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Abstract: A modified form of the distributed Grid-Xinanjiang model (GXAJ) characterizing the
infiltration excess and saturation excess runoff mechanisms coupled to a two-source potential
evapotranspiration model (TSPE) was proposed to simulate the hydrological process and study
the spatiotemporal pattern of the precipitation, evapotranspiration, and soil moisture in the
Jinshajiang River basin. In the flow routing module, the flow is routed by the physically nonlinear
Muskingum–Cunge method. The TSPE model can calculate the spatiotemporal variation of the
potential canopy transpiration (CT), interception evaporation (IE), and potential soil evaporation
(SE). Subsequently, the calculated potential evapotranspiration (PE) is coupled to the GXAJ model to
calculate the water budget in each grid. An a priori parameter estimation was developed to obtain
the spatially varied parameters from geographical data, including digital elevation model (DEM)
data, soil data, vegetation data, and routing data. Hydrometeorological data were interpolated
to 4750 grids with cell sizes of 10 km × 10 km by the Thiessen Polygon method. The DEM
data was used to extract the flow direction, river length, hillslope, and channel slopes and to
adjust the altitude-related meteorological variables. The reprocessed Moderate Resolution Imaging
Spectroradiometer (MODIS) leaf area index (LAI) from the Beijing Normal University (BNU) dataset,
which has a spatial resolution of 1 km × 1 km, was used to obtain the spatiotemporal variation in the
LAI. The developed GXAJ model was applied to three sub-basins in the Jinshajiang River basin and
was compared to the traditional GXAJ model. The developed GXAJ model satisfactorily reproduced
the streamflow at each catchment outlet and matched the peak discharges better than the traditional
GXAJ model for both the dry and wet seasons. The uneven distribution of the simulated mean annual
evapotranspiration in the whole watershed was closely related to the vegetation types, ranging from
189.81 to 585.45 mm. Forest and woodland, shrubland, grassland, and cropland were shown to have
mean annual evapotranspiration values of 485.6, 289.4, 275.9, and 392.3 mm, respectively. The ratios
of the annual evapotranspiration to precipitation (E/P) of the forest, woodland, shrubland, grassland,
and cropland were 54, 83, 53, and 48%, respectively.

Keywords: Grid-Xinanjiang model; two-source potential evapotranspiration model; infiltration
excess and saturation excess runoff; nonlinear Muskingum–Cunge method; estimated prior parameter
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1. Introduction

Hydrologists have developed various hydrological models for water and environment resource
management over the past several decades. Traditionally, all of these hydrological models were
classified as physically-based models or conceptually lumped models depending on the degree
of complexity and physical completeness of the formulation of the structure [1]. The Xinanjiang
(XAJ) model is a commonly used conceptual hydrological model which has a robust capacity to
simulating hydrological processes in humid and semi-humid regions [2–6]. The XAJ model has
also been demonstrated to achieve better results in dry catchments than the other four conceptual
hydrological models, namely the Pitman model, the Sacramento model, the Nedbor-Afstromnings
model (NAM) model, and Soil Moisture Accounting and Routing (SMAR) model [3].

Although the XAJ model can be successfully applied to flood forecasting, the simplified
representation of the spatial distribution of the geospatial data of the drainage area and the
consideration of the whole watershed as being one unit have been questioned. Furthermore, it also
lacks the ability to predict the runoff in ungauged catchments and to assess the effects of human
activities and climate change. Yao et al. [7] developed a distributed GXAJ model which incorporates
the benefits of the widely used XAJ model and integrates the features of a distributed physically-based
model. The GXAJ model divides the whole watershed into numerous computational grid cells. In each
grid, the processes of evapotranspiration and runoff generation can be computed based on the initial
XAJ model. The outflow of each cell to the basin outlet is routed from grid to grid along DEM-based
river drainage networks by the Muskingum method. Yao et al. [7] proved that the GXAJ model
surpasses the initial conceptual model in reproducing the outflow process in basin outlets, especially
in large catchments. Yao et al. [8] noted that the GXAJ model still has some disadvantages. The model
does not fully utilize physically a priori parameters, which hinders its application to other catchments
and ungauged basins. For this reason, Yao et al. [7] developed an a priori parameter-estimated
Grid-Xinanjiang model (PPGXAJ) based on the original GXAJ model. The PPGXAJ model derives
many physically reasonable parameters from geographically-based original data, such as topographic
information, soil texture, and land use/land cover data. The PPGXAJ model was applied to the Tunxi
watershed with five internal stations to assess its ability to simulate hydrologic processes. The results
showed that the developed model can represent the spatial variability in the geography and climate of
the research basin and achieves satisfactory results in simulating the streamflow of the basin outlet
and interior gauging stations without any recalibration.

The original conceptual XAJ model and the modified GXAJ model have been used successfully
in many wet regions of China. However, without considering the infiltration excess runoff (IER)
generation, the model faces a huge obstacle for wider implementation in sub-humid and semi-arid
regions. Hu et al. [1] introduced a modified XAJ model combined with an infiltration and saturation
excess runoff mechanism (ISER), which considers the mechanisms of both saturation excess runoff (SER)
and IER. This model explicitly characterizes the impacts of different soil and precipitation conditions
on the runoff generation and considerably expands the model’s application to the simulation of the
rainfall runoff process in arid and semi-arid areas.

