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Abstract: The growth of urban population, combined with an increase of extreme events due to
climate change call for a better understanding and representation of urban floods. The uncertainty in
rainfall distribution is one of the most important factors that affects the watershed response to a given
precipitation event. However, most of the investigations on this topic have considered theoretical
scenarios, with little reference to case studies in the real world. This paper incorporates the use of
spatially-variable precipitation data from a long-range radar in the simulation of the severe floods that
impacted the city of Hull, U.K., in June 2007. This radar-based rainfall field is merged with rain gauge
data using a Kriging with External Drift interpolation technique. The utility of this spatially-variable
information is investigated through the comparison of computed flooded areas (uniform and radar)
against those registered by public authorities. Both results show similar skills at reproducing the real
event, but differences in the total precipitated volumes, water depths and flooded areas are illustrated.
It is envisaged that in urban areas and with the advent of higher resolution radars, these differences
will be more important and call for further investigation.

Keywords: floods; radar rainfall; kriging; computer modelling

1. Introduction

With the advent of computational methods and computer processing power, the ability to
tackle urban floods at the catchment level is clearly emerging, making it possible to apply an
integrated approach to modelling rainfall-runoff processes along with surface flows [1,2]. Moreover,
the availability of new data sources with higher quality and spatio-temporal resolution (e.g., rainfall
data estimated by radars and terrain data derived from Lidar Detection and Ranging (LiDAR)) enables
a more detailed description of hydrological processes that occur in the real world, paving the road
towards a better numerical discretisation of the processes involved in urban floods.

On the other hand, the documented growth in the number of floods and urban population due to
climate change [3] clearly indicates the importance of an improved understanding of how flood waters
interact with the urban environment both in space and time. Indeed, the development of a reliable
approach to adequately describe urban flood processes has been recognised as a challenging task [4].

Recent advances in urban flood modelling recognise the importance of 2D modelling algorithms to
adequately reproduce urban floods [5]. However, it should be borne in mind that model performance
also depends on the quality of data used to construct a numerical representation of the catchment.
This information includes soil characteristics, land use, topography and forcing conditions, all of
which play an important role in the generation of an urban flood [6,7]. In reality, these data vary in
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space and time, and their representation at an adequate spatio-temporal resolution is necessary for an
accurate performance of the numerical tool. However, datasets are rarely homogeneous in space and
time, which leaves the door open to the exploration of an adequate level of complexity and detail for
this purpose.

Among the main factors identified to adequately reproduce urban floods, the uncertainty of
rainfall distribution in time and space is one of the main sources of error [8]. It is well known that a
good knowledge of precipitation at appropriate spatial and temporal scales enhances modelling of
rainfall-runoff processes in urban catchments [8–13]. Accurate estimations of precipitation in urban
areas require a dense rain gauge network combined with an effective analysis method. However,
rain gauge networks are generally too sparse spatially to provide such detailed information [14].
On the other hand, information acquired with weather satellites enables a better spatial description of
rainfall fields, but also lacks a proper spatial resolution for urban applications with grids of 10 km or
coarser [15,16]. Furthermore, weather radar measurements are inherently uncertain to some degree,
as the relationship between reflectivity and actual rainfall on the ground requires the derivation of
empirical coefficients [17]. An alternative way of making use of these data is to blend rain gauge and
weather radar data [18–20].

In the literature, when modelling urban floods, it has been largely recognised that the spatial
variability of rainfall is a source of uncertainty that affects model performance. However, most of the
publications aimed at the investigation of this topic have considered theoretical scenarios, with little
reference to case studies of actual events [8]. Therefore, more research is required that incorporates
case studies from the real world and that investigates how the spatial variability of rainfall affects flood
predictions in urban environments. This could be done by studying multiple events and locations
that variate parameters like catchment size, percentage of urbanization, topography and quality of
available rainfall data. To that end, we propose here a step in that direction by studying the impact of
rainfall variability on the reproduction of a real-world urban flood event.

