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Abstract: For urban watersheds, the storm sewer network provides indispensable data for flood
modeling but often needs to be simplified to balance the conflict between the large amount of data and
current computing power. The sensitivity of a flood simulation to the data precision of a storm sewer
network needs to be explored to develop reasonable generalization strategies. In this study, the impact
of using the stroke scaling method to generalize a storm sewer network on a flood simulation was
analyzed in terms of the total inflow of the outfalls and flood results. The results of the three study
basins showed that different complexities of a sewer network did not have a significant effect on
the outfall’s total inflow for an area with a single drainage system but did for an area with multiple
drainage systems. In addition, serious flooding was mainly distributed at the backbone pipes, which
can be identified with the simplified sewer network. Several effective generalization strategies were
developed for sewer networks that consider the distribution characteristics of the drainage system
and application requirements. This study is theoretically important for better understanding the data
sensitivity of flood modeling and simulation and practically important for improving the modeling
efficiency and the accuracy of urban flood simulation.
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1. Introduction

Because of global climate change and accelerating urbanization, extreme weather
events—especially extreme precipitation and flood hazards—are becoming increasingly frequent
and serious. They are a major global problem facing humans [1,2]. There are several engineering
and non-engineering measures for dealing with heavy rainfall and flood hazards by predicting,
preventing, and alleviating the effects of urban floods on urban systems to some extent [3]. Among
them, non-engineering measures against flood hazards frequently use the simulated and predicted
results of hydrologic models [4–6].

However, flood modeling and simulation are more challenging for urban areas than rural areas
because of the higher requirements for input data, the more complex simulation of the drainage system,
and the more sophisticated exchange between surface and groundwater flows [7–9]. In particular,
the quantity and quality of data are significant factors that limits the accuracy of urban flood
simulations [10–13]. Because of the high non-permeability of urban surfaces, storm runoff that cannot
infiltrate underground is mainly discharged into rivers through the storm sewer network [14–16].

Water 2018, 10, 645; doi:10.3390/w10050645 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-2938-1586
http://dx.doi.org/10.3390/w10050645
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/5/645?type=check_update&version=2


Water 2018, 10, 645 2 of 19

Therefore, the quantity and quality of data on the storm sewer system are indispensable for
flood simulation.

Given the limits of data availability and current computing power, simplified or low-precision
data are usually used for urban hydrologic modeling. However, low-precision data may reduce
the accuracy of the flood simulation. Many studies in the literature have used multiscale data
to examine the impact of the data precision or resolution on the accuracy or sensitivity of flood
modeling and simulation [17–19]. Some researchers have investigated the influence of different
resolutions of topographic data on the simulation results of hydrologic models [19–23]. For example,
Chaubey et al. [21] evaluated the effect of the digital elevation model (DEM) resolution on the
output uncertainty of the Soil and Water Assessment Tool (SWAT) model in seven scenarios and
found that the DEM resolution affects the model in terms of watershed delineation, the stream
network, and sub-basin classification. Several studies have also explored the effect of the degree of
aggregation on hydrologic simulations by varying the number of watershed subdivisions [17,18,24].
For example, Cleveland et al. [17] simulated runoff with the Hydrologic Modeling System (HEC-HMS)
and discovered that the size or number of sub-watersheds have little influence on the computed
runoff hydrographs. Carpenter et al. [25] studied the effects of model parameters and precipitation
uncertainty on streamflow simulations of a distributed hydrologic model, and Yu et al. [9] explored
the effect of hydrologic parameters for a catchment on urban surface water flooding based on a
hydro-inundation model.

For urban watersheds, it is also important to explore the effect of the degree of generalization for
a storm sewer network on the accuracy or sensitivity of the flood modeling and simulation [26–28].
Park et al. [28] investigated the spatial resolution of the sewer network on the Storm Water
Management Model (SWMM) and found that it did not have a significant effect on the simulated
runoff volume. Krebs et al. [27] demonstrated that, while the runoff volume is almost unaffected by
the spatial resolution of a sewer network, lower resolutions lead to the overestimation of peak flow
because of the excessively rapid catchment response to storm events. Ghosh et al. [26] examined actual
and artificial drainage networks and found that peak flows show a dual-scale effect, where aggregation
reduces peak flows for larger storms and increases them for smaller storms.