Evapotranspiration is a significant part of the hydrological cycle and is mainly affected by the soil
vegetation system and weather conditions. In the classic XAJ model, the actual evapotranspiration
(AE) is calculated by PE multiplied by a certain coefficient, which is determined by the soil
moisture conditions. The PE is a fraction of the pan evaporation observations. However, this
empirical calculation of PE cannot reflect the influences of and variation in the vegetation cover
and land use. Ren and Guo [9] and Wang et al. [10] pointed out that the evaporation value
measured by the evaporating dish is not always consistent or even negatively correlated under
different environments. Penman [11] proposed an evapotranspiration method that considers energy
and water transport mechanisms. Monteith [12] introduced aerodynamic resistance and surface
resistance to calculate the evapotranspiration rates of different types of vegetation. The formula
is named Penman–Monteith [13] and is widely used in hydrometeorological models. To calculate
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soil evaporation, Choudhury and Monteith [14] proposed the Choudhury–Monteith two-source
evapotranspiration model (TSPE), which is better than the Penman–Monteith formula and is consistent
with measured values. Yuan et al. [15] developed a hybrid form of the distributed model by integrating
a physically based TSPE model with the GXAJ model. The TSPE model explicitly represents the
spatiotemporal heterogeneity of PE, including potential CT, potential SE, and IE. The PE was then
directly used to drive the Xinanjiang model to perform the streamflow simulation.

Although the XAJ model has experienced a variety of modifications, and each of the modified XAJ
model has its advantages, as yet, there is no model that is comprehensive enough. There is currently
no comprehensive model to integrate the advantages of each model. In addition, the above models
all use the Horton infiltration formula to calculate the soil infiltration rate, but this formula mainly
simulates the infiltration process of single field rainfall runoff, which cannot be applied to continuous
rainfall runoff simulations. This paper uses the infiltration formula of Holtan [16], which obtains
the infiltration rate according to the difference between the water storage capacity of the basin and
the soil water content. The infiltration rate is independent of time and is only related to soil water
content. Moreover, the Muskingum routing method or ‘lag and route’ technique adopted in the above
GXAJ models cannot explicitly evaluate the impact of the depth of flow and surface roughness on the
streamflow. Getirana et al. [17] coupled the nonlinear Muskingum–Cunge (NMC) routing method to a
land surface model. This routing method is a physically-based method and has been demonstrated to
be a robust solution.

In our research, an integrated form of the XAJ model is presented, which makes use of the
strengths of the above-mentioned modified methods. The characteristics of the integrated model
are as follows: (1) the development of a physically-based GXAJ model; (2) the ability to derive a
priori parameters from geographically-based information; (3) surface runoff (SR) generation that
dynamically considers the IER and SER mechanisms; (4) the utilization of a physically-based TSPE
model to calculate the PE of each grid cell and (5) the calculation of flow routing using the NMC
method. The proposed method is applied to the simulation of daily runoff in three subcatchments
in the Jinshajiang River basin in China to evaluate its capability to simulate the runoff generation
and water budget and to assess the spatiotemporal patterns of the precipitation, evapotranspiration,
and soil moisture in the Jinshajiang River basin.

2. Improved GXAJ Model Formulation

2.1. Two-Source Potential Evapotranspiration (TSPE) Model

PE is the theoretical maximum amount of water that can dissipate into the air from a land
surface with continuous coverage and sufficient water [18,19]. The TSPE model was developed
by Yuan et al. [15] as an improved form of a two-source evaporation model [20] to calculate the
potential CT (Epc), potential SE (Eps), and IE (Ei), which Mo et al. [20] characterized by calculating the
energy balance and evapotranspiration of the sparse canopy. The three components can be calculated
as follows:

Epc =
∆Rnc +

ρCpD0
rac

λ
[
∆ + γ(1 + rcp

rac
)
] (1−W f r) (1)

Ei =
∆Rnc +

ρCpD0
rac

λ(∆ + γ)
W f r (2)

Eps =
∆(Rns − G) +

ρCpD0
ras

λ
[
∆ + γ(1 + rsp

ras
)
] (3)

where Rnc and Rns are the net amounts of radiation absorbed by the canopy and soil (W m−2),
respectively; G is the soil heat flux (W m−2); λ is the latent of vaporization (MJ kg−1); ρ is the air density



Water 2018, 10, 1265 4 of 20

(kg m−3); Cp is the air specific heat at constant pressure (KJ kg−1 ◦C−1); γ is the psychrometric constant
(kPa ◦C−1); ∆ is the slope of the saturation vapor pressure–temperature relationship (kPa ◦C−1); W f r is
the wetted fraction of the canopy; rac and ras are the bulk boundary layer resistance of the canopy and
the aerodynamic resistance between the soil surface and the canopy air space (sm−1), respectively;
rcp and rsp are the bulk stomatal resistance of the canopy and the soil surface resistance with the soil
moisture at field capacity (sm−1), respectively; and D0 is the saturation vapor pressure deficit at the
source height (kPa).