The case study corresponds to the urban flood registered in the United Kingdom on 25 June 2007,
when the city of Kingston upon Hull (later referred to as Hull), East Yorkshire, suffered heavy flooding
that affected 8600 homes and 1300 businesses [21]. Although the numerical reproduction of this event
has been reported in Yu and Coulthard [1] and Courty et al. [2], the integration of spatially-variable
rainfall has not been discussed or attempted. Both numerical approaches resolve the inertial equation
proposed by Bates et al. [22], incorporating the Green–Ampt formula to simulate the infiltration
process, differing only in the way the adaptive time step is implemented. Notably, in both studies,
rainfall was considered using hourly measurements of only one rain gauge located at the University of
Hull. Therefore, the precipitation was assumed to be spatially uniform within the catchment.

The purpose of this study is to investigate how a better definition of the spatial variability of
rainfall impacts the numerical reproduction of the severe floods registered in Hull, U.K., in 2007. Flood
maps derived from the use of a uniform rainfall field against those resulting from a merged product
from weather radar and rain gauge data will be compared and discussed. Focus will be given to the
western part of the city of Hull, which was the most affected according to Coulthard and Frostick [21].

This paper is organised as follows: Section 2 introduces the flood inundation model used to
replicate this event, as well as the forcing data required to run the model; Section 3 presents the
calibration process and the results; Section 4 discusses the outcomes in light of similar studies and
summarises the main conclusions derived from this investigation.

2. Material and Methods

2.1. Computer Model

We use Itzï, an open-source fully-distributed dynamic hydrologic and hydraulic model based on
Geographical Information System (GIS). We will present the model briefly here. A more complete
description can be found in Courty et al. [2]. Itzï solves the partial inertia approximation of the



Water 2018, 10, 207 3 of 17

Saint–Venant Equations (SVE) by applying an explicit finite-difference scheme to a regular raster
grid [23,24].

The time step duration ∆t is calculated at each time step using Equation (1), where hmax is the
maximum water depth within the domain, g the acceleration due to gravity, ∆x and ∆y the cell
dimensions in metres and α an adjustment factor.

∆t = α
min{∆x, ∆y}√

g× hmax
(1)

The specific flow between cells q in m2 s−1 is calculated using Equation (2).

qt+∆t
i+1/2 =

(
θqt

i+1/2 + (1− θ)
qt

i−1/2 + qt
i+3/2

2

)
+ gh f ∆tS

1 + g∆tn2||qt
i+1/2||/h f

7/3 (2)

where subscripts i and t denote space and time indices, S the hydraulic slope, n Manning’s number
in s m−1/3 and θ an inertia weighting factor. The flow depth h f is the difference between the highest
water surface elevation y and the highest terrain elevation z. It is used as an approximation of the
hydraulic radius.

The new water depth at each cell is calculated using Equation (3). It is the sum of the current
depth ht, the external factors ht

ext (rainfall, infiltration, drainage, etc.), and the volumetric flows passing
through the four faces of each cell Qt

i,j.

ht+∆t = ht + ht
ext +

∑4 Qt
i,j

∆x∆y
× ∆t (3)

The infiltration could be represented either by a time series of maps of user-defined value or by
using the Green–Ampt formula, shown in Equation (4); where f is the infiltration rate (m s−1), K the
hydraulic conductivity (m s−1), θe the effective porosity (m m−1), θ the initial water soil content (m m−1),
ψ f the wetting front capillary pressure head (m) and F the infiltration amount (m).

f = K

(
1 +

(θe − θ)ψ f

F

)
(4)

Itzï can model the capacity of the sewer system by accounting for losses in mm h−1. Those losses
are accounted for in the same way as the infiltration, during the calculation of the new water depth in
each cell (see Equation (3)).

The numerical scheme used by Itzï is similar to the one used by FloodMap-HydroInundation2D [1]
and the inertial solver of LISFLOOD-FP [23,24]. For instance, Itzï uses the same numerical scheme
as the inertial solver of LISFLOOD-FP and produces virtually identical results [2]. However, those
three models present significant differences recapitulated in Table 1. Notably, the tight integration of
Itzï with Geographic Resources Analysis Support System (GRASS) (an open source GIS software [25])
allows the use of raster time series for any entry data. In the present case, this capacity is used for the
representation of the radar rainfall. Furthermore, this GIS integration allows Itzï to use data sources
of heterogeneous resolution. GRASS provides the maps at the desired spatial extent and resolution
on-the-fly, eliminating the need for cropping and resampling the data.

