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Abstract: The issue of regional design flood composition should be considered when it comes to
the analysis of multiple sections. However, the uncertainty accompanied in the process of regional
design flood composition point identification is often overlooked in the literature. The purpose of
this paper, therefore, is to uncover the sensibility of marginal distribution selection and the impact of
sampling uncertainty caused by the limited records on two copula-based conditional regional design
flood composition methods, i.e., the conditional expectation regional design flood composition (CEC)
method and the conditional most likely regional design flood composition (CMLC) method, which are
developed to derive the combinations of maximum 30-day flood volumes at the two sub-basins
above Bengbu hydrological station for given univariate return periods. An experiment combing
different marginal distributions was conducted to explore the former uncertainty source, while a
conditional copula-based parametric bootstrapping (CC-PB) procedure together with five metrics
(i.e., horizontal standard deviation, vertical standard deviation, area of 25%, 50%, 75% BCIs (bivariate
confidence intervals)) were designed and employed subsequently to evaluate the latter uncertainty
source. The results indicated that the CEC and CMLC point identification was closely bound up with
the different combinations of univariate distributions in spite of the comparatively tiny difference of
the fitting performances of seven candidate univariate distributions, and was greatly affected by the
sampling uncertainty due to the limited observations, which should arouse critical attention. Both of
the analyzed sources of uncertainty increased with the growing T (univariate return period). As for
the comparison of the two proposed methods, it seemed that the uncertainty due to the marginal
selection had a slight larger impact on the CEC scheme than the CMLC scheme; but in terms of
sampling uncertainty, the CMLC method performed slightly stable for large floods, while when
considering moderate and small floods, the CEC method performed better.

Keywords: regional design flood composition; GH copula function; uncertainty analysis; Huai
River basin

Water 2018, 10, 1872; doi:10.3390/w10121872 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-3285-4951
https://orcid.org/0000-0002-1450-1194
http://dx.doi.org/10.3390/w10121872
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/12/1872?type=check_update&version=3


Water 2018, 10, 1872 2 of 23

1. Introduction

Design flood analysis provides reasonable hydrological design values for water conservancy
and wading projects [1,2]. When it comes to the analysis and calculation of multiple sections, it is
necessary to deal with the issue of the regional design flood composition. Traditionally, the basic
access of solving this issue includes two steps. First, the search for proper combinations of natural
flood variables that occurred at different sub-basins above the study section. Second, the derivation
of the design flood hydrograph at each sub-basin by amplifying the typical flood hydrograph using
the design values calculated in the first step [3]. Hence, the selection of proper regional design flood
composition schemes is of vital importance. In general, regional design flood composition is a spatially
stochastic issue, and the most scientific and rational method to describe this law of nature is to build
the joint probability distribution of flood variables in each sub-basin.

In recent years, the copula function has been extensively used in establishing joint distributions
of relevant hydrological variables since being introduced in the hydrology and geosciences
domain in 2003 [4]. For instance, frequency analysis describing extreme events, like rainfall,
rainstorms, floods, or droughts [5–9], return period analysis [10,11], multivariate simulation [12,13],
risk assessment [14,15], and some new insights for multivariate design quantile estimation [16–18].
Previous studies have indicated that the copula function was an effective tool in multivariate analysis,
owing to the characters of integrating arbitrary complex marginal distributions and simulating the
nonlinear relationship between any number variables. Thus, several studies using copula methods
to derive regional design flood composition have been conducted. Yan et al. [19] first introduced
the copula function to the composition of a single-reservoir flood control system and proposed
two representative regional composition schemes: Conditional expectation regional design flood
composition (CEC) and the most likely regional design flood composition (MLC). Liu et al. [20]
derived the general formula of the MLC method, which had sufficient statistical basis and strong
operability in practical calculations. Li et al. [21] improved the traditional discrete summation method
by discretizing the conditional probability curve with the copula function. By contrasting with the
traditional equivalent frequency regional composition (EFC) [22] scheme, Guo et al. [23] proved the
satisfactory performance of the CEC and MLC methods. Learning from the algorithms of Yan et al.
and Guo et al., the present study takes full advantage of the good performances of the MLC and CEC
methods, and subsequently develops the conditional most likely regional composition (CMLC) method.

It is worth noting that any estimation comes along with uncertainty, and extensive uncertainties
exist in multivariate frequency analysis. With the copula-based methodology for multivariate design
realization estimation, a few scholars have studied the taxonomies of accompanying uncertainty,
and have discussed different sources and kinds of uncertainty. Serinaldi [24] proposed three algorithms
for performing multivariate risk analysis under sampling uncertainty. Dung et al. [25] developed a
non-parametric bootstrapping procedure for investigating the uncertainty of the parameter estimation
method, model selection, and sampling, and the results further revealed that compared with sampling
uncertainty, the other two sources of uncertainty were of less importance. However, the impact
of uncertainty due to the selection of marginal distributions has not been sufficiently analyzed in
previous studies.

The extensive uncertainties not only have great influence on hydrometeorology event
identification or Q-V (flood peak and corresponding flood volumes) combinations, but also have
impacts on the conditional regional design flood composition estimation. The first objective of this
study was to introduce two copula-based conditional regional design flood composition methods
(i.e., CEC and CMLC), which considered the spatial correlation of regional floods, and the second
objective aimed at revealing the sensibility of marginal distribution selection and the effect of sampling
uncertainty caused by the limited records on two proposed composition methods. The two main
sources of uncertainty, particularly sampling uncertainty, are frequently neglected in the literature
despite their well acknowledged importance, possibly because of their technical difficulty [26].
Bengbu hydrological station in the middle of the Huai River basin was selected as a case study.
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This research provides new approaches for analysis of regional design flood composition and useful
information to clarify flood risk.

