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Abstract: The climate change impacts on droughts have received widespread attention in many recent
studies. However, previous studies mainly attribute the changes in future droughts to human-induced
climate change, while the impacts of internal climate variability (ICV) have not been addressed
adequately. In order to specifically consider the ICV in drought impacts, this study investigates the
changes in meteorological drought conditions for two future periods (2021–2050 and 2071–2100)
relative to a historical period (1971–2000) in China, using two multi-member ensembles (MMEs).
These two MMEs include a 40-member ensemble of the Community Earth System Model version 1
(CESM1) and a 10-member ensemble of the Commonwealth Scientific and Industrial Research
Organization Mark, version 3.6.0 (CSIRO-Mlk3.6.0). The use of MMEs significantly increases the
sample size, which makes it possible to apply an empirical distribution to drought frequency analysis.
The results show that in the near future period (2021–2050), the overall drought conditions represented
by drought frequency of 30- and 50-year return periods of drought duration and drought severity in
China will deteriorate. More frequent droughts will occur in western China and southwestern China
with longer drought duration and higher drought severity. In the far future period (2071–2100), the
nationwide drought conditions will be alleviated, but model uncertainty will also become significant.
Deteriorating drought conditions will continue in southwestern China over this time period. Thus,
future droughts in southwestern China should be given more attention and mitigation measures
need to be carefully conceived in these regions. Overall, this study proposed a method of taking
into account internal climate variability in drought assessment, which is of significant importance in
climate change impact studies.
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1. Introduction

Drought, usually rooted in the deficiency of expected precipitation over a period of time, has
received widespread attention all over the world. In contrast with aridity, which is a long-term normal
climate feature in areas with low rainfall, drought is a temporary abnormal phenomenon, which is
often related to human activities and can linger for years, and often causes catastrophic socio-economic
and environmental consequences. Large scale drought has been observed on all continents, including
Europe [1], Africa [2,3], Asia [4,5], Australia [6–8], and North America [9,10]. For example, from 1975
to 1976, a notorious drought caused the lowest flow on record in the majority of British rivers, loss
of over 50,000 trees, and around £500 million in crop losses [11]. Therefore, an in-depth drought
assessment is important for making adaption strategies.
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According to the coverage, characteristic variables concerned, and developmental stages,
drought has been defined in different ways and is generally classified into four categories [12–14]:
meteorological drought, hydrological drought, agricultural drought, and socio-economic drought.
Meteorological drought is defined as a lack of proper precipitation over a region for a certain
time period. Hydrological, agricultural and socio-economic droughts usually follow meteorological
droughts, and they generally involve specific fields such as surface water resources, soil moisture, and
disparities between water demand and water supply. Apparently, as the initial stage of a drought, the
meteorological drought determines the scale of a drought episode and thus is of primary importance.

Many studies have evaluated droughts spanning the meteorological drought to other categories
over recent decades [15–21]. These studies usually involve the calculation of basic drought
characteristics such as drought frequency, duration, and severity, which are combined with the
theory of run [22–24]. For example, Xu et al. [25] utilized indices of the Standard Precipitation Index
(SPI), the Reconnaissance Drought Index (RDI), and the Standard Precipitation Evapotranspiration
Index (SPEI) to evaluate meteorological drought characteristics in China for 1961–2012. In addition,
in order to provide more useful information on adaptation planning, drought hazards determined by
return periods using frequency analysis approaches have also been analyzed in some studies [26–28].
For example, on the basis of the SPI, SPEI and the Composite Index (CI), Ayantobo et al. [14] estimated
drought hazards over the mainland China for 1961–2013 based on a univariate frequency analysis.

In the context of global warming, drought will continue to be a dire threat in the
21st century [29–31]. Under the increasing concentrations of greenhouse gases (GHGs), surface
temperature will increase, associated with augmenting evapotranspiration demands and changing
spatial and temporal precipitation patterns. Therefore, droughts, which are derived from abnormal
climatologic conditions, especially from precipitation changes, could be thereafter impacted and are
expected to become more frequent and severe. For example, Sheffield et al. [29] indicated that the odds
of droughts would increase due to the potential acceleration of the terrestrial water cycle under future
climate change. Dai [30] showed that severe and widespread agricultural droughts would linger for
the next several decades over many land areas due to climate change. Naumann et al. [31] indicated
that drought conditions could worsen in many regions of the world under global warming.

However, in addition to human-induced climate change attributed to the increase in GHGs [32–34],
internal climate variability (ICV) due to the chaotic nature of the climate system [35] is also one of
the main components resulting in climate variability. ICV can strongly impact climate extremes such
as droughts by superimposing on human-induced forcing [36–38]. For example, Trenberth et al. [39]
found that the ICV could result in conflicting drought assessment results. Dai [30] also demonstrated
that future drought projections would be closely related to the ICV, especially to the component of
El Nino/Southern Oscillation. Orlowsky et al. [40] stated that worldwide near-term future drought
changes would be in the range of ICV impacts instead of tendency changes, induced by limited
anthropogenic climate change impacts.

Generally, the ICV derives from the absence of external forcing and involves processes intrinsic
to the coupled system of atmosphere and ocean [41]. The time scales of the ICV range from years,
decades, and multi-decades to thousands of years and even longer. Among them, the multi-decadal
variability is one of the most important components in climate change impact studies, as impacts
are usually assessed at a multi-decadal period (e.g., a 30-year period). In specific, the multi-decadal
ICV can be investigated using long climate observations spanning hundreds to thousands of years,
which is however usually not available for most regions of the world. Alternatively, the recently
developed multi-member ensembles (MMEs) of a climate model [42–44] are specifically designed for
investigating the role of ICV in climate change impacts. For example, Deser et al. [45] employed a
40-member ensemble from the Climate System Model version 3 (CCSM3) to identify the role of the ICV
in future climate change in North America. These MMEs contain different members by driving the
same climate model using slightly different atmospheric initial conditions and thus cover divergent
climate trajectories under the same physic basis. The members in a MME embody a lot of potential
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possibilities of climate trajectories, while the real climate condition is expected to be a single realization
among these possibilities [46]. In general, the inter-member variability, usually in the form of the range
or variance of specific statistics (e.g., mean, standard variation), can manifestly represent ICV in the
virtual world.