In this study, we employ Version 17.8 of Itzï. The modelling parameters shown in Table 2 are the
same for each simulation. All the boundaries of the computational domain are closed.
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Table 1. Features comparison between LISFLOOD-FP, FloodMap-HydroInundation2D and Itzï.

Feature LISFLOOD-FP FloodMap Itzï

Flow equation Damped partial inertia [23,24] Partial inertia [22] Damped partial inertia [23,24]
Adaptive time step Global Local Global

1D river model Yes Yes No
Infiltration model No Green–Ampt Green–Ampt

GIS integration Loose Loose Tight
Map time series

as input No No Yes
Free software No 1 No Yes (GNU GPL)

Parallel processing OpenMP MPI OpenMP
1 Although Glofrim https://github.com/openearth/glofrim contains LISFLOOD-FP and is released under the
GNU GPL, its README says “Please note that the downloadable LISFLOOD-FP version is not meant for further
unauthorized distribution”. This places LISFLOOD-FP outside the scope of the license.

Table 2. Modelling parameters.

Parameter Value

α 0.7
∆tmax (s) 2.0

θ 0.7

2.2. Input Data

2.2.1. Study Area

Kingston upon Hull, abbreviated as Hull, is a British city located on the northern shore of the
Humber estuary, in the East Riding of Yorkshire, England (see the location map in Figure 1). The city
has a population of 260,200 inhabitants, while the population of the larger urban zone is 573,300.
Hull possesses an oceanic climate, with an annual precipitation of 674 mm and 15 days a year of heavy
rainfall [26].

Figure 1. Location of the Hull study area within Great Britain (satellite imagery Copernicus Sentinel
2016) [2].

2.2.2. Elevation

For this study, we use a Digital Elevation Model (DEM) obtained from aerial Light Detection And
Ranging (LiDAR). Its spatial resolution is 5 m. It can be see in Figure 2 that the study area could be
divided in two zones. The western part is a hillside, while the eastern part is mostly flat with some
areas below the mean sea level. The constructed area is concentrated in the flat eastern part.

https://github.com/openearth/glofrim
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Figure 2. Digital elevation model of the study area. Contour lines are every 5 m.

2.2.3. Observed Flood Extents

After the event, the Hull City Council (HCC) and the Environment Agency of the United Kingdom
(EA) evaluated the extension of the affected areas. While the EA used aerial photography to map
the flooded areas, the HCC carried out a poll among the residents [21]. The areas identified by each
administration are represented in Figure 3. It could be noted that the two zones classified by the two
administrations show significant differences highlighted in Table 3. Notably, less than half of the
individual observations could be validated by the other. Furthermore, due to the limitations of the
collection methods, it is possible that the identification of the flooded areas is partial and that some
actually affected areas might not be represented [21].

Figure 3. Identified flooded areas. Light blue: EA only. Dark blue: HCC only. Green: intersection of
both administrations.

Table 3. Comparison of identified flood extents.

Collecting Entity Area (km2)

Environment Agency 5.16
Hull City Council 6.18

Intersection of both 2.33
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2.2.4. Friction

Manning’s n friction map is created using the Global Land Cover (GLC30) map from the National
Geomatics Center of China [27]. Figure 4 shows the map of the repartition of the land cover classes
over the study area. Typical values of n from the literature are assigned for each cell according to its
class [28]. Table 4 shows the relation between the land cover classes and Manning’s n values proposed
by Chow [28].

Figure 4. Land cover classes from Global Land Cover in the study area.

Table 4. Relation between land cover classes and Manning’s n values.

GLC30 Class Category from Chow [28] Manning’s n (s m−1/3)

Cultivated land Mature field crops 0.040
Forest Cleared land with tree stumps, heavy growth of sprouts 0.060
Grassland Pasture with short grass 0.030
Water bodies Natural stream: clean, straight, full stage, no rifts or deep pool 0.030
Artificial surfaces Gunite, good section 0.019

2.2.5. Drainage

The drainage of the city of Hull is entirely pumped because of the topographic situation of the
urban area [21]. The drainage of the study area was carried out by the combined action of the following
pumping stations that worked continuously during the event [21]:

• West Hull pumping station (capacity 32 m3 s−1), draining the whole study area plus a smaller part
of the city north of it.