2.2. Infiltration and Saturation Excess Runoff Model (ISER)

During most rainfall runoff events, excess infiltration and excess storage often occur alternatively.
Infiltration runoff occurs when the rate of the intensity of the rainfall exceeds the infiltration rate,
while saturation runoff occurs if the soil water content goes beyond its field capacity [1,19,21]. Figure 1
shows the schematic diagram of the runoff method. The curve W ′ ∼ α represents the special
heterogeneity of the tension water capacity (TWC), which is determined by the specific watershed and
is unalterable. The curve F∆t

′ ∼ β represents the spatial distribution of the soil infiltration capacity
(SIC). It is based on the soil water content and varies during different time intervals. With changes in
the precipitation and soil moisture content, the F∆t

′ ∼ β curve changes, which makes the Rs (SR) and
Rg (groundwater runoff, GR) different. X is the distance from the intersection of curve W ′ ∼ α and
curve F∆t

′ ∼ β to the origin. These two curves can be presented using the following equations:

α = 1− (1− W ′

WM ′
)b (4)

β = 1− (1− F∆t
′

Fm∆t
′ )

B

(5)

where W ′(F∆t
′) and Wm

′(Fm∆t
′ ); are the TWC point (SIC point) and the maximum value of TWC

(the maximum value of SIC), respectively; b(B) is an empirical exponential; α represents the area
fraction of the runoff in which precipitation exclusively generates runoff; and β is the area fraction of
SR in which the rate of the rainfall intensity is greater than the infiltration rate. The spatial average
point infiltration function can be derived using the Holtan equation [16]:

ft = fc + a(S− F)n (6)

where a is the average basal area of the plant stems expressed as a fraction of the total area
(0.25 < a < 0.8); S is the potential storage of soil moisture (mm); F is the total amount of infiltration
(mm); n is an exponent (1.4); fc is the steady-state infiltration rate (mm/h); and ft is the point infiltration
rate (mm/h).

S is equal to WM(mean TWC), which is described by the following equation:

WM =
W ′M
1 + b

(7)

This equation is time-independent and is related to the soil moisture content, which makes it
suitable for a consecutive simulation.



Water 2018, 10, 1265 5 of 20

Figure 1. Infiltration and saturation excess runoff model.

2.3. Nonlinear Muskingum–Cunge Routing Method

The parameters K and X of the NMC method are physically based and can be derived from in
situ and satellite data, which distinguishes this method from the Muskingum method. The parameters
K and X can be expressed as follows:

K =
∆x′

c0
(8)

X =
1
2
− q0

wS0c0∆x′
(9)

c0 =
5
3

q0.4
o S0.3

o
n0.6w0.4 (10)

w = 12A0.17 (11)

qt
o =

Qt−1
i + Qt

i + Qt−1
o

3
(12)

where c0 (m s−1) is the kinematic wave celerity; q0 (m3 s−1) is the reference discharge; S0 is the river
bed slope, which can be retrieved from DEM data; w (m) and ∆x′ are the width and length of a river
reach; and N stands for Manning’s n and can be estimated with the help of relevant literature [17].
For each cell, Qt−1

o (m3∆t−1) represents the discharge at time t − 1. Qt−1
i
(
m3∆t−1) and Qt

i
(
m3∆t−1)

are the inflows at times t − 1 and t.

2.4. Schematic Diagram of the Integration of the ANNs with Conceptual Models

The developed GXAJ model was incorporates TSPE, GXAJ, ISER, and NMC for daily runoff
simulations. A schematic chart of the hybrid model is illustrated in Figure 2. As shown in the Figure 2,
the hybrid model contains five parts: PE, AE, runoff generation, runoff separation, and river routing.
The inputs to the model are topologic data, land use data, meteorological data, the leaf area index
(LAI), and soil data. The output is the streamflow at the basin outlet. The TSPE model is firstly used to
calculate the PE. The PE and precipitation are then input to the ISER model to obtain the total runoff.
The total runoff is then reallocated to SR, interflow, and GR based on a free water capacity (FWC)
distribution curve. The AE is calculated by PE and the evapotranspiration coefficient of the deeper
layer, with consideration of the soil storage deficit. The input SR, interflow, and GR are then adjusted
by a recession constant into the nonlinear Muskingum–Cunge routing model.
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Figure 2. A schematic chart of the modified Grid-Xinanjiang model (GXAJ) model.

3. A Brief Description of the Study Area

The Jinshajiang River basin is the source of the Yangtze River Basin and is located in southwest
China. The Jinshajiang River flows through the Tibet, Qinghai, Sichuan, and Yunnan provinces.
The basin is characterized by broad climate zones, varying from humid to semi-arid environments,
and has a large drainage area of 458.8 × 103 km2. The mean annual temperature ranges from −4.5 ◦C
to 16.4 ◦C. The total annual rainfall varies from 321 to 1662 mm. Approximately 85% of the annual total
rainfall occurs during the monsoon months, from May to September, with strong spatial and temporal
variation. Based on the river network characteristics, the Yangtze River Basin can be delineated into
three sub-basins, as illustrated in Figure 3. Sub-basin 1, located in the Southeastern part of the Tibet
Plateau, is upstream of the Jinshajiang River. Table 1 and alpine valleys make the region a transition
zone from shrubland and grassland to forest. With a high topographic relief, Sub-basin 2, the largest
tributary to the Jinshajiang River, has rich water resources. The main vegetation types of this sub-basin
are forest, grassland, and cropland. Sub-basin 3, located downstream, is the more populated area and
has ample rainfall. This area is covered by forest, woodland, grassland, and cropland. The annual
characteristics of the three sub-basins are listed in Table 1.