However, most related studies have not explored the driving mechanism of the complexity of
urban storm sewers on the results of hydrologic models. In addition, there has been little research on
developing efficient or automatic generalization methods for storm sewer network, even though this
process is necessary to improve the simulation efficiency. The degree of generalization or approach
can differ depending on the precision requirements, topographic features, and so on. Thus, different
generalization strategies or methods need to be developed for different application requirements,
regional features, or structural characteristics of storm sewers while finding a balance between the
simulation accuracy and efficiency.

The objectives of this study were as follows: (1) design an automatic and high-efficiency method
for storm sewer network generalization; (2) explore the impact of urban drainage system complexity on
flooding simulation by using multiple basins with different drainage system structures and summarize
the laws and driving mechanisms for the flood simulation sensitivity induced by the spatial resolution
of the sewer network; and (3) propose different generalization methods of the storm sewer network
for different application purposes, geographic features, and drainage structures.

2. Methodology

2.1. Storm Water Management Model

The open source hydrologic model (the SWMM), which was developed by the US Environmental
Protection Agency [29], was selected as the modeling platform for flood simulation in this study.
The SWMM is a 1D dynamic rainfall-runoff simulation model for urban watersheds and combined
sewer overflow phenomena [30]. The main implementation principles and ideas fully consider the
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features of the urban watershed environment [29]. The SWMM includes four calculation modules:
flow generation, transport, extended delivery, and storage/processing. These are used to simulate
the surface water production and sinking of urban watersheds, storm sewer network convergence,
and water storage and sewage treatment processes [29]. The rainfall–runoff produced in subcatchments
flows into the storm sewer network through manholes and combines with dry-weather flow and
ground-water infiltration [30]. Flow routing from upstream and downstream boundaries of the storm
sewer system is governed by the conservation of mass and momentum equations for gradually varied,
turbulent, and unsteady flow (Saint Venant) equations [30,31]. For more details, see [30]. For overland
flooding simulations with SWMM, the excess volume of overflow junctions flows evenly into a ponded
area that can be set to the area within the subcatchment that can be flooded (subtracting the building
footprint) [29].

In this study, flow routing was computed according to dynamic wave theory and infiltration based
on the Green–Ampt method [27]. For the main estimation procedure, the measured parameters [32,33]
(e.g., area, width, and slope) are based on measurement and spatial analysis technologies with a
geographic information system (GIS) [34,35], and the inferred parameters [32,33] (e.g., roughness
coefficients) are based on empirical estimation [35]. Parameters are calibrated and verified by trial and
error with an automatic optimization procedure, where the objective is to maximize the Nash–Sutcliffe
(NS) coefficient of efficiency likelihood values. Details are presented in [35].

The catchment discretization procedure [36] is mainly based on [34] and [35] and uses GIS
technology to fully consider various factors that affect the flow process of a city’s water flow, including
rivers, roads, storm sewer networks, and buildings. As shown in Figure 1, DEM data are first
used to analyze the flow paths of urban surface water and obtain the natural basins with GIS
hydrologic tools [34,37]. Second, given that rivers and main roads obstruct rainfall across themselves,
the centerlines of rivers and main roads are applied to split natural basins into catchments with
the GIS clip tools. Finally, the catchments are divided into subcatchments based on the Thiessen
polygon method to help assign rainfall data from each rain gage to the nearest subcatchment [38,39].
The shapes of subcatchments are then revised by considering the effect of buildings on the direction of
storm runoff.

Figure 1. Catchment discretization based on geographic information system (GIS) techniques.