• Saltend Waste Water Treatment Work (outflow 22 m3 s−1), treating most of Hull, including the
study area.

Yu and Coulthard [1] mentioned drainage capacity values for Hull of 70 mm d−1 for the urban
area and 15 mm d−1 for the rural areas. Applying 70 mm d−1 of drainage capacity to the urbanized part
of the study area (see Figure 4) represents an average flow of 30.64 m3 s−1. This value is coherent with
the installed pumping capacity described above. Therefore, we created a drainage capacity map using
the values from Yu and Coulthard [1] on the urban and non-urban areas defined by the GLC30 map
(See Figure 4). The artificial surfaces have been assigned a value of 2.917 mm h−1 and the remaining
areas 0.625 mm h−1.
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2.2.6. Infiltration

Coulthard and Frostick [21] estimate that the soil was saturated due to the important rainfall
prior to the studied event. Therefore, we consider that the infiltration could range from zero (where no
infiltration at all happens) to a value depending on the hydraulic conductivity of the soil. We estimated
the possible hydraulic conductivity over the study area with the help of the global soil database
SoilGrids250m [29]. First, we calculate the average clay and sand values in the top 60 cm of soil.
Then, we use the resulting maps to classify the soil according to texture definitions from the United
States Department of Agriculture (USDA). Finally, we relate the texture classes with typical values
obtained from experiments [30]. Table 5 displays the values obtained by this methodology. The average
hydraulic conductivity estimated in the study area is 3.57 mm h−1.

We acknowledge the uncertainty of the method used to estimate the conductivity, especially in
an urban environment, and use uniform values of infiltration for model calibration. We consider the
infiltration to be equal to the hydraulic conductivity, which is consistent with the Green–Ampt equation
when used in saturated soils. Therefore, the infiltration values we use for the model calibration are 0 to
5 mm h−1 with a 1 mm h−1 step.

Table 5. Distribution of estimated hydraulic conductivity above the study area.

Hydraulic Conductivity (mm/h) Surface (ha) Surface (%)

1.00 18.88 0.30
1.50 654.5 12.0
3.50 4507.5 82.3
10.9 295.6 5.40

2.2.7. Precipitation

For the precipitation, we compare two sources of information. The first one is the measurement
from an uncalibrated rain gauge at the University of Hull [1]. Its temporal resolution is 1 h, and it
is considered uniform in space. The second one is a time series of raster maps reconstructed using
various rain gauges and a meteorological radar. Although weather radar provides spatial rainfall
information, it fails to estimate the correct intensity, partly because it may be affected by different
sources of errors. On the other hand, rain gauges can measure the point rainfall intensities more
accurately, but are unable to provide information on the spatial rainfall distribution. Merging the two
sources of rainfall data is recognised to improve the estimates [19,31–34]. The selected radar-gauge
merging method is Kriging with External Drift (KED) [35,36]. KED assumes the mean of the process
(drift) as a linear function of external covariates. In this case, the only considered covariate is the
radar rainfall.

For this event, we use the weather radar rainfall composite product from the U.K. Met Office at
1 km and 5 min spatial and temporal resolutions [37] and a series of rain gauges from the EA to create
the raster time series using KED. The radar rainfall product has been quality-controlled by the U.K.
Met Office, and it has been corrected for well-known sources of error in radar rainfall [38]. Note that
the urban area was mainly covered by the Hameldon Hill radar located more than 100 km towards
the west of the urban area. Figure 5 shows the map of accumulated precipitation together with the
locations of the weather radar and rain gauges. Due to the distance of the radar from Hull, the actual
radar rainfall spatial resolution above the study area is around 5 km. Furthermore, the radar rainfall
had gaps in data during this event, and therefore, the missing time periods were interpolated using
a nowcasting model [39]. Unfortunately, some of the missing periods occurred during the time of
heavy precipitation falling on the study area. The spatial resolution of the resulting rainfall field is
1 km. The radar rainfall scans were accumulated to produce a temporal resolution of 1 h, similar to the
uniform rainfall. Figure 6 shows the evolution in time of the rainfall field generated by KED. Note
that some time steps shown in Figure 6 show a KED spatial rainfall resolution of 1 km due to the fact
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that the radar-gauge KED merging was performed at 1 km resolution and also because the nowcasting
model to interpolate the missing time periods also runs at 1 km.