Table 1. The annual characteristics of three sub-basins of the Jinshajiang River basin [23].

Watershed Area
(km2)

Evaporation
(mm) PE (mm) Temperature

(◦C)
Runoff
(mm) Runoff Coeff Climate Zone

Sub-basin 1 214,184 461.5 1351.54 0.44 201.90 0.44 Semi-arid,
semi-humid

Sub-basin 2 136,000 753.16 1264.57 7.43 446.16 0.59 Semi-humid
Sub-basin 3 108,616 909.76 1267.21 13.52 479.53 0.53 Humid
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Figure 3. The Jinshajiang River basin, China [22].

4. Materials and Methods

4.1. Topographical Land Cover Data

The 3 × 3 arcs of DEM were obtained from the shuttle radar topography mission (SRTM) website
(http://www.cgiar-csi.org/data). The land cover data were obtained from the University of Maryland
at a spatial resolution of 30 × 30 arcs, including 14 classifications. The main vegetation types of the
Jinshajiang River basin are forest, woodland, grassland, shrubs, and crops.

4.2. Modis LAI

The LAI data were provided by the BNU MODIS LAI dataset (http://globalchange.bnu.edu.
cn), which offers global LAI data from 2000 to 2009 in 8-day intervals at a 1-km spatial resolution.
This dataset is based on the original Moderate Resolution Imaging Spectroradiometer (MODIS) LAI
product (MOD15A2) (https://modis.gsfc.nasa.gov/), with reduced deviation caused by cloudiness,
snow, and some other issues.

4.3. Meteorological Data

The daily data of 33 meteorological stations from 2001 to 2008, including mean, maximum,
and minimum temperatures, air vapor pressure, wind velocity, daylight duration, and precipitation,
were acquired from the China Meteorological Administration. The calibration period considered was
2001–2005 for the daily observed streamflow, and data from 2006 to 2008 were used to validate the
model. All meteorological data were interpolated over the whole basin at a 10-km resolution using the
Thiessen Polygon method. At the same time, some climate variables corresponding to DEM, such as
temperature, air vapor pressure, wind velocity, and rainfall, were topographically corrected using the
empirical equations proposed by Fu and Lu [24].

4.4. A Prior Parameter Estimation

The availability of physically derived parameter estimates can effectively improve our
understanding of the spatial characteristic of the study area and reduce the cost of computation.
The parameters WU (TWC of upper layer), WL (TWC of lower layer, EX (exponential parameter of Cg

(recession constant of groundwater storage), and IMP (fraction of impervious area) have less influence
on the model outputs, while Ki (outflow coefficient of free water storage, FES, to interflow), Kg (outflow
coefficient of the free water storage (FWS) to groundwater), C (evaporation coefficient of deeper layer),
Ci (Recession constant of interflow storage), b, SM (FWC), and WM are sensitive parameters [25–28].

http://www.cgiar-csi.org/data
http://globalchange.bnu.edu.cn
http://globalchange.bnu.edu.cn
https://modis.gsfc.nasa.gov/
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The empirical relations were used to estimate WU, WL, and Cg, as follows: WU = 0.167 ×WM,
WL = 0.5×WM (Yao et al. 2012), and Cg = Qt+1/Qt (outflow of dry season at times t + 1, t), EX,
and IMP were set to 1.5, and 0.01, respectively [19]. WM and SM correspond to the soil texture and
vegetation type and were estimated from the following equations:

Wm =
(

θ f c − θwp)× La (13)

Sm =
(

θs − θ f c)× Lh (14)

Lh = ϑlcLa (15)

where θs is the saturated moisture content; θ f c is the field moisture capacity; θwp is the wilt point;
La is the thickness of the aeration zone; Lh is the thickness of humus soil; and the θs, θ f c, and θwp of
each type of soil were derived from Anderson et al. [29] and Yao et al. [7]. The parameter TIi is the
topographic index of each grid (i) and is obtained from DEM. The parameter ϑlc is the adjustment
coefficient and can be obtained by referring to Yao et al. [8]. The coefficients ξa and ξb can be estimated
from the following equations:

ξa × TImin + ξb= Lamax =
WMmax

θ f c,TImin − θwp,TImin

(16)

ξa × TImax + ξb= Lamin =
WMmin

θ f c,TImax − θwp,TImax

(17)

Based on related literature [8,19], the areal mean of WM was set as 100 for the humid region
and 150 for the semi-humid region. The parameters WMmax = (1 + b)×WM and WMmin are set to
zero. The parameters Ki and Kg control the outflow rate of the interflow and groundwater from FWS.
They are estimated according to Koren et al. [30]. The optimum values of b, B, C, Ci, and a for different
sub-basins are determined by an optimization algorithm (SCE-UA; Duan et al. [31,32]). The hybrid
model was calibrated for the period of 2001–2005 and was validated for the period of 2006–2008.
The description and acquisition methods of all model parameters are shown in Table 2.

