Conclusions

This paper presents a multi-attribute decision method for the ecological compensation scheme
of water pollution in the Taihu basin, China. The proposed method uses Monte Carlo simulation
technology to solve the interval multi-attribute decision and PPC method to cluster the projection
eigenvalues of various schemes. The proposed method is verified by means of watershed water
pollution ecological compensation schemes, and the following conclusions are obtained.

(1) The attribute values of the decision schemes are uncertain, and the standard deviation of the
decision results is larger. This problem can be solved by simulating a large number of solutions
through stochastic simulation techniques. According to the results of various numbers of random
simulations, the decision of all the schemes can be analyzed significantly to improve the reliability
of the decision results.

(2) Using the PPC method can improve the accuracy of the decision result, especially the
multi-attribute decision problem of the matrix element for entire interval number or a part.
With the increase of the number of simulations, the scatter plot of each scheme demonstrates the
superiority of the S2 scheme.

(3) The weight of the C2 attribute is the largest, followed by the compensation mode C1 and the
compensation time C3, which are consistent with subjective weight. When the number of
simulations was 50, 100, 500, and 1000, S2 was significantly better than the other schemes at
0.01 significance levels. It is clear that the combination scheme of money compensation and
development in different place is better than that of others, and it is worth using in the decision
of ecological compensation of watershed water pollution.

The upstream Suzhou city sets up the economic development zone in the downstream
Jiaxing city for the DDP mode and compensates the downstream Jiaxing city for ecological pollution,
which not only enables the upstream Suzhou city to gain economic benefits, but also drives the
downstream Jiaxing city to develop and restore the downstream city’s ecological environment.
Therefore, the combination of the DDP mode and MC mode is an ecological compensation scheme
with growth and sustainability, so as to achieve a “win-win” situation for economic development and
ecological and environmental protection and bring benefits to regional residents.

Further study of ecological pollution costs and compensation mechanisms should be a bigger
priority in regions where environmental protection and remediation is most required.
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