2. Methodology

The objective of this paper is twofold; first, to introduce two copula-based conditional Regional
design flood composition methods and, second, to reveal the impact of two uncertainty sources on the
proposed method. Figure 1 presents the methodological framework of this paper, and in the following
part of this section, we elaborate on the approach proposed and employed in this framework, including
the theory of copula, theory of the regional design flood composition method, and the procedure and
metrics for investigating the uncertainty.
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2.1. Copula Theory

A copula is a function connecting the multivariate probability distribution to its marginal ones.
Better understood, it is a family of multivariate probability distributions whose margins are standard
uniform distributions. For a bivariate case, the random variables, X and Y, respectively denote the
horizontal and vertical directions in R2. FX(x) and FY(y) are the cumulative distribution functions
(C.D.Fs) of X and Y, respectively, which are uniformly distributed random variables on [0,1] and are
respectively denoted as u and v. According to Sklar’s Theorem [27], a two-dimensional copula can be
represented as:
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FX,Y(x,y) = C[FX(x),FY(y);θ] = C(u,v;θ) (1)

where FX,Y(x,y) denotes the bivariate C.D.F of X and Y; and C(u,v;θ) represents the unique bivariate
copula function with the parameter, θ.

Among the copula families, the Archimedean family is widely used for hydrological analysis
because of its simplicity and general properties [28–31]. Copulas that belong to this family provide
analytically tractable models and possess different desirable characteristics. It is found that annual
maximum (AM) flood volumes are extreme events of interest and are usually variables with upper
tail dependence. Another set of extreme events that would be of interest (though not considered
in this study) comprise peak volumes occurring in an independent and identically distributed way
or the peak-over-threshold events, the extraction of which follow the procedure like that found in
Onyutha [32]. The Gumbel-Hougaard (GH) copula is the only Archimedean copula in the list of the
multivariate extreme value (MEV) copula family, which is beneficial to deal with flood risk [25,29].
Therefore, three types of GH copula [28,30,31], i.e., symmetric GH copula, two-para GH copula,
and the asymmetric GH copula, were applied in this study, and the latter of which is constructed into
a three-parameter version with Marshall-Olkin copulas on the boundaries. The corresponding copula
functions and parameters for the three GH copulas are further described in Table 1.

Table 1. Summary of the three candidate GH copula functions.

Name Descriptions

Symmetric GH copula C(u, v; θ) = exp
{
−
[
(− log u)θ + (− log v)θ

]1/θ
}

, θ ∈ [1, +∞)

Two-para GH copula C(u, v; β1, β2) =

{[(
u−β2 − 1

)β1
+
(

v−β2 − 1
)β1
]1/β2

+ 1

}−1/β2

,

β1 ∈ [1, +∞), β2 ∈ [0, +∞)

Asymmetric GH copula

C(u, v; θ, π2, π3)= exp[−A(− log u, − log v; θ, π2, π3)],

A(x, y; θ, π2, π3) =
[
(π2x)θ + (π3y)θ

]1/θ
+ (1− π2)x + (1− π3 )y,

θ ∈ [1, +∞), π2 ∈ (0, 1), π3 ∈ (0, 1)

u∈[0, 1], v∈[0, 1]
θ, β1, β2, π2, π3: Copula parameter

C: Copula function
A: Marshall-Olkin copulas

2.2. Regional Design Flood Composition

2.2.1. Basic Concept of Regional Design Flood Composition

Figure 2a shows the sketch map of a typical regional flood composition issue, in which A denotes
the upstream section with water conservancy projects here; B denotes the interval sub-basin; and C
denotes the downstream section. The flood variable at section C is the grand total of flood variables at
section A and interval B according to the principle of water balance.

The aim of regional design flood composition, in a nutshell, is to seek for a proper combination
of flood variables that occurred at the upstream section, A, and interval, B, by decomposing flood
events that occurred at the downstream section, C. For the purpose of analyzing the flood-control
effectiveness of different regional composition schemes, it is usually necessary to draw up a number
of calculation schemes based on floods from different sub-basins. Therefore, the first step of regional
design flood composition analysis mentioned above is of great significance, which acts as the focus of
this study.



Water 2018, 10, 1872 5 of 23

Water 2018, 10, x FOR PEER REVIEW  5 of 25 

 

 
Figure 2. (a) Sketch map of a typical regional flood composition issue. (b) Location of Bengbu and 
Zhengyangguan hydrological stations in the Huai River basin. 

2.2.2. Flood Regional Composition Methods Based on Copulas 

Actually, not all the combinations are consistent with the inherent disciplines of hydrologic 
events development and the engineering design requirements. Based on the copula function, two 
representative regional design flood compositions are presented: i.e., CEC and CMLC, which have 
statistical basis and are able to reflect the inherent disciplines of hydrologic events.  

When the value of the given flood variable, X, at the upstream section, A, is xp, and the 
corresponding value (y) of the flood variable, Y, at the interval, B, is not fixed. A different y 
corresponds to a different probability of occurrence. The combination of xp and the conditional 
expected value of Y (E(y|xp)) is denoted as the conditional expectation regional design flood 
composition (CEC), which denotes the average level of different composition schemes. E(y|xp) can 
be expressed by Equation (2): 

 E y xp  = yf Y ≤ y X = xp dy = yc u,v fY y dy = FY
-1 v c u,v dv

1

0

+∞

-∞

+∞

-∞
 (2) 

where f(Y ≤ y|X = xp) is the conditional probability density function (P.D.F), and f(Y ≤ y|X = xp) = 
c(u,v)fY(y) according to the copula theory; c(u,v) is the density function of C(u,v), and  c u,v  = 
∂2C u,v ∂u∂v⁄ ; fY(y) is the P.D.F of Y; and FY

-1 ·  is the inverse C.D.F of Y. 
Equation (2) cannot find the analytical solution, which needs to be solved by numerical 

integration. Further, the CEC points (xp, E(y|xp)) will be obtained. 

Figure 2. (a) Sketch map of a typical regional flood composition issue. (b) Location of Bengbu and
Zhengyangguan hydrological stations in the Huai River basin.