Figure 5. Accumulated rainfall obtained from Kriging with External Drift on 25 June 2007. The circles
represent the rain gauges used. The triangles are the weather radars. The study site is represented by a
black polygon. Please note that during this event, only the Hameldon Hill radar (located in the west of
the image) was operating.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

(g) (h)

Figure 6. Evolution of rainfall intensity above the study area obtained with Kriging with External Drift.
Event of 25 June 2007. (a) 00:00–01:00; (b) 03:00–04:00; (c) 06:00–07:00; (d) 09:00–10:00; (e) 12:00–13:00;
(f) 15:00–16:00; (g) 18:00–19:00; (h) 21:00–22:00.

The performance of the KED rainfall predictions was evaluated by using the Leave-One-Out
Cross-Validation (LOOCV) method. The method consists of computing the KED rainfall fields by
leaving one of the rain gauges out for validation, then repeating the process with another rain gauge,
and so on, until all the rain gauges are cross-validated. The results are shown in Figure 7. The KED
performance gives a normalised error of 30 %, Root Mean Square Error (RMSE) of 0.96 mm h−1, bias of
1.0 (i.e., unbiased), Mean Absolute Error (MAE) of 0.47 mm h−1 and Nash–Sutcliffe efficiency of 0.8.

Figure 7. KED performance using LOOCV for the event of 25 June 2007.
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The mean hyetographs of each rainfall, averaged above the urban area, are compared in Figure 8.
The peak intensity of the KED rainfall is lower than the uniform rainfall, but at lower intensity, the KED
rainfall shows higher values. On the same figure is represented the range of intensity values that
are present in the raster rainfall field obtained by KED. This allows for a better understanding of the
spatial variability of the rainfall during this event. The spatial variability of the KED rainfall is higher
when the intensity is higher. The precipitated volumes during the event are 6.1 hm3 and 5.9 hm3 for
the uniform rainfall and the KED rainfall, respectively.

00:00
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6
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Figure 8. Hyetographs of the two considered rainfalls above the study area on 25 June 2007.

3. Results

We first calibrate the model with the uniform rainfall using the infiltration as a calibration value.
Secondly, we run an additional simulation using the calibrated values and the KED rainfall. We then
compare the results obtained with the KED rainfall to those obtained with the uniform rainfall. To do
so, we subject the results to two types of analysis: a qualitative one and a quantitative one.

3.1. Model Calibration

Since this case is not sensitive to friction [1], we select only the infiltration as a calibration value.
As mentioned in Section 2.2.6, we use the uniform infiltration values of 0, 1, 2, 3, 4 and 5 mm h−1.
For this process of calibration, we use the uniform rainfall. We calibrate the model using the identified
flood extents as references. We have two maps of flood extent with significant differences between
them (see Section 2.2.3). Therefore, we use those two maps plus a union of those two extents as
references against which the model results will be compared.

In order to compare the computed flooded areas to the observed ones, we classify each cell as
flooded or dry by applying a water depth threshold on the computed water depth. There is no definite
literature on the value of this threshold, and it is mostly arbitrary [40]. Therefore, we use a series
of 31 values from 0.5 cm to 35 cm distributed with a 1 cm step. Logically, the generated binary maps
shows a larger extent of inundation when the threshold is lower and a smaller extent with a higher
threshold. The first step to compare those generated maps to the observed extent maps is to classify
the results in a contingency table (see Table 6). This contingency table is then used to calculate the
Critical Success Index (CSI) [40], a skill evaluation score commonly used in hydrology (e.g., [41,42]).
This score is calculated using CSI = hits

hits+misses+false alarms . The combination of entry data that obtain
the highest CSI will be used as a reference simulation to compare the two rainfall data.
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Table 6. Contingency table used to calculate the Critical Success Index.