2.2. The Stroke Scaling Method

The main approach to expressing a storm sewer network is based on the node–arc structure.
This structure separates conduits and has poor visual coherence, which makes it difficult to match a
human’s overall perception. Moreover, the large number of junctions and conduits in the storm sewer
network result in inefficient or low accuracy of the generalization or classification method, even within
a small area. Therefore, we used the stroke technique [40–42] to design a stroke scaling method for
simplifying and classifying a storm sewer network in a highly efficient and accurate manner.
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The stroke technique concatenates separate line segments (e.g., conduits) into longer lines to
detect and resolve spatial inconsistencies [40–42]; this provides a more integrated structure to further
improve the efficiency of subsequent processing. During the generalization procedure for a storm
sewer network, we usually keep or remove conduits and connected junctions with similar shapes or
attributes. For example, we may remove conduits with a diameter of less than 400 cm or that are not
laid on the main roads. Therefore, we can consolidate the connectivity of conduits with similar shapes
or attributes into one pipe stroke to simplify the structure of the storm sewer network and improve the
later processing speed.

The main idea of pipe stroke construction is to convert L conduits into S pipe strokes (S ≤ L)
based on certain constraints. This can be expressed as follows:

L 6= ∅; L = {l1, l2, . . . , li} i ≥ 1 (1)

S 6= ∅; S =
{

s1, s2, . . . , sj
}

j ≥ 1, j ≤ i (2)

sx 6= ∅; sx = {lm, ln, . . . , lo} lm, ln, lo ∈ L, x = 1, . . . , j (3)

∪ j
x=1sx = L (4)

where L is all conduits of the storm sewer network, i is the number of conduits, S represents all pipe
strokes of the storm sewer network, j is the number of all pipe strokes, and sx is one of S.

We select the angle (a) between conduits and the horizontal direction, the road level (r) that the
conduits are laid on, and the diameter (d) of the conduit as constraints for combining two conduits
(l1, l2) that are directly connected to each other into one pipe stroke. The following conditions need to
be met: ∣∣al1 − al2

∣∣< Ta (5)

rl1 = rl2 (6)∣∣dl1 − dl2

∣∣ < Td (7)

where Ta is the difference threshold between the a values of l1 and l2, and Td is the difference threshold
between the d values of l1 and l2. The values of Ta and Td depend on the shape and attribute
characteristics of the sewer network in the study area.

For convenient generalization or classification of the sewer network, in addition to the conduits,
we also add the junction information, start the search junction, and the level of the pipe stroke. Thus,
the pipe stroke comprises all of the information of the original components but with more integrity.
The data structure of the pipe stroke can be described as follows:

PS = P, L, StartP, Le (8)

where PS is the pipe stroke, L is the set of conduits of the pipe stroke, P is the set of junctions of the
pipe stroke, StartP is the start search junction of the pipe stroke, and Le is the level of the pipe stroke.
The level is assigned according to the distance from the pipe stroke to the outfall. The level of the pipe
stroke (l1) that is directly connected to the outfall is set to 1, the level of the pipe stroke that is directly
connected to l1 is set to 2, and so on. We also set Le of the pipe stroke at the end of the sewer network
and the total length to be less than a given threshold, which depends on the actual situation at the last
level. This ensures that the unimportant segments are deleted during the generalization procedure.

The complete construction algorithm of pipe strokes is displayed in Figures 2 and 3. PSs are
the set of all pipe strokes of the storm sewer network. AL and AP represent the shape and attribute
information of all conduits and junctions of the original storm sewer network. Lset1 represents the
conduits that connect to StartP directly from the set of all conduits (AL). Lset2 represents the conduits
that connect to l1 directly from the set of all conduits (AL). Pset is P of the PS for which construction was
just finished. FindSS() is the function for searching the pipe strokes set of the original sewer network.



Water 2018, 10, 645 5 of 19

FindNextL() is the function of finding the next conduit and junction of a pipe stroke. The main idea
of this algorithm is to proceed from the outfall to the upstream pipes to find each pipe stroke and
assign Le to strokes based on the upstream and downstream relationships of the storm sewer network
(i.e., function FindSS()), as shown in Figure 2. The main idea of the construction algorithm for each
pipe stroke is to start from the given junction, which is set as StartP, and then select one conduit that
connects with StartP directly as the seed conduit (l1). Then, a traversal search is performed for all
conduits (L) and other junctions (P) that belong to this pipe stroke based on the connectivity between
conduits and the constraints (Equations (5)–(7)) to determine whether two conduits belong to one pipe
stroke (i.e., function FindNextL()), as shown in Figure 3.