The results were evaluated by four statistical indices including the Nash and Sutcliffe efficiency
coefficient (NSE) [33], the relative error (RE), the percentage error in peak flow rate (PEP) and the
percentage error in wave volume (PEV) [34].

NSE = (1− ∑
(
Qo −Qs)2

∑
(
Qo −Qo

2
)× 100 (18)

RE = (

∑
i

Qo

∑
i

Qi
− 1)× 100 (19)

PEP = (
Qs,max

Qo,max
− 1)× 100 (20)

PEV = (1− Vs

Vo
)× 100 (21)

where Qo is the measured runoff (m3/s); Qs is the simulated runoff (m3/s); Qo is the mean values
of the measured runoff (m3/s); Qs,max is the simulated peak discharge; Qo,max is the observed peak
discharge; Vs is the simulated volume of hydrograph; and Vo is the observed volume of hydrograph.

This paper used the generalized likelihood uncertainty estimation (GLUE) method to analyze
the uncertainty of the model parameters [35]. The method randomly generates a large number of
parameter sets sampled from proposed (prior) distributions and inputs them into the model. Based on
the selected likelihood function, the likelihood function values between the simulated results and the
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observed results are calculated. Here, the parameter prior distribution adopts the most commonly
used uniform distribution [34] and samples the parameters uniformly within the parameter value
range. The Nash–Sutcliffe efficiency [33] is selected as the likelihood objective function. The average
relative length (ARL) [36], average asymmetry degree (AAD) [37] and average deviation amplitude
(ADA) [37] are used to quantify the model’s uncertainty.

ARIL =
1
n

n

∑
i=1

Limitu,t − Limitl,t

Qo,t
(22)

ADD =
1
n

n

∑
i=1

∣∣∣∣ Limitu,t −Qo,t

Limitu,t − Limitl.t
− 0.5

∣∣∣∣ (23)

ADA =
1
n

n

∑
i=1

∣∣∣∣12 (Limitu,t + Limitl,t)−Qo,t

∣∣∣∣ (24)

where Qo is the measured runoff (m3/s), and Limitu,t and Limitl,t are the upper and lower boundary
values of 95% confidence intervals respectively.

Table 2. The description and acquisition methods of all model parameters.

Module Parameter Description Acquisition Method

Two-source
potential

evapotranspiration

rmin minimum stamatal resistance(sm−1) based on land data assimilation system (LDAS)
ac albedo based on land data assimilation system (LDAS)
h height of vegetation(m) based on land data assimilation system (LDAS)

Wmax maximum leaf width based on land data assimilation system (LDAS)
d0 monthly zero-plane displacement based on land data assimilation system (LDAS)
z0 monthly roughness length based on land data assimilation system (LDAS)

LAI Leaf area index from the BNU MODIS LAI dataset

Actual
evaporation

Wum
tension water capacity (TWC) of upper

layer (mm) Based on WM

Wlm TWC of lower layer (mm) Based on WM

C evapotranspiration coefficient of
deeper layer determined by optimization algorithm

Runoff
generation

Wm TWC (mm) using θfc, θwp, and aeration zone thickness
θs saturated moisture content from literature
θfc field capacity from literature
θwp wilting point from literature
Sm free water capacity (FWC; mm) using θs, θfc, and humus layer thickness
Ki outflow coefficient of FWS to interflow on the basis of soil properties

Kg
outflow coefficient of FWS

to groundwater on the basis of soil properties

Ci recession coefficient of interflow water determined by optimization algorithm

Cg
recession coefficient of

groundwater water outflow of dry season at time t+1, t

Nonlinear
Muskingum–Cunge
routing method

n Manning roughness coefficient from literature
q0 water discharge of reference(m3s−1) using outflow and inflow of each grid

S0 river bed slope derived from the shuttle radar topography
mission (SRTM) digital elevation model (DEM)

w width of a river reach (m) derived from the drainage area
Dx′ length of a river reach(m) using total river length within each grid

Infiltration and
saturation excess

runoff

b exponent of TWC capacity
distribution curve determined by optimization algorithm

B exponent of soil infiltration capacity
distribution curve determined by optimization algorithm

a average basal area of plant stems determined by optimization algorithm

5. Results and Discussion

5.1. Evaluation of the Simulated Streamflow

Table 3 presents the performance of the three sub-basins using the modified GXAJ model, the ISER
+ GRAJ model, and the TSPE + GRAJ model. We evaluated three periods of flood discharge, including
the mean annual flow, the dry season flow (January–April, November–December), and the rainy season
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flow (May–October). In addition, during the dry period, the flood peak was not significant, so PEV and
PEP were calculated for the rainy season). Table 3 shows that these three methods achieved satisfactory
simulations for the periods of mean annual flow and the rainy season, with NSE values larger than
0.8, and the modified GXAJ model and ISER + GRAJ model performed better than the TSPE + GRAJ
model, especially in the semi-arid and semi-humid region (Sub-basin 1). The results of the modified
GXAJ model and the ISER + GRAJ model are similar to each other, because, as Wang et al. [10] pointed
out, the correlation between the measured results of evaporating dishes in the upper reaches of the
Yangtze river and the actual evaporation values is positive. At the same time, the runoff volume in the
basin is large, so the difference of evaporation has little influence on the runoff simulation results.