2.2.2. Flood Regional Composition Methods Based on Copulas

Actually, not all the combinations are consistent with the inherent disciplines of hydrologic
events development and the engineering design requirements. Based on the copula function,
two representative regional design flood compositions are presented: i.e., CEC and CMLC, which have
statistical basis and are able to reflect the inherent disciplines of hydrologic events.

When the value of the given flood variable, X, at the upstream section, A, is xp, and the
corresponding value (y) of the flood variable, Y, at the interval, B, is not fixed. A different y corresponds
to a different probability of occurrence. The combination of xp and the conditional expected value
of Y (E(y|xp)) is denoted as the conditional expectation regional design flood composition (CEC),
which denotes the average level of different composition schemes. E(y|xp) can be expressed by
Equation (2):

E(y|x p) =
∫ +∞

−∞
yf (Y ≤ y|X = x p)dy =

∫ +∞

−∞
yc(u, v) fY(y)dy =

∫ 1

0
F−1

Y (v)c(u, v)dv (2)

where f (Y ≤ y|X = xp) is the conditional probability density function (P.D.F), and f (Y ≤
y|X = xp) = c(u,v)fY(y) according to the copula theory; c(u,v) is the density function of C(u,v),
and c(u, v) = ∂2C(u, v)/∂u∂v; fY(y) is the P.D.F of Y; and F−1

Y (·) is the inverse C.D.F of Y.
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Equation (2) cannot find the analytical solution, which needs to be solved by numerical integration.
Further, the CEC points (xp, E(y|xp)) will be obtained.

Based on the principle of maximizing the conditional density function, the formula of another
copula-based composition method, namely the CMLC method, is derived. Given y equals to the
maximum value of conditional PDF f (Y ≤ y|X = xp) (yM), the combination of xp and yM (i.e., (xp, yM))
is regarded as the conditional most likely regional design flood composition (CMLC).

The first order derivative of f (Y ≤ y|X = xp) can be derived as:

d f (Y ≤ y|X = xp )

dy
= c2( fY(y))

2 + c( fY(y)) (3)

where c2 = ∂c/∂v. According to the method of evaluation extremum in calculus, the point where the
first order derivative equals to zero can make the original equation reach the maximum (minimum)
value. Given Equation (3) equals to zero, after simplification, the following equation is supposed to
be satisfied:

c2·fY(y) + c·(fY′(y)/fY(y)) = 0 (4)

where fY’(y) are the corresponding derived functions of PDF fY(y).
(xp,yM) can be obtained by solving the nonlinear Equation (4) with the Newton iteration

method [33]. Similarly, when the interval flood volumes are taken as the condition, we also can
get two corresponding regional design flood composition schemes.

By using the CEC and CMLC method to obtain the combination (x, y), the value of Z at the
downstream site, C, can be easily calculated.

Let the conditional C.D.F F(Y ≤ y|X = xp) be equal to α/2 and 1 − α/2, respectively, where α is
the significance level, then the corresponding value of the flood variable, Y, at the interval sub-basin,
B, can be described as yL and yU, respectively. [yL, yU] is regarded as the corresponding confidence
interval (CI) given X = xp, which can quantitatively evaluate the uncertainty associated with the
composition schemes estimation and provide a basis to clarify the flood risk. The CEC and CMLC
methods together are known as the conditional regional composition method.

2.3. Conditional Copula-Based Parametric Bootstrapping (CC-PB) Procedure

To explain the sampling uncertainty, a conditional copula-based parametric bootstrapping (CC-PB)
procedure was designed as follows:

1. Fit the marginal distributions and parametric copula function for the original dataset (i.e., X and
Y). The parameters of the chosen marginal distributions and copula function are estimated by the
L-moment method and maximum pseudo-log-likelihood (ML) method, respectively.

2. Predefine NB bivariate bootstrapping samplings of size n through the usage of the conditional
simulation method [29], and then obtain Z* = (X*,Y*) = (xij,yij) from the bivariate dependence
structure via the probability integral transform (PIT) using the fitted parameters of the margins
(i = 1, . . . ,n; j = 1, . . . ,NB).

3. Estimate the parameters of marginal distributions and the parametric copula function of Z*
utilizing the same estimation method used for the original dataset, then obtain NB pairs of
Fj*(xij,yij), (i = 1, . . . ,n; j = 1, . . . ,NB).

4. Identify the CEC and CMLC realizations for different (x,y) pairs by Equations (2) and (4),
respectively.

5. Utilize these realizations to estimate the bivariate confidence intervals (BCIs) by employing the
kernel density estimation (KDE) method [34].
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2.4. Metrics for Sampling Uncertainty

Yin et al. [35] proposed four evaluation indexes to quantify the uncertainty of bivariate quantile
estimation. Similar to the idea of Yin et al., five metrics, i.e., horizontal standard deviation, σx; vertical
standard deviation, σy; area of 25% BCI, S25%; area of 50% BCI, S50%; and area of 75% BCI, S75%, are
utilized to quantify the sampling uncertainty. S25%, S50%, and S75% are highly dependent on the grids
contained in the BCIs and are approximated by Riemann sums using the R-package ‘ks’ [34]. The other
two metrics are calculated by the following equations:

σx =

√√√√ 1
NB

NB

∑
i=1

(
Wxi − Ŵx

)2 (5)

σy =

√√√√ 1
NB

NB

∑
i=1

(
Wyi − Ŵy

)2 (6)

where Wxi and Wyi represents the estimated value of the flood variable at each sub-basin for the i
simulated dataset, respectively; and Ŵx and Ŵy is the expectation design value of the flood variable at
each sub-basin, respectively.

3. Study Area and Data

The proposed method was used in Bengbu hydrological station, located in the middle of the Huai
River Basin (30◦55’–36◦36’ N, 111◦55’–121◦25’ E). The study area refers to the upper–middle reach
region of the Huai River Basin above the Bengbu section, with an area of 12.13× 104 km2, including the
mainstream and five major tributaries, still termed as the Huai River Basin (Figure 2b). According to
topographic relief and river characteristics, the middle of Huai River can be divided into two interval
sections above and below the Zhengyangguan section. The drainage area above the Zhengyangguan
section is 8.86 × 104 km2, and the length of the stream from Zhengyangguan to the Bengbu section is
119 km, which drains an area of 3.27 × 104 km2.