Observed
Flooded Not Flooded

Computed Flooded hits false alarms
Not flooded misses correct negatives

The computed values of CSI obtained of the six simulations are shown in Figure 9. Each individual
observed extent gives a lower value of CSI than the union of both extents. In that latter case, the highest
value of CSI is obtained without any infiltration and at a water depth threshold of 20 cm. The highest
CSI value is 0.36. Therefore, we retain the following calibration values:

• Union of observed flooded extents as the “real-world” reference.
• No infiltration.
• Water depth threshold of 20 cm.
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Figure 9. Values of Critical Success Index obtained during the calibration process. They are calculated
using the maximal water depth maps obtained with uniform rainfall and a combination of infiltration
values, water depth thresholds and observed extents.

3.2. Qualitative Analysis

During the event, the water accumulates in the lower part of the domain, which is also the most
urbanised. Figure 10 compares the computed maximal water levels with the observed extents. It shows
that the model is able to identify the main flooded area observed by the two collecting entities, at the
centre of the domain. For the other inundated parts, the comparison is more difficult because of the
discrepancies between the observations of the EA and the HCC.

Some differences in computed water level occur between the simulation using the KED rainfall and
the one using uniform rainfall. Those differences are not easily noticed in Figure 10. Figure 11 allows
an easier representation of those differences in maximal water depths. It could be noted that water
levels obtained using KED are consistently lower than those using the uniform rainfall. This could be
related to the smaller precipitated volume of the KED rainfall (see Section 2.2.7). The discrepancies are
mostly between 5 cm to 10 cm and are larger going eastward. In more limited areas, the differences
reach 15 cm. Those higher differences in the eastern part of the domain might be due to the inundation
being mostly due to the overland flow coming from the upstream areas on the west, and not from the
local precipitation. The observed difference might therefore be due to the flood wave not reaching that
far east when the precipitated volume is lower.
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(a) (b)

Figure 10. Comparison between observed extents and maximal computed water depths. (a) Uniform
rainfall; (b) Kriging with External Drift.

Figure 11. Differences in maximal water depths between the results using uniform rainfall and those
using Kriging with External Drift.

3.3. Quantitative Analysis

In order to compare the results obtained with the uniform rainfall and those obtained with KED,
we calculate for each simulation result the CSI, total flooded area and percentage of the computational
domain that is flooded. Those calculations are first done with maximal water depths map, then we
proceed to do a similar analysis with the evolution in time of those values along the simulation. For all
those analyses, we employ the values determined by the model calibration (see Section 3.1).

First, we compare the maximal water depth maps obtained by the two rainfalls. Table 7 shows
the results of this analysis. The surface flooded is lower when using the KED rainfall. This is explained
by the lower accumulated precipitated volume of the KED rainfall compared with the uniform rainfall
(see Section 2.2.7). Regarding the skill, the CSI obtained with each of the rainfalls is quite weak,
with values lower than 0.4. However, the uniform rainfall results in a CSI slightly higher than the KED,
with 0.36 against 0.35.

Table 7. Comparison of maximum flooded areas between uniform and KED rainfalls.

Rainfall CSI Flooded Area (ha) Surface Flooded (%)

Uniform 0.36 934.62 17.07
KED 0.35 861.06 15.73
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Second, we examine the evolution in time of the flooded area, the flood volume and the CSI.
Figure 12 shows the plots in time of those values obtained with the two different rainfalls. We can
notice that the rate of change of all three values is logically affected by the intensity of the rainfalls
(see Figure 8), with the steepest increase being between 07:00 and 17:00. The flooded volumes obtained
with the two rainfalls reach their highest values at the same time, 17:00. However, the flooded area
continues to grow afterwards, with a peak occurring at 20:00. This is likely due to the spreading of the
inundation continuing at smaller depths, resulting in a growing flooded area, even though the volume
is getting smaller. Considering the CSI, the values obtained with the uniform rainfall are higher than
those obtained with KED for most of the simulation. However, the difference becomes much smaller
as the water level stabilizes. With the uniform rainfall, the CSI peaks at 21:00 with a value of 0.445,
while with the KED, it peaks at 21:30 with a value of 0.439. At the end of the simulation, the CSI
values for uniform and KED rainfall are 0.436 and 0.434, respectively. Furthermore, it is notable that
the maximum CSI obtained during this exercise is higher than that obtained with the maximum water
level (see Table 7). We can explain that by the fact that the maximal water depth map includes the
water channels that form in the more hilly west part of the basin (see Figure 10). This creates flooded
cells in those areas that are not reported as flooded by any of the two authorities, inducing a lower
skill for both of the tested rainfalls. On the other hand, those channels dry out when the rain stops,
which induces a higher CSI when calculating it using maps of instantaneous water depths. This fact is
reflected in the differences observed between the flooded areas calculated by snapshot water depths
(816 ha) to the one obtained with the maximal water depths (935 ha; see Figure 8).
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Figure 12. Evolution in time of the flood volume, flooded surface and Critical Success Index.
The flooded surface and CSI are calculated for water depths above 20 cm.
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4. Discussion and Conclusions