Figure 2. Algorithm program flowchart for pipe strokes construction.

Figure 3. Algorithm program flowchart for each pipe stroke construction.

Figure 4 shows a simple example to explain the pipe stroke construction method and the
corresponding classification results. The sewer network in this figure with conduits l1, l2, . . . , l17 and
junctions p1, p2, . . . , p19 is spread on five roads (Roads 1–5). The pipe diameters of l1, l2, l3, l4, l5, l6,
and l7 are 0.8 m; the pipe diameters of l8, l9, and l10 are 0.6 m; and the diameters of other pipes are
0.4 m. We set Ta = 50◦ and Td = 0.3 m based on the sewer network shape shown on the left side of
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Figure 4 and the pipe diameter of each pipeline. We can get seven pipe strokes (PS1–PS7) based on
the algorithm of the pipe stroke construction (Figure 2). The right side of Figure 4 displays the P, L,
StartP, and Le of each stroke. As shown in Figure 5, we can divide the structure of the pipe system into
three levels from simple to complex. Leve1 1 contains PS1; Level 2 contains PS1, PS2, and PS3; Level 3
contains PS1, PS2, PS3, PS4, PS5, PS6, and PS7.

Figure 4. Example of pipe stroke construction. The plot on the left side of the arrow is the original
sewer network, and the right side shows the corresponding pipe strokes.

Figure 5. Classification results for the example storm sewer network in Figure 4.

3. Study Area and Scenario Design

3.1. Study Area

Nanjing is one of the biggest cities in China, and its terrain is dominated by low hills. Its main
water system comes from the Yangtze River and three urban rivers: the Moat, the Qinhuai River,
and the Jinchuan River. In the rainy season, the city is frequently hit by extreme precipitation; this,
combined with the increasing imperviousness and low capacity of the drainage system, results in
waterlogging or flood hazards. Heavy rainfall-driven hazards cause shutdowns of the traffic system,



Water 2018, 10, 645 7 of 19

inconvenient travel, building damage, and so on; thus, they have become a significant factor affecting
the socioeconomic development of Nanjing.

Nanjing Normal University is located in the northeast of the city and belongs to an area where
mountains meet the plains. The terrain of the campus is undulating and complex. We selected the
campus of Nanjing Normal University as a study area to identify the impact of urban drainage system
complexity on flood simulation. We divided the study area into three sub-basins: the northern district,
the convention district, and the main district. These sub-basins have different terrain characteristics
and distributions of the construction area, as shown in Figure 6. The drainage systems of these
sub-basins are isolated because of walls, roads, and cutoff ditches at their boundaries. The walls and
roads obstruct the exchange of water from the sub-basins and outside, and the cutoff ditch prevents
the inflow of storm runoff from the hillsides into the sub-basins.

Figure 6. Location of the study area, which contains three separated sub-basins: the northern district,
convention district, and main district.

In this study, the main datasets included DEM data with a resolution of 1 m for rivers, buildings,
green land, roads, and the storm sewer network. As listed in Table 1, the area, impermeability,
total conduit length, and numbers of junctions and outfalls were 15.83 ha, 70.84%, 9.15 km, 1057,
and 1, respectively, for the northern district; 3.47 ha, 28.56%, 0.60 km, 97, and 2, respectively, for the
convention district; and 60.00 ha, 64.62%, 26.22 km, 2701, and 11, respectively, for the main district.
Figure 7 shows the distribution of the storm sewer networks for the three sub-basins. One drainage
system discharges rainwater into the drainage system outside the campus through outfall 1Y108 in the
northern district, two drainage systems discharge into the lake through outfalls 4Y438 and 4Y455 in
the convention district, and 11 drainage systems discharge into the river in the main district.
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Figure 7. Distribution of the storm sewer networks in the three sub-basins. The red triangles represent
outfalls, which are terminal nodes of the drainage system. The blue dots represent junctions where
links join together. The light blue line represents conduits that move water from one node to another.