At present, most rivers in the upper and middle reaches of Huai River Basin are regulated by a
mass of dikes, floodgates, and large and medium-sized reservoirs [36]. It is of great significance to
analyze the regional design flood composition at the Bengbu section, regarding the Zhengyangguan
section as the boundary. A sketch diagram of this area is also shown in Figure 2a, which can be
generalized as a typical regional design flood system. The daily flood series have been systematically
recorded at Zhengyangguan and Bengbu hydrological stations for 63 years (1953–2015). The natural
flow process of large reservoirs and lakes, the amount of intercepting water in flood diversion
regions, and irrigation reference water were calculated for the Zhengyangguan and Bengbu section,
and the measured flow processes were added to these sections to obtain the natural flow processes of
corresponding sections. For a large or medium-scale water conservancy project, as a rule, the flood
routing is controlled by the flood volume, so the regional design flood composition generally refers to
the combination of flood volumes for convenience [23,37]. According to the flood characteristics of
the Huai River basin and the regulation characteristics of water conservancy projects, the designed
flood control period is selected for 30 days [22]. Therefore, annual maximum 30-day flood volume data
(W30d) from Zhengyangguan Station and Bengbu Station were collected. The natural flood process
of the Zhengyangguan section was routed to the Bengbu section with the Muskingum method [38].
By deducting this routed flood process from the natural flood process of the Bengbu section, we could
obtain the flood process of the interval basin between Zhengyangguan and Bengbu (hereinafter referred
to as the Zheng-Beng interval). Then, the Zheng-Beng interval, W30d, could be easily obtained.

Figure 3a shows the Zhengyangguan W30d and Zheng-Beng interval W30d series. These two series
exhibited similar changing variations throughout the 63-year data. The dispersion of these two series
was measured by boxplot graphs (Figure 3b), and the symmetry of the boxplot implies that there is a
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certain level of right skew for both series. Figure 3c illustrates that Zhengyangguan W30d has a rough
linear correlation with the Zheng-Beng interval W30d, and the Pearson correlation coefficient between
the W30d of the two sub-basins is 0.869, which connotes a comparatively marked linear relationship.
Nevertheless, the dependence structure of the dataset is supposed to be more complicated than a
straightforward linear correlation, which can be more flexibly analyzed based on copulas. Table 2 lists
some basic statistical parameters of the two series, which describe the structure and overall situation
of the data.
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Table 2. Statistics of Zhengyangguan and Zheng-Beng interval W30d.

Zhengyangguan W30d (108 m3) Zheng-Beng Interval W30d (108 m3)

[Min, Max] [12.95, 313.47] [2.72, 74.29]
Median 75.27 19.22
Mean 85.76 22.51

Standard deviation 57.75 15.39
Skewness 1.32 1.45
Kurtosis 2.22 2.11

Interquartile range 65.04 15.66

4. Results and Discussions

4.1. Selection of Marginal Distribution

Sklar’s theorem is intended to separate the multivariate model into two independent parts,
i.e., the fitting of the marginal C.D.Fs and the selection of a suitable parametric copula. Therefore,
in order to construct the bivariate model for W30d at each sub-basin, the first step is to choose
appropriate marginal distributions. Seven widely-used distributions in hydrology [37,39,40],
namely Pearson type III (PE3), three parameters log-normal (LN3), generalized extreme value (GEV),
generalized pareto (GP), gamma (GAM), gumbel (GUM), and generalized logistic (GLO), were picked
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as candidate distributions for flood volume. Figure 4 illustrates the distributions of the W30d series in
each study sub-basin fitted by the seven candidate distributions. The quantile-quantile plot, C.D.F
plot, and P.D.F plot are exhibited in this figure.Water 2018, 10, x FOR PEER REVIEW  9 of 25 
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Figure 4. Fitting distributions to Zhengyangguan W30d and Zheng-Beng interval W30d:
The quantile-quantile plot (left), C.D.F plot (middle), and P.D.F plot (right).

Figure 4 demonstrates that seven theoretical distributions basically fit the observed data. To select
the best-fitting distribution, we compared the performance among the distributions through their
root-mean-square error (RMSE) and Akaike information criteria (AIC) [41] values. The goodness of fit
(GOF) with the aid of the Cramér–von Mises (CvM) test also performs to provide support to select the
candidate distributions for the W30d series at each sub-basin. The Cramér–von Mises statistic (w2) is
designed to quantify the distance between the empirical and fitted distributions [42]. Lower w2 values
and higher p-values mean a preferable imitative effect.

Table 3 shows the parameter estimation results of the candidate distributions using the L-moment
method, the RMSE, AIC values, and Cramér–von Mises test results are also presented. It can be
seen that the PE3 is identified as the best fitting distribution function for Zhengyangguan W30d data,
yielding the minimum RMSE and AIC values, while MEV is the best fitting one for W30d at the
Zheng-Beng interval. All of the p values listed in Table 3 are quite bigger than 0.05, indicating that
seven theoretical distributions are capable of fitting the distributions of W30d at each sub-basin at the
5% significance level.
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Table 3. Parameters estimated by the L-moment method and GOF of marginal distributions.