In this paper, we compared the computer simulation results obtained by the use of uniform
and KED rainfall to the observed inundation extents of the historical event of June 2007 in Hull,
U.K. Although the spatial variability of the KED rainfall is slight (see Figure 6), differences appear.
For instance, the flooded area obtained with the KED rainfall is 8 % lower than the one obtained with
the uniform rainfall (see Table 7). This is due to a lower precipitated volume and, in turn, a lower
flooded volume when using the KED. However, those differences in flood volume and inundated
areas do not reflect in the skill scores obtained by the two rainfalls when comparing the computed
flood extents to the observations of actual affected zones. Indeed, the differences in CSI for those two
rainfalls are not sufficient to be conclusive and should not be used to assert the superiority of one
rainfall datum against the other.

Two factors inherent to this specific event might influence those results. First, the observations of
flooded zones are unlikely to accurately identify the affected areas (see Section 2.2.3). This uncertainty in
the observations reduces the reliability of the calibration and evaluation processes. Second, the available
radar data for this event come from equipment rather far from the study area. This results in a practical
spatial resolution of around 5 km. Furthermore, there were missing time periods in the radar data that
needed to be filled using nowcasting interpolation before preforming the KED radar-gauge merging.

Unfortunately, uncertain or scarce observations are common during extreme flood events
(e.g., [43]). Maps of observed flooding are especially difficult to obtain in urban areas due to the
short time scale of their occurrence (usually a few hours). Few urban areas are instrumented,
and remote-sensing techniques might be of limited use [7]. In addition to the relatively low revisit
time of spacecraft carrying high-resolution instruments, some technologies like multi-spectral imagery
are seldom usable because of the cloud cover during or immediately after the precipitation event.
In that sense, in spite of the limitations of the available data, the present case study can be considered
data-rich because it includes both non-uniform rainfall data and observations of the affected areas.

Therefore, this study is a step forward in the direction of having a better understanding of the
impact of the spatial variation of rainfall on the flood modelling of historical events. It shows that even
with limited and uncertain data, the incorporation of the spatial variability of rainfall does have an
impact on the numerical results. We can mention that should another flooding event occur in the same
area, the definition of the rainfall data might improve due to the inclusion of the data of the Ingham
radar, for the south of the study area (see Figure 5), which in turn might improve the reproduction
of the inundation. Each event is different, and the relative size of the precipitation compared to the
study area is to be considered. In urban areas of limited extent like Hull, more localized events like
convective precipitations might require even more consideration of the spatial component of rainfall.
More similar studies should be carried out in the future that will tackle the subject with other types of
events and study areas, including different types of meteorological events, topography and land use.
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Abbreviations

The following abbreviations are used in this manuscript:

CSI Critical Success Index
DEM Digital Elevation Model
EA Environment Agency of the United Kingdom
GIS Geographical Information System
GLC30 Global Land Cover
GRASS Geographic Resources Analysis Support System
HCC Hull City Council
KED Kriging with External Drift
LiDAR Light Detection And Ranging
LOOCV Leave-One-Out Cross-Validation
MAE Mean Absolute Error
RMSE Root Mean Square Error
SVE Saint–Venant Equations
USDA United States Department of Agriculture
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