Table 1. Properties of the drainage system for the three sub-basins.

Northern Distract Convention District Main Distract

Area (ha) 15.83 3.47 60.00
Impermeability (%) 70.84 28.56 64.62

Total length (km) 9.15 0.60 26.22
Number of junctions 1057 97 2701
Number of outfalls 1 2 11

3.2. Scenario Design

In order to consider the structure and complexity of the storm sewer system in the study
area, we classified the networks in the three sub-basins (northern district, convention district,
and main district) into four levels (1–4) based on the stroke scaling method presented in Section 2.2.
The complexity of the sewer network increased from Level 1 to Level 4. The four levels of the sewer
network were combined with the DEM, rivers, buildings, green land, and roads dataset for four
subdivisions (1–4) based on the catchment discretization techniques described in Section 2.1.

We constructed Chicago design storms [43,44] with four different return periods (2, 10, 50, and 100
years) with a rainfall duration of 2 h based on the following Nanjing storm intensity equation, which
was derived from local rainfall records for more than 60 years:

i =
64.300 + 53.800lgP

(t + 32.900)1.011 (9)

where i is the rainfall intensity (mm/min), t is the rainfall duration (min), and p is the return period
(year) of the rainfall event. We chose a rainfall duration of 2 h for the modeling and simulation
because the Chicago hyetograph with a rainfall duration of 2 h is considered an appropriate way to
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simulate extreme rainfall in China [45,46]. The error would increase if a storm longer than 2 h was
simulated [45,46].

Therefore, we designed 16 scenarios for the three sub-basins, as listed in Table 2. S4, S8, S12,
and S16 were control groups for the sewer network in scenarios that were not simplified, and the rest
of the scenarios were experimental groups.

Table 2. Scenario design in this study.

Scenarios Complexity Subdivisions Storms

S1 Level 1 Subdivision 1 2-year
S2 Level 2 Subdivision 2 2-year
S3 Level 3 Subdivision 3 2-year
S4 Level 4 Subdivision 4 2-year
S5 Level 1 Subdivision 1 10-year
S6 Level 2 Subdivision 2 10-year
S7 Level 3 Subdivision 3 10-year
S8 Level 4 Subdivision 4 10-year
S9 Level 1 Subdivision 1 50-year
S10 Level 2 Subdivision 2 50-year
S11 Level 3 Subdivision 3 50-year
S12 Level 4 Subdivision 4 50-year
S13 Level 1 Subdivision 1 100-year
S14 Level 2 Subdivision 2 100-year
S15 Level 3 Subdivision 3 100-year
S16 Level 4 Subdivision 4 100-year

4. Results and Discussion

4.1. Classification and Discretization Results

Figures 8–10 display the classification results for the four complexity levels of the storm sewer
networks and corresponding discretization results for the three sub-basins. For the northern district,
the total conduit lengths at Levels 1–4 were 0.08, 1.54, 6.58, and 9.15 km, respectively; this corresponded
to 3, 79, 531, and 1055 subcatchments, respectively. For the convention district, the total conduit lengths
were 0.07, 0.23, 0.43, and 0.60 km, which corresponded to 5, 22, 47, and 96 subcatchments, respectively.
For the main district, the total conduit lengths were 2.90, 9.80, 18.70, and 27.00 km, which corresponded
to 114, 519, 1336, and 2717 subcatchments, respectively. The details are presented in Table 3.

Table 3. Conduit length and subcatchment counts for different drainage system complexities of the
three sub-basins.