Region Series Functions
Parameters CvM Test

RMSE AIC
Name Estimated Value w2 p

Zhengyangguan W30d

PE3 [α, β, γ] [1.921, 0.024, 4.870] 0.027 0.985 2.881 668.32
LN3 [µlog, σlog, ζ] [4.599, 0.497, −26.673] 0.030 0.978 3.003 672.85
MEV [ξ, α, κ] [58.042, 40.019, −0.105] 0.034 0.964 3.013 674.06
GP [ξ, α, κ] [16.994, 84.403, 0.227] 0.042 0.924 3.214 673.34

GAM [β, α] [39.100, 2.193] 0.028 0.983 3.085 669.58
GUM [ξ, α] [60.053, 44.544] 0.051 0.869 3.324 674.90
GLO [ξ, α, κ] [73.944, 28.046, −0.239] 0.049 0.887 3.119 676.88

Zheng-Beng
Interval

W30d

PE3 [α, β, γ] [1.434, 0.077, 3.899] 0.037 0.949 2.138 500.80
LN3 [µlog, σlog, ζ] [3.064, 0.579, −2.801] 0.024 0.993 2.084 489.11
MEV [ξ, α, κ] [15.037, 9.770, −0.161] 0.023 0.994 2.025 488.53
GP [ξ, α, κ] [5.366, 19.379, 0.130] 0.060 0.815 2.355 501.80

GAM [β, α] [10.109, 2.227] 0.040 0.936 2.651 499.99
GUM [ξ, α] [15.811, 11.614] 0.069 0.762 3.170 504.70
GLO [ξ, α, κ] [18.972, 7.066, −0.278] 0.028 0.982 2.369 503.51

Note: P.D.F of PE3: f (x) = βγ

Γ(γ) (x− α)γ−1exp(−β(x− α)), parameters: α (location), β (scale), and γ (shape,

γ > 0); P.D.F of LN3: f (x) = 1
(x−ζ)σlog

√
2π

exp

(
−

(ln (x−ζ)−µlog

)2

2σlog
2

)
, µlog (location), σlog (scale), and ζ (lower

bounds); C.D.F of GEV: F(x) = exp(− exp(κ −1ln(1− κ(x−ξ)
α ))), ξ (location), α (scale, α > 0), and κ (shape,

κ > −1); C.D.F of GP: F(x) = 1− exp(κ −1ln(1− κ(x−ξ)
α )), ξ (location), α (scale), and κ (shape); C.D.F of GAM:

F(x) = β−α

Γ(α)

∫ x
0 tα−1exp(−t/β)dt, α (scale), and β (shape); C.D.F of GUM: F(x) = exp(exp(− x−ξ

α )), ξ (location),

α (scale); C.D.F of GLO: F(x) = 1/(1 + exp(−κ −1log(1− κ(x−ξ)
α ))), ξ (location), α (scale), and κ (shape).

4.2. Copula Function Construction

Three types of GH copulas, i.e., symmetric GH copula, two-para GH copula, and asymmetric
GH copula, were selected as candidates to establish the bivariate model of the W30d series at
Zhengyangguan and the Zheng-Beng interval. The contour density plots of three GH copulas
(Figure 5) indicate that GH copulas have the advantage to simulate tail dependence, which may
be weaker when displayed through the observed dataset. It is proven that improper selection of
copula function types will bring significant uncertainty to the estimation of model simulation sequence
design values [24,25]. Therefore, selecting and adjusting the best-fit copula function is a decisive step
in the fitting process. Table 4 shows the result of the parameters of the three GH copulas using the
maximum pseudo-likelihood method and corresponding AIC values. The given dataset cannot easily
answer the question of tail dependence, so the upper tail-dependence coefficient, λ̂CFG

U , of the copulas
estimated with the CFG estimator [43] supports the quantification of the tail dependence of extreme
values. The λ̂CFG

U value of the empirical copula is 0.582, slightly smaller than the λ̂CFG
U values calculated

straight from the three candidate GH copulas (Table 4). The two indicators’ values illustrated the good
performance of the two-parameter GH copula.

Table 4. Estimated parameters; two indicators: AIC and λ̂CFG
U of the copulas.

Copula Model Parameter Name Estimated Parameter AIC ^
λ

CFG

U

Symmetric GH Copula θ 2.7576 −519.544 0.714
Two-parameter GH Copula [β 1, β2] [2.1241, 0.7176] −520.997 0.614

Asymmetric GH Copula [θ , π2, π3] [2.7569, 1.0000, 1.0000] −515.480 0.714

Further, the Pickand’s dependence function [44] was employed to check graphically the GOF of
the candidate copulas (Figure 5). It turns out that the two-parameter GH copula fits better than the
symmetric and asymmetric ones. On the basic of all the assessment indicators, the two-parameter
GH (GH2) copula should be chosen to reflect the dependence structure of W30d at each sub-basin.
Furthermore, GH2 possesses its own unique features to characterize the high relevance between
extraordinary flood volumes at the two study sub-basins.
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4.3. CEC and CMLC Point Identification

Two copula-based regional design flood compositions (i.e., CEC and CMLC) were utilized
to calculate the appropriate combinations of W30d that occurred at the Zhengyangguan section
and Zheng-Beng interval, which have statistical basis and could satisfy the inherent disciplines
of hydrologic events. For the convenience of subsequent analysis of the uncertainty of marginal
distribution selection, an explored experiment combining different margins was carried out. Table 5
lists 13 analyzed combinations.

Table 5. Experimental design for CEC and CMLC point identification considering the uncertainty of
marginal distribution selection.

Combination Copula Zhengyuangguan W30d Distribution Zheng-Beng Interval W30d Distribution

C1 GH2 PE3 PE3
C2 GH2 PE3 LN3
C3 GH2 PE3 GEV
C4 GH2 PE3 GP
C5 GH2 PE3 GAM
C6 GH2 PE3 GUM
C7 GH2 PE3 GLO
C8 GH2 LN3 GEV
C9 GH2 GEV GEV

C10 GH2 GP GEV
C11 GH2 GAM GEV
C12 GH2 GUM GEV
C13 GH2 GLO GEV

When the design value occurred at the Zhengyuanguan section, and the corresponding conditional
expected value and conditional most likely value occurred at the Zheng-Beng interval, PE3 was applied
for Zhengyuanguan W30d, while PE3, LN3 GEV, GP, GAM, GUM, and GLO were applied for the
Zheng-Beng interval W30d for the uncertainty analysis, which corresponds to the combinations,
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C1–C7. Analogously, when the design value occurred at the Zheng-Beng interval, the corresponding
conditional expected value and conditional most likely value occurred at the Zhengyuangguan section,
MEV was selected as a distribution for the Zheng-Beng interval W30d, PE3, LN3, GEV, GP, GAM,
GUM, and GLO were selected as distributions for Zhengyuangguan W30d, which corresponded to the
combinations, C3, C8–C13. Three candidate marginal distributions all passed the Cramér–von Mises
test given α = 0.05. Then, GH2 was applied to estimate the CEC and CMLC points. Table 6 lists the
CEC and CMLC points determined under different combinations given T = 20, 50, 100 years using
Equations (2) and (4) in the study sub-basins. For example, when a 20-year design flood occurs at the
Zhengyangguan section, the CEC and CMLC points under C3 are (199.22 × 108 m3, 47.10 × 108 m3)
and (199.22 × 108 m3, 48.26 × 108 m3), respectively.