Compared to the performances of Sub-basin 1 and Sub-basin 3, Sub-basin 2 showed relatively
worse results in each evaluation period. Water projects of all sizes have been established there during
the last decade because of the abundant water resources, and the features of snow-fed alpine valleys
make the hydrological process complex. Sub-basin 1 achieved good results in both calibration and
validation periods, even though it is a transition zone from semi-arid to semi-humid. Sub-basin 1 is
situated southeast of the Tibet Plateau, and it is characterized by bad weather, poor traffic, a vast and
sparse population, and natural flow.

Table 3. Performances of the three sub-basins in the modified GXAJ model, ISER + GRAJ model, and
TSPE + GRAJ model (daily).

Parameter Category
Calibration Validation

Sub-Basin
1

Sub-Basin
2

Sub-Basin
3

Sub-Basin
1

Sub-Basin
2

Sub-Basin
3

Modified GRAJ Model

NSE (%)
mean annual flow 95.39 88.97 94.80 94.81 88.35 95.63

rainy season 91.26 83.54 92.19 91.58 85.03 93.86
dry season 81.68 61.06 82.82 76.94 58.49 87.70

RE
mean annual flow −2.60 −6.51 1.41 4.26 −6.88 1.20

rainy season −3.65 −5.97 1.11 3.46 −4.53 2.97
dry season 4.95 −11.10 2.43 8.27 −12.77 −3.97

PEP rainy season −3.80 −9.80 −4.40 −4.80 −8.60 −3.40
PEV rainy season −6.50 −11.50 2.60 6.13 −8.65 5.35

ISER + GRAJ Model

NSE
mean annual flow 94.22 86.68 93.34 93.59 85.87 94.66

rainy season 89.29 81.87 90.05 90.02 83.10 93.00
dry season 80.34 62.18 80.95 74.34 56.67 85.37

RE
mean annual flow −3.70 −6.88 −2.10 4.65 −6.30 -2.50

rainy season −4.50 −6.60 −1.82 4.12 −5.70 −2.90
dry season 6.20 −12.00 −4.20 8.67 −11.90 3.50

PEP rainy season −4.60 −10.10 −5.10 −5.30 9.50 −4.10
PEV rainy season −7.10 −13.20 −4.30 7.32 −12.46 −5.12

TSPE + GRAJ Model

NSE
mean annual flow 92.33 81.90 91.16 92.59 76.98 90.66

rainy season 87.17 80.44 89.15 87.66 80.30 92.32
dry season 75.60 60.66 76.90 69.38 56.99 82.46

RE
mean annual flow −8.03 −7.83 −2.01 −5.12 −8.94 −3.31

rainy season −7.90 −7.37 −2.53 −4.17 −7.24 −2.90
dry season −8.23 −12.00 5.62 −9.46 −15.30 −7.42

PEP rainy season −9.70 −12.40 −7.70 −9.20 −11.70 −6.20
PEV rainy season −14.50 −16.30 −7.05 −8.47 −14.87 −5.31

Since the values measured by the evaporating dish in the upper reaches of the Yangtze River were
consistent with the actual evaporation trend, the results of the modified GXAJ model and ISER + GRAJ
model were less different. We focused on comparing the results of the modified GXAJ model and the
TSPE + GRAJ model. Figure 4a–c show the time series of the observed and estimated daily streamflow
hydrographs from the modified GXAJ model and the TSPE + GRAJ model in the calibration period.
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Figure 4 shows that the simulated outflows of the two GXAJ models were consistent with the observed
outflow series, while the modified GXAJ model performed better than the TSPE + GRAJ model in
simulating the peak discharge of the runoff processes for both the rainy and dry seasons. In the rainy
season, the rainfall intensity rate may be larger than the infiltration rate in some regions, and in the dry
season, the infiltration rate of the water-starved soil may be smaller than the rainfall. Therefore, an IER
will be generated. Compared to Sub-basin 1 and Sub-basin 3, the simulation results of Sub-basin
2 in the dry season were unqualified. The frozen soil and anthropogenic activities may explain
these discrepancies.

Figure 4. Time series of observed and estimated daily streamflow hydrographs from the modified
GRAJ model and the TSPE+GRAJ model in the calibration period; (a) Sub-basin 1; (b) Sub-basin 2;
(c) Sub-basin 3.

5.2. Uncertainty Analysis

The parameter sets obtained based on uniform distribution were input into the model for the
model uncertainty analysis. Figure 5 presents the distribution curves of parameters of the three
sub-basins simulated by the modified GXAJ model. According to the figure, the distributions of
different parameters at different sub-basins are different, but they are all unimodal. The C parameter
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of Sub-basin 1 has the largest value, while the C values of Sub-basins 2 and 3 are close. This is due to
the low vegetation coverage in Sub-basin 1, and the higher vegetation coverage in Subbasins 2 and 3.
Regarding the Ci parameters, the values of Subwatersheds 1, 2, and 3 decreased successively. This may
be related to the differences in elevation between the basins. The value of b is mainly related to the
area of the basin, which increases with area, and vice versa [26,27]. Here, the distribution of B values is
relatively close, with little difference in each subwatershed. Parameter a is related to the average basal
area of plant stem. The simulation parameters showed that the values of Subwatersheds 3, 2, and 1
increase successively.