Sub-Basins Statistics Level 1 Level 2 Level 3 Level 4

Northern district
Conduits length (km) 0.08 1.54 6.58 9.15
Subcatchments counts 3 79 531 1055

Convention district
Conduits length 0.07 0.23 0.43 0.60

Subcatchments counts 5 22 47 96

Main district
Conduits length 2.90 9.80 18.70 27.00

Subcatchments counts 114 519 1336 2717

The Level 1 sewer network only contained the pipe stroke with StartP as the outfall; it covered
one part of the main roads of the study area. The Level 2 sewer network covered almost all of the main
roads of the study area. The complexity of the Level 3 network was between those of Level 2 and the
original sewer network (Level 4).
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Figure 8. Classification results for four levels of the sewer network and the corresponding discretization
results for the northern district.

Figure 9. Classification results for four levels of the sewer network and the corresponding discretization
results for the convention district.
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Figure 10. Classification results for four levels of the sewer network and the corresponding discretization
results for the main district.

4.2. Results of Outfalls’ Total Inflow

We built and modeled the SWMMs for 16 scenarios (S1–S16) based on the classification and
discretization results for the three sub-basins. We then ran the models to obtain 16 flood simulation
results for each sub-basin. Table 4 displays the cost time for simulating the four kinds of storm sewer
network with different levels of complexity for the storm with a 50-year return period. The simulation
times with the other return periods were similar. Unsurprisingly, the simulation time significantly
increased with the complexity of the pipe network, which means that simplifying the sewer network
can obviously improve the simulation speed.

Table 4. Cost time of simulating four levels of sewer networks for a storm with a 50-year return period.

Sub-Basins Level 1 (s) Level 2 Level 3 Level 4

Northern district 0.01 0.11 0.79 1.57
Convention district 0.01 0.03 0.08 0.14

Main district 0.14 0.70 1.85 4.09

Figures 11–13 show the time–total inflow hydrographs of S1–S16 for the 1Y108 outfall in the
northern district, for the 4Y455 outfall in the convention district, and for the 3Y80 outfall in the main
district, respectively.
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Figure 11. Total inflow hydrographs of outfall 1Y108 in the northern district for the 16 scenarios.

Figure 12. Total inflow hydrographs of outfall 4Y455 in the convention district for the 16 scenarios.
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Figure 13. Total inflow hydrographs of outfall 3Y80 in the main district for the 16 scenarios.

For the time–total inflow hydrographs of outfall 1Y108 in the northern district (Figure 11),
the hydrographs results of Levels 1–3 were very close to those Level 4 and each other for the 2-year
storm. Similarly, for the 10-, 50-, and 100-year storms, the time–total inflow hydrographs of the
experimental group were very close to the control group, although the Level 1 hydrographs tended to
deviate from the Level 4 hydrographs (i.e., control groups) as the heavy rainfall increased. However,
the differences between Levels 1 and 4 were not great.

For the time–total inflow hydrographs of outfall 4Y455 in the convention district (Figure 12), note
that the difference between hydrographs for the same storm were clearer than the hydrographs of the
northern district. In addition, the Level 1 and Level 2 hydrographs were very close to each other for
each storm, while the Level 3 and Level 4 hydrographs were very close to each other. The difference
between Levels 3 and 4 increased with rainfall but only marginally. The differences between Levels 1
or 2 and Level 4 showed a subtle increasing trend.

The time–total inflow hydrographs of outfall 3Y80 in the main district were the most distinct
for the four levels of all outfalls (Figure 13). Surprisingly, the differences between hydrographs for
the same storm were significant compared with the hydrographs of the northern and convention
districts. Overall, the Level 3 hydrographs were very close to the Level 4 hydrographs, but the Level 1
and Level 2 hydrographs were far from the Level 4 hydrographs. This means that the simulation
results will be unreliable if a Level 1 or 2 generalization is adopted but will be acceptable with a
Level 3 generalization.

Notably, the difference of four levels’ time–total inflow hydrographs of the three districts which
had different amounts of outfall clearly show a different situation. This is because, if a certain area has
more than one drainage system, simplification of the drainage system may lead to erroneous division
of the subcatchments. This can result in storm runoff that should originally flow into one drainage
system being assigned to another drainage system.