4.4. Uncertainty Analysis

4.4.1. Uncertainty Due to the Selection of Margins

To figure out the sensibility of univariate distribution selection for CEC and CMLC point
estimation, the explored experiment mentioned above was carried out: Three values of the univariate
return period (T) for Zhengyuanguan W30d and Zheng-Beng W30d were selected, respectively, ranging
from the moderate flood volume standard to the extreme one. The estimated CEC and CMLC points
and their corresponding 90% CIs under different combinations are exhibited along with the observed
data in Figure 6. By comparing these bivariate design realizations, it is expected that the impact of
marginal distribution uncertainty will be discovered.

In each case shown in Figure 6, the uncertainty caused by the selection of marginal distributions
increases with T. For instance, it can be shown from Figure 6 and Table 6 that when a 20-year flood
occurs at the Zhengyuanguan section, the corresponding conditional expected value occurs at the
Zheng-Beng interval (Case 1) ranges from 45.56 × 108 m3 to 47.55 × 108 m3, with the variation
ratio of 3.48% compared with C3, while given T = 100 years, the corresponding value ranges from
63.05 × 108 m3 to 75.46 × 108 m3, with a reduction ratio of 13.54%. This phenomenon results
from the CEC algorithm and the different fitting performance of selected marginal distributions.
Equation (2) indicates that large conditional expected values correspond to large values of cumulative
probability. When the cumulative probability of the Zhengyuangguan W30d event ranges from 0.95 to
0.99, the differences between the fitting performances of three margins increase with the increasing
values of the cumulative probability. In Case 1, the corresponding cumulative probability of the
conditional expected value of W30d at the Zheng-Beng interval given T = 100 years (0.9819–0.9854)
is larger than that given T = 20 years (0.9235–0.9333), so the amplitude of variation of the former
corresponding conditional expected value is larger than the latter. Similar analysis can be conducted
for the CMLC scheme. In Case 2, the corresponding cumulative probability of the conditional most
likely value of W30d at the Zheng-Beng interval given T = 100 years ranges from 0.9851 to 0.9876
compared with the ranges from 0.9332 to 0.9370 given T = 20 years. The finding is in line with that of
Guo et al. [45] and Zhao et al. [15].

In addition, the finding implies that the marginal distributions’ selection uncertainty has a slightly
larger impact on the CEC scheme than the CMLC scheme. Actually, there is a comparatively small
difference in all cases if any candidate distribution is used as a marginal distribution for W30d at the
two sub-basins. Similar results can be found in the rainfall frequency analysis, which implies the
negligible impact of different marginal distributions. This is rational owing to the relative errors of the
performances among the seven candidate univariate distributions being less than 20%, at least for the
univariate return periods regarded in the conducted experiment.
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Table 6. CEC and CMLC points under different combinations of marginal distribution.

Combination
Conditional Design Regional Flood Composition Points

T = 20 T = 50 T = 100

CEC CMLC CEC CMLC CEC CMLC

Given flood occurs at the Zhengyuanguan section

C1 (199.22, 47.55) (199.22, 48.98) (244.62, 59.23) (244.62, 62.01) (278.18, 68.39) (278.18, 71.76)
C2 (199.22, 47.34) (199.22, 48.37) (244.62, 60.34) (244.62, 61.66) (278.18, 71.27) (278.18, 73.34)
C3 (199.22, 47.10) (199.22, 48.26) (244.62, 60.83) (244.62, 61.00) (278.18, 72.92) (278.18, 73.72)
C4 (199.22, 47.70) (199.22, 50.37) (244.62, 58.26) (244.62, 62.14) (278.18, 65.94) (278.18, 70.15)
C5 (199.22, 46.50) (199.22, 48.18) (244.62, 56.85) (244.62, 59.57) (278.18, 64.83) (278.18, 67.97)
C6 (199.22, 45.56) (199.22, 46.91) (244.62, 55.38) (244.62, 57.68) (278.18, 63.05) (278.18, 65.81)
C7 (199.22, 46.47) (199.22, 46.67) (244.62, 61.34) (244.62, 59.15) (278.18, 75.46) (278.18, 73.28)

Given flood occurs at the Zheng-Beng interval section

C3 (178.98, 52.27) (181.18, 52.27) (220.24, 68.13) (230.76, 68.13) (252.20, 81.69) (264.54, 81.69)
C8 (178.56, 52.27) (180.98, 52.27) (223.53, 68.13) (229.34, 68.13) (260.37 81.69) (269.52, 81.69)
C9 (178.19, 52.27) (179.39, 52.27) (225.20, 68.13) (228.18, 68.13) (264.89, 81.69) (271.74, 81.69)

C10 (179.48, 52.27) (186.67, 52.27) (213.83, 68.13) (229.82, 68.13) (237.23 81.69) (253.09, 81.69)
C11 (177.86, 52.27) (184.30, 52.27) (217.72, 68.13) (228.17, 68.13) (248.45, 81.69) (260.56, 81.69)
C12 (174.16, 52.27) (179.31, 52.27) (211.80, 68.13) (220.63, 68.13) (241.24, 81.69) (251.81, 81.69)
C13 (176.10, 52.27) (175.22, 52.27) (228.12, 68.13) (223.65, 68.13) (276.11, 81.69) (272.51, 81.69)
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Figure 6. CEC and CMLC points under combinations of specified marginal distributions. Case 1
and Case 3 denote the CEC and CMLC points in the condition that the design flood (T = 20, 50, 100)
occurs at the Zhengyuanguan section, respectively, while Case 2 and Case 4 denote the CEC and
CMLC points in the condition that the design flood occurs at the Zheng-Beng interval, respectively.
For better visualization, the horizontal and vertical coordinates of Case 2 and Case 4 have been
exchanged respectively.