Figure 5. The distribution curves of parameters of the three sub-basins simulated by the modified
GXAJ model.

Then, the uncertainty area was analyzed by using runoff simulation results with a likelihood
function value greater than 65% [33]. Figure 6 shows the prediction interval, the interval means,
and observed values of the three sub-basins. The corresponding evaluation parameters (average
relative length (ARIL), average asymmetry degree (AAD), and average deviation amplitude (ADA))
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were calculated for quantitative analysis (Table 4). It can be seen from the figure that the uncertainty of
Subwatersheds 1 and 3 was small, and their prediction intervals were narrow. However, the uncertainty
of Subwatershed 2 was large, and its prediction interval was wide. As can be seen from Table 2,
the ARIL value of Subwatershed 2 was up to 0.5, and the model was shown to be uncertain, so the
applicability of the model in this region needs to be strengthened.

Figure 6. Comparison of 95% confidence intervals of the runoff at the three sub-basins.

Table 4. Comparison of uncertainty parameters for the analyzed simulation conditions.

Uncertainty Parameter
Catchment

Sub-Basin 1 Sub-Basin 2 Sub-Basin 3

average relative length (ARIL) 0.265 0.513 0.267
average asymmetry degree (AAD) 0.300 0.324 0.298

average deviation amplitude (ADA) 285.878 406.498 108.610
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5.3. Annual Water Budget Simulated by the Modified Xinanjiang Model

The water balance components of the three sub-basins are shown in Table 5. Sub-basin 3 had
the highest values of measured mean annual precipitation (MMAP), streamflow, and simulated
evapotranspiration, and Sub-basin 1 had the lowest values. The interannual variation (standard
deviation (σ)/annual mean) of MMMP for each sub-basin ranged from 0.2 to 0.27, while that of the
measured streamflow was the biggest and ranged from 0.38 to 0.46. The interannual variation of the
simulated evapotranspiration was the smallest. The precipitation was shown to have a great influence
on the storage changes in the semi-arid and semi-humid regions. The correlation coefficient between
the annual storage change and the precipitation for Sub-basin 1 was significantly high (0.85), whereas
it was low for Sub-basin 2 and Sub-basin 3. On the contrary, the correlation between AE and the
precipitation for Sub-basin 1 was the lowest, with a value of 0.41. This value is far lower than those
of the other two sub-basins. The correlation coefficients between the measured streamflow and the
precipitation for the three sub-basins were 0.81, 0.95, and 0.94 for Sub-basins 1, 2, and 3, respectively.
Because the study did not examine groundwater as a factor, the annual ground water storage was
considered to be unchanged.

Table 5. The water balance components of the three sub-basins.

Watershed Year Precipitation Storage
Change

Modeled Annual
Actual Evaporation

Measured
Discharge

Sub-basin 1
mean annual (mm) 461.50 −1.08 258.63 201.90

σ/Mean 0.23 - 0.09 0.38
correlation with Precipitation 1.00 0.85 0.41 0.81

Sub-basin 2
mean annual (mm) 753.16 −1.40 338.12 446.16

σ/Mean 0.20 - 0.07 0.40
correlation with Precipitation 1.00 0.66 0.64 0.95

Sub-basin 3
mean annual (mm) 909.76 1.62 422.21 479.53

σ/Mean 0.27 - 0.07 0.46
correlation with Precipitation 1.00 0.62 0.59 0.94

5.4. Seasonal Variation of the Evapotranspiration and the Soil Moisture

The series of monthly precipitation, runoff, evapotranspiration (Et), CT, SE, and the ratio of
the mean tension water storage (W) to tension water capacity (WM) are shown in Figure 7a–c.
The maximum monthly precipitation levels of each sub-basin were 105, 155, and 206 mm, respectively.
The curve of the runoff hydrograph appeared 1 month after the one of the rainfall in the wet season.
The annual evapotranspiration was larger than the runoff at Sub-basin 1 and smaller for Sub-basin 2
and Sub-basin 3. During the period of May to October, the CT exceeded the SE markedly due to the
dense vegetation canopy and vice versa. This result shows that the value of W/WM (taken as the soil
moisture content) is high from July to November, coinciding with the summer monsoon, while the
value of W/WM is low from March to May because of the vegetation growth and infrequent rain.
Compared to Sub-basin 1, the monthly soil water contents of Sub-basin 2 and Sub-basin 3 were higher.
However, even in the rainy season of the humid Sub-basin 3, the soil was not saturated every day.
Therefore, it is necessary to take both IER and SER into account in the rainfall runoff process.
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Figure 7. The series of monthly precipitation, runoff, evapotranspiration (Et), canopy transpiration
(CT), potential soil evaporation (SE), and the ratio of mean tension water storage (W) to tension water
capacity (WM); (a) Sub-basin 1; (b) Sub-basin 2; (c) Sub-basin 3.
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5.5. Spatial Patterns of the Annual Precipitation and Evapotranspiration

Figure 8a–c show the spatial heterogeneity of the annual average precipitation, evapotranspiration,
and fraction of evapotranspiration to precipitation (E/P). The land cover, elevation, and mean annual
temperatures are shown in Figure 6d,e. The annual precipitation level indicated a significant spatial
heterogeneity in the basin. The greatest amount of rain fell in the valley area of Sub-basin 3, which is
the outlet of the total basin. The smallest precipitation occurred in the north of Sub-basin 1, which is
located in the Tibetan Plateau. In the intermediate region of the Jinshajiang Basin, the precipitation of
Sub-basin 2 was larger than that of Sub-basin 1, even in similar topographies.