Therefore, when the study area had only one drainage system, the time–total inflow hydrograph
was almost unaffected by the generalization degree of the sewer network. However, when the study
area had more than one drainage system, the time–total inflow hydrograph could deviate from the
actual results depending on the generalization degree of the sewer network leading to the erroneous
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division of subcatchments. A higher degree of simplification of the sewer network would clearly
increase the probability of erroneous division of subcatchments for an area with multiple drainage
systems. Thus, the solution is to extend the range of the generalized sewer network to be as similar as
possible to the original network to minimize the error (e.g., Level 3 in the main district).

4.3. Flood Results

We analyzed the distribution of overflow points, total overflow, flood spreading area,
and accumulated flood depth to further explore the impact of the generalization degree of the sewer
network on the flood simulation results. The accumulated flood depth was calculated by using the
total overflow of the overflow points divided by the area of the corresponding subcatchments.

We only analyzed the flood simulation results for the storm with a 50-year return period
(Scenarios S9–S12) because the simulation results were similar for other return periods. Figures 14–16
show the distribution of overflow points and accumulated flood depth of Scenarios S9–S12 for the
three sub-basins. The statistical results are presented in Table 5 for the northern district, Table 6 for the
convention district, and Table 7 for the main district. N is the number of overflow points, TN is the
total number of overflow points, SLN is the same number of overflow point locations compared with
S12 with a Level 4 network complexity (i.e., control group), A is the inundated area, and TA is the total
inundated area.

Figure 14. Distribution of the overflow junctions and flood area, flood volume of the overflow junctions,
and flood depth of the flood subcatchments for the northern district. In the legend, “ML” represents a
million liters, and “m” represents meters.
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Figure 15. Distribution of the overflow junctions and flood area, flood volume of the overflow junctions,
and flood depth of the flood subcatchments for the convention district.

Figure 16. Distribution of overflow junctions and flood area, flood volume of the overflow junctions,
and flood depth of the flood subcatchments for the main district.

Table 5. The total number of overflow points (TN), the number of overflow points (N), the same
number of overflow point locations compared with the control group (SLM), and the total inundated
area (TA) of Scenarios S9–S12 for the northern district.

Scenarios TN
0.00–0.30 ML 0.31–0.70 ML 0.71–1.50 ML ≥1.51 ML

TA (ha)
N SLM N SLM N SLM N SLM

S9 2 1 0 0 0 1 0 0 0 14.76
S10 13 8 5 4 2 1 1 0 0 5.70
S11 39 33 24 5 4 1 1 0 0 2.27
S12 433 37 37 5 5 1 1 0 0 1.67

Table 6. TN, N, SLM, and TA of Scenarios S9–S12 for the convention district.

Scenarios TN
0.00–0.30 ML 0.31–0.70 ML 0.71–1.50 ML ≥1.51 ML

TA (ha)
N SLM N SLM N SLM N SLM

S9 1 1 0 0 0 0 0 0 0 0.24
S10 2 2 0 0 0 0 0 0 0 0.25
S11 2 2 1 0 0 0 0 0 0 0.23
S12 3 3 3 0 0 0 0 0 0 0.25
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Table 7. TN, N, SLM, and TA of Scenarios S9–S12 for the main district.

Scenarios TN
0.00–0.30 ML 0.31–0.70 ML 0.71–1.50 ML ≥1.51 ML

TA (ha)
N SLM N SLM N SLM N SLM

S9 19 11 0 2 0 3 0 3 1 16.74
S10 85 71 36 6 2 6 2 2 1 19.68
S11 143 124 98 12 10 6 5 1 1 10.03
S12 179 160 160 13 13 5 5 1 1 7.82

The simulation results showed that the number of overflow points increased with the complexity
of the sewer network in the northern district (see Figure 14 and Table 5). The other districts showed
a similar trend, as presented in Figures 15 and 16 and Tables 6 and 7. This means that increasing
the degree of generalization of the sewer network reduces the accuracy regarding the location of
overflow points.