4.4.2. Sampling Uncertainty Caused by the Limited Records

For the purpose of illustrating the effect of sample sizes on CEC and CMLC point identification
uncertainty, the following bootstrapping experiment was carried out under different sample sizes for
10,000 times.
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1. Three values of T for the W30d at two sub-basins, respectively, are selected (viz., T = 20, 50,
100 years), ranging from the moderate flood volume standard to the extreme one. Similarly,
three values of sample size (sz) are selected (viz., sz = 63, 200, 500).

2. Here, the selected model combination is C3, listed in Table 5. The CEC and CMLC events for
C3 are estimated by fixing the value of sz (or T), and leaving the other variable vary in the
corresponding subset. A triple of BCIs (viz., 25%, 50%, 75%) is exhibited under different schemes
(sz, T). The larger the BCIs, the greater the uncertainty, and vice versa.

3. To judge the plausibility and compare the performance of the two proposed composition methods,
the contours of several selected joint probability levels [11] (viz., p-level = 0.99, 0.98, 0.95, 0.90,
0.80) together with the observed data are plotted on the same graphs as a reference.

4. Five indexes mentioned above are also calculated (Table 7) to evaluate the sampling uncertainty
of the 36 schemes.

The visual comparisons of the BCIs for different schemes are shown in Figures 7–10, for the fixed
sz and T, respectively, and the three corresponding BCIs. Apparently, the variation rules of BCIs
drawn in the four figures are quite similar. As expected, the BCIs significantly decrease with growing
sz (row-wise) and increase with growing T (column-wise). Specifically, consider a 100-year flood
event occurs in the Zhengyangguan section, meanwhile, the corresponding conditional expected value
occurs in the Zheng-Beng interval, as shown in Figure 7 (top-right); the corresponding BCIs could cover
p-level curves from 0.90 to 0.99, at least. Furthermore, T for the corresponding values of the Zheng-Beng
interval W30d ranges from 150 to almost 1000 years. Evaluations of the sampling uncertainty also exists
in previous studies, such as quantifying the uncertainty of hydrological droughts [15], estimating
sampling uncertainty in bivariate flood quantiles estimation [34], and handling the overlap problem
of the return periods of the bivariate design events [45]. As the findings of this study and previous
research suggests, the large uncertainty was unable to be reduced with the observed dataset and poses
a huge challenge for basin development, reservoir design, etc. [26], particularly for the Huai River
basin, with high densities in both population and water projects.

In spite of the similarity of the four figures, it is difficult to quantify the uncertainty in different
schemes by visual assessment. Therefore, five uncertainty evaluation indexes were employed (Table 7).
With the sample size increasing from 63 to 500, the five indicators decreased by 64.1% to 88.3% under
the given return periods, which conforms to the analyzed results above. Furthermore, it is exhibited in
Table 7 that the values of the five metrics increase remarkably with the rising T, indicating that the
sampling uncertainty induced by the limited records has greater effects for extreme floods than that
for moderate and small floods.

By comparing Figure 7 with Figure 9 (or Figure 8 with Figure 10), we can find that the BCIs are
a combination of two uncertainty sources: Regional design flood composition method selection and
sampling uncertainty. The former (Un1) quantifies the different performance of the methods proposed,
while the latter (Un2) describes the uncertainty related to the limited size of data, including the
univariate estimation uncertainty. σx and σy are the uncertainty estimation indexes for one-dimensional
space. When a given flood occurs at the Zhengyangguan section, the role played by σx and σy seem
to measure Un2 and Un1, respectively, and the contrary is the case that a given flood occurs at the
Zheng-Beng interval. However, the CEC and CMLC realizations are exhibited in a two-dimensional
plane, Un1 and Un2 together make up the overall sampling uncertainty, and the two-dimensional
indexes (i.e., S25%, S50%, S75%) should be better utilized. The five uncertainty metrics for the CMLC
method and their variation ratio contrasted with the results of the CEC method with a resampling
size of 63 are also presented in Table 7. No matter which sub-basin a given flood occurs in, the CMLC
realizations have a smaller uncertainty (the corresponding variation ratios are negative) than CEC
realizations when the return period of the given flood is 50 or 100, but in the case that a 20-year flood
occurs, the CEC realizations seem to perform better (the corresponding variation ratios are positive).
The slight difference between the listed metrics indicates that the CMLC method performs more stably
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and satisfactorily for large floods, while in considered moderate and small floods, the CEC method is a
better choice for uncertainty reduction.Water 2018, 10, x FOR PEER REVIEW  4 of 25 
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the Zhengyangguan section.

The uncertainty evaluation proposed above highlights the uncertainty caused by the limited
records, which is recognized as the major uncertainty source compared with marginal selection.
Indeed, there are many other possible uncertainty sources, some of which have been regarded as being
insignificant, such as the copula function selection and parameter estimation method selection [25].
Except for these uncertainty sources discussed above, efforts are supposed to be made to consider
additional uncertainty sources in further research. For example, the uncertainty due to different
bootstrapping methods or different composition schemes other than CEC and CMLC. Additionally,
more notably, with climate change, water conservancy construction, and urbanization, although the
temporal distribution of flood variables and the spatial correlation between flood events that have
occurred at different sub-basins may change to some degree, it is certainly worthwhile to integrate
the uncertainty analysis of the regional design flood composition estimation with nonstationary flood
frequency analysis [7,8] and the utilization of copula functions with time-varying parameters.
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Table 7. Values of evaluation indexes for sampling uncertainty under different schemes.