Figure 8. The spatial distribution of the mean annual precipitation (a), evapotranspiration (b), and
fraction of evapotranspiration to precipitation (c), land cover (d), elevation (e), and mean annual
temperatures (f).

Evapotranspiration is controlled by many factors, such as the air temperature, precipitation, speed,
incoming shortwave radiation, and land cover. Sub-basin 3 evaporates the most water annually as a
result of the high mean annual temperature, heavy rainfall, lower latitude (higher incoming shortwave
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radiation), higher vegetation coverage, and a relatively high speed (not shown). For Sub-basin 1,
however, the exception is the upper area, which evaporates more water than the downstream area.
The upper area of Sub-basin 1 has less precipitation, a lower mean annual temperature, a lower
speed, and sparse vegetation, whereas the high altitude enhances the incoming shortwave radiation,
promoting evapotranspiration. For different vegetation types, the mean annual evapotranspiration
showed significant differences across the basin, ranging from 189.81 to 585.45 mm/year. Forest and
woodland, which are mainly concentrated in the mid-low reaches of the Jinshajiang River, evaporate
most, with a mean value of 485.6 mm/year. The cropland scattered in Sub-basin 2 and Sub-basin
3 ranked second-high for evaporation, at 392.3 mm/year. The shrubland (shrubby deserts) and
grassland, which are mainly concentrated in the upper stream ranks, had the lowest evaporation,
with average values of 289.4 mm and 275.9 mm, respectively. The E/P represents the degree of
drought. The pattern of the E/P values of different vegetation types was different from that of
evapotranspiration. The shrub-covered land was shown to have a shortage of water, with an E/P of
83%. The region of forest and grassland is humid, and the E/P values were shown to be 54% and 53%,
respectively. The region of cropland was shown to be the moistest, with an E/P of 48%.

6. Conclusions

A modified form of the distributed GXAJ model considering the infiltration excess and saturation
excess runoff mechanisms coupled to a TSPE model was established to quantify the water balance and
analyze the spatiotemporal patterns of precipitation, evapotranspiration, and soil moisture of three
sub-basins in the Jinshajiang River basin. In the flow routing module, the outflow is routed using the
physical NMC method. A priori parameter estimation was used to obtain land use and land cover
(LULC) data, vegetation data, soil data, and routing parameters. LAI data was obtained from the BNU
MODIS LAI dataset.

The modified GXAJ model was developed and applied to simulate the daily runoff in the three
sub-basins in the Jinshajiang River basin. The results demonstrated that the modified GXAJ model
achieved satisfactory performance in the three sub-basins and especially improved the simulation
results of the peak discharges of the flood, compared to the TSPE + GRAJ model.

The precipitation in the humid region mainly affects the evapotranspiration, soil storage,
and discharge. The evapotranspiration in the semi-arid region is characterized by the combined
effects of climatic factors and land cover, while there is a strong correlation between the soil storage as
well as the discharge and precipitation. The evapotranspiration and E/P also differ for different types
of vegetation. Forest and woodland evaporate the most water annually, cropland takes second place,
and shrubland and grassland evaporate the least amounts of water. The desert shrub concentrated in
the upper stream of the Jinshajiang River basin is dry with an E/P of 83%; the humid middle and lower
Jinshajiang region are covered with forest and grassland with E/P values of 54% and 53%, respectively.
Cropland is rich in water resources with an E/P of 48%.

In the present model, the freeze–thaw process was not taken into account, which led to some
discrepancies in the results for the cold season. The frozen soil and snow module will be considered
in our future studies to enhance the ability of simulating the runoff generation in the outlet of the
basin. Furthermore, more spatiotemporal data, such as groundwater data, ET data, and snow data, are
needed from remote sensing or field measurements to test the results and improve the understanding
of the interior ungauged region. The integrated model may also be applied for the assessment of the
effects caused by climate change on the streamflows under different Representative Concentration
Pathway (RCP) scenarios.
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Abbreviations

The following abbreviations are used in this paper:
GXAJ Grid-Xinanjiang model
TSPE two-source potential evapotranspiration model
CT canopy transpiration
IE interception evaporation
SE soil evaporation
PE potential evapotranspiration
DEM digital elevation model
MODIS Moderate Resolution Imaging Spectroradiometer
LAI leaf area index
BNU Beijing Normal University
XAJ Xinanjiang
IER infiltration excess runoff
SER saturation excess runoff
AE actual evapotranspiration
NMC nonlinear Muskingum–Cunge
SR surface runoff
TWC tension water capacity
SIC soil infiltration capacity
ISER Infiltration and saturation excess runoff model
FWC free water capacity
SRTM shuttle radar topography mission
MMAP measured mean annual precipitation
GR groundwater runoff
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