However, Figures 14–16 show that overflow points with serious flooding (i.e., flood volume of
greater than 0.3 ML) were mainly distributed on the backbone conduits. When the flood volume
of overflow points was 0.31–0.70 ML, N and SLM of Level 1 and Level 2 were quite different from
the values of Level 4, but the values of Level 3 were very close to those of Level 4. When the flood
volume of the overflow points was 0.71–1.50 ML or ≥1.51 ML, the differences in values between the
experimental and control groups were reduced. The results showed that a simplified sewer network
that keeps the backbone conduits of the drainage system can identify serious overflow points to
some extent. In other words, the simplified sewer network can catch similar serious overflow points
provided that it extends over a similar region as the original sewer network.

The total inundated area (TA) in the northern district decreased with increasing complexity for
S9–S12, as presented in Table 5. The same situation was observed in the main district, as presented in
Table 7. This indicates that increasing the degree of generalization of the sewer network makes it more
difficult to obtain specific locations of the inundated area, and only a rough range can be obtained.

In general, the total overflow, flood spreading area, and accumulated flood depth of Level 3 were
quite close to those of Level 4. Thus, we can use a Level 3 generalization to simulate floods in the study
area instead of Level 4. However, if we do not require high precision in the simulation and only need
to identify areas with serious overflow, Level 2 can be considered to replace Level 4, but Level 1 is
inappropriate owing to critical error.

5. Conclusions

In this study, we designed 16 scenarios for three sub-basins based on four different complexities
for sewer networks and four storms with different return periods to explore the impact of the urban
drainage system complexity on the flood simulation accuracy in terms of the total inflow of outfall and
flood results. We also proposed the stroke scaling method for automatic generalization to overcome
the low efficiency and accuracy of manual generalization.

The results of the three specific case studies showed that the complexity of the urban storm sewer
network does not have a significant impact on the total inflow of outfalls for a single drainage system
but does have a clear impact for multiple drainage systems. The driving factor is that simplifying a
region with multiple drainage systems may induce the storm runoff to flow into the wrong drainage
systems. The results also showed that serious flooding is mainly distributed on backbone pipes.
This means that, if the simplified sewer network extends over a range similar to that of the original
network, the flood simulation results for the two networks will be similar. The results of the research
basins can be used to formulate the following generalization strategies for a storm sewer network.

(1) Extreme rainfall intensity does not need to be considered for storm sewer network
generalization because the differences in the flood simulation results for different complexities of the
sewer network with different storm intensities are not quite clear.
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(2) If the whole area for flood simulation is large and there are no strict requirement for the
accuracy of inundated locations in the small sub-basins, sub-basins with a single drainage system can
be considerably simplified to only keep conduits and junctions that are directly connected with the
outfall (i.e., keep pipe strokes with Le = 1). Sub-basins with multiple drainage systems should also
keep the conduits and junctions that make up the backbone of the original sewer network. However,
if there are strict requirements regarding the quality of the flood simulation results, the conduits and
junctions making up the backbone of the original sewer network should also be kept for sub-basins
with a single drainage system.

(3) If the flood simulation area is small and locations with serious inundation need to be located,
the simplified sewer network should be extended to have a range similar to that of the original
sewer network. Therefore, the generalization strategy should be removing the branch sections of the
sewer network first rather than deleting upstream segments without considering the range of the
drainage system.

In summary, the storm sewer network should be simplified depending on the distribution
characteristics of the drainage system and required precision for the flood simulation results. We believe
that this study is greatly significant regarding data precision for the sensitivity of flood simulation.
In addition, the proposed generalization strategies and automatic generalization method of storm
sewer networks are highly applicable to improving the quality and efficiency of flood modeling
and simulation.

However, this study focused only on the accuracy of storm sewer network on the sensitivity of
flood simulations in an urban area. Future studies will explore the precision of other datasets and its
effect on the sensitivity of hydrologic modeling or simulation in different scenarios. Different data
precisions of different datasets can be compared to discover laws or patterns for the model sensitivity.
Then, a series of simplified strategies can be proposed for different data types or combinations of
different datasets to improve modeling and simulation efficiency.
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