T Method sz σx(108 m3) σy(108 m3) S25% (1016 m3·m3) S50% (1016 m3·m3) S75% (1016 m3·m3)

Given flood occurs in the Zhengyangguan section

20-year

CEC
63 25.2 8.05 165 417 852
200 12.5 4.06 50.4 122 251
500 7.91 2.64 21.5 49.9 102

CMLC
63 25.4 (0.79%) 1 7.77 (−3.48%) 162 (−1.82%) 422 (1.20%) 858 (0.70%)
200 12.5 3.85 49.7 124 251
500 7.93 2.48 20.7 50.6 99.9

50-year

CEC
63 32.2 12.4 397 957 1946
200 17.7 7.05 130 313 631
500 11.1 4.45 51.8 124 254

CMLC
63 31.9 (−0.93%) 11.8 (−4.83%) 373 (−6.05%) 891 (−6.90%) 1866 (−4.11%)
200 17.8 6.37 116 281 564
500 11.1 4.01 48.9 112 226

100-year

CEC
63 40.1 18.2 679 1656 3369
200 21.9 10.1 232 563 1146
500 13.9 6.41 94.2 230 462

CMLC
63 40 (−0.25%) 16.7 (−8.24%) 626 (−7.81%) 1537 (−7.19%) 3301 (−2.02%)
200 21.6 8.93 199 489 967
500 13.9 5.74 85.2 201 409

Given flood occurs in the Zheng-Beng interval

20-year

CEC
63 23.8 6.86 166 405 812
200 13.4 3.91 56.1 133 262
500 8.55 2.51 22.8 53.9 108

CMLC
63 24.6 (3.36%) 6.95 (1.30%) 174 (4.82%) 410 (1.23%) 846 (4.19%)
200 13.8 3.94 55 137 275
500 8.6 2.51 21.7 53.1 109

50-year

CEC
63 34.1 12.2 420 1018 2106
200 19.3 7.03 144 341 684
500 12.1 4.41 56.9 137 280

CMLC
63 34 (−0.29%) 12.3 (0.82%) 405 (−3.57%) 997 (−2.06%) 2073 (−1.56%)
200 18.4 6.87 134 317 631
500 11.6 4.43 56.6 129

100-year

CEC
63 42.2 18.2 739 1793
200 23.9 10.2 260 638
500 14.9 6.41 102 253

CMLC
63 41.9 (−0.72%) 18.2 (0.00%) 712 (−3.65%) 1780 (−0.73%)
200 22.6 10.3 250 599
500 14.1 6.58 101 235

1 Values shown in parenthesis are variation ratios compared to the CEC method.
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5. Conclusions

It is argued that regional design flood composition is in general a spatially stochastic problem,
and construction of the joint distribution of flood variables at each sub-basin is the most reasonable
approach to solve this issue. Bengbu hydrological station was selected as a case study, and natural
W30d series at its two sub-basins (i.e., Zhengyangguan section, Zheng-Beng interval) were obtained.
The copula function was adopted to capture the dependence structure of W30d at each sub-basin for
its flexibility to select any complex marginal distributions. For the purpose of integrated river-basin
development, the CEC and CMLC methods were utilized to obtain the design flood combinations.
To figure out the sensibility of marginal distribution selection and the influence of sampling uncertainty
caused by the limited records on the two composition methods, a corresponding comprehensive
experiment was designed. Here, to clarify the former uncertainty source, seven candidate univariate
distributions were combined according to certain rules to produce 13 combinations for fitting the W30d
series at each sub-basin. For the quantification of the latter uncertainty source, the CC-PB procedure
was developed and five evaluation indexes were calculated. The following conclusions have been
drawn from this study:

We recommend the PE3 distribution for modeling of the marginal of W30d at the Zhengyangguan
section, and MEV for the W30d at the Zheng-Beng interval. Taking the overall dependence structure
and tail dependence into account, GH2 was awarded as the most appropriate model.

The CEC and CMLC realizations were estimated using the constructed model. The experiment
results indicate that the CEC and CMLC point identification has a close relationship with the fitting
performances of the three selected univariate distributions. Namely, the smaller fitting performance
distinction amongst distribution choices under a specific cumulative probability, the closer the location
of the corresponding estimated CEC and CMLC points. Therefore, the uncertainty resulting from
marginal distributions’ selection needs to be properly recognized.

The sampling uncertainty caused by the limited records was considerably high, which should
arouse more attention. The CEC and CMLC points under a specific univariate return period showed
significant variation. The S75% of two regional design flood composition events covered more than
one p-level curve. Consequently, it leads to an undervaluation or overvaluation of the risk related to
hydrological designs [23].

Both analyzed sources of uncertainty increased with the growing T. As for the comparison of
the two proposed methods, it seemed that the uncertainty due to the marginal selection had a very
slight larger impact on the CEC scheme than the CMLC scheme; but in terms of sampling uncertainty,
the CMLC method performed slight stably for large floods, while in considered moderate and small
floods, the CEC method performed better. The comprehensive uncertainty analysis indicates that
considerable uncertainty is accompanied with the process of CEC and CMLC point identification,
which is inevitable to some extent, while the findings in this research can provide directions and
suggestions to flood risk reduction and basin development. On the one hand, appropriate univariate
distribution is important for regional design flood composition event identification and it is essential to
improve the fitting accuracy of flood variables by improving the parameter estimation performance of
the candidates or constructing new distributions using information entropy [45]. On the other, it is far
from sufficient to constrain the sampling uncertainty even for a sample size larger than 50 (63 years of
observed data). It is necessary to further expand the information content beyond the flood records [46],
such as combing historical flood data, conducting regional flood frequency analysis, or deriving a
flood frequency approach. Besides, the confidence interval information contained in two copula-based
compositions provides a basis to clarity the flood risk.

Overall, our research emphasizes the significance of appreciating the uncertainty gone with the
process of copula-based regional design flood composition estimation. It is worthwhile to consider
other possible uncertainty sources and the impact of climate change and human activities on CEC and
CMLC point identification in future investigations.
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