Therefore, the primary objective of this study is to investigate the synthetic impacts of ICV and
anthropogenic climate change on droughts in China by using the state-of-the-art large multi-member
ensembles of climate models. The synthetic impacts are specifically considered by pooling all
ensemble members to estimate different levels of return periods for droughts. In addition, pooling all
members of an ensemble enables using an empirical distribution to calculate the return periods for
drought duration/severity, which can avoid the potential drawbacks in fitting probability distributions
(e.g., great uncertainty in parameter estimation and poor extension in tails).

2. Dataset

This study used both observed and climate model simulated monthly precipitation data.
The observed precipitation data (OBS) were collected from 659 stations in mainland China (Figure 1)
with a 30-year length for the reference baseline (1971–2000) period and provided by the China
Meteorological Data Sharing Service System (http://www.cma.gov.cn). The mean, standard deviation,
and skewness and kurtosis coefficients of 30-year (1971–2000) annual precipitation are presented for
China. The maps of these statistics are interpolated using 659 stations. Generally, southeastern China
has much more precipitation with larger variability than northwestern China. The skewness and
kurtosis of annual precipitation in China tend to be scattered with higher values mainly located in
northwestern China (Figure 1).
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The MMEs of precipitation were extracted from two climate models: the Community Earth System
Model version 1 (CESM1) (http://www.cesm.ucar.edu/projects/community-projects/LENS/data-
sets.html) and the Commonwealth Scientific and Industrial Research Organization Mark, version 3.6.0
(CSIRO) (http://cmip-pcmdi.llnl.gov/cmip5). These two MMEs were selected according to their
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differences in model structures and the number of ensemble members. CESM1 was designed for
specifically studying the role of ICV in climate change impact studies and has been used in several
studies [47–49]. It is an Earth System Model (ESM), which contains a large number of ensemble
members (40 member) for the period of 1920–2100. In order to investigate the uncertainty related
to multi-member ensembles, CSIRO was also selected. CSIRO is an Atmosphere-Ocean General
Circulation Model (AOGCM) containing 10 members for the same period [50–54]. In fact, it is ideal to
include more multi-member ensembles; however, large member ensembles are usually not available
on line. The general information of both MMEs is given in Table 1.

Table 1. Basic information of the observed and model simulated precipitation used in this study.

Metric Data Set Time
Period Source Resolution

(lon × lat) Runs

Precipitation

OBS 1971–2000

CSIRO

1971–2000 Commonwealth Scientific
and Industrial Research

Organization Mark, version
3.6.0 (CSRIO Mk3.6.0)

1.875◦ × 3.75◦ 102021–2050

2071–2100

CESM1
1971–2000

Community Earth System
Model, version 1 (CESM1)

1.25◦ × 1.875◦ 402021–2050

2071–2100

Consistent to observed data, the 1971–2000 period of MMEs was used as the reference period.
The MME precipitation is compared to observed data in terms of mean and standard deviation
of annual precipitation for two climate models (Figure 2). The results show that both MMEs are
considerably biased in simulating mean and variability of annual precipitation, bias correction may be
necessary before using these MMEs for drought assessments.
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Figure 2. The relative error (RE) of the mean (MEAN) and standard deviation (SD) for July precipitation
for two climate model ensembles (CESM1; CSIRO) with raw (RAW) simulated data for the reference
period (1971–2000). (a) The RE of the mean July precipitation for CESM1 with raw data; (b) The RE of
the SD of July precipitation for CESM1 with raw data; (c) The RE of the mean July precipitation for
CSIRO with raw data; (d) The RE of the SD of July precipitation for CSIRO with raw data.
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Two future periods (2021–2050 and 2071–2100) were extracted from two climate models under the
Representative Concentration Pathways (RCP) 8.5 forcing. These two periods, respectively, represent
near and far future periods, which were commonly used in other studies [55–58]. The RCP8.5 scenario
was selected, because it represents the upper limit of greenhouse gas emission scenario [59–61]. In order
to make a conservative decision to counter climate change impacts, only one extreme greenhouse
gas emission scenario was selected. The grid data of MMEs were interpolated to each station by the
inverse distance weighting (IDW) method [62].

3. Methods

3.1. Bias Correction

Since precipitation outputs of climate models are considerably biased, the application of bias
correction is often necessary for future drought evaluation. An empirical quantile-mapping-based
bias correction method [63,64] was used to correct biases for the precipitation in MMEs of CESM1
and CSIRO. Specifically, the bias of a MME simulation is determined as the difference between these
simulations and the observed data at the reference period in terms of 30 (predetermined) quantiles
ranging from 0 and 100 with an interval of around 3.45. The biases are then removed from the MMEs
for each future period.

This bias correction method was traditionally used for a single climate simulation [65–68]. When
using it for MMEs, all ensemble members of a climate model for the reference period are pooled
together and compared to observations to estimate the correction factors. In other words, the bias
correction factors are calculated for the assembled ensemble members, rather than any single member.
The calculated bias correction factors are then removed for each individual member. Since all members
are simulated by the same model with the same forcing, they are expected to have identical biases.
A similar method has been used in other studies [44,46] and its good performance has been proved.

3.2. Calculation of Drought Indices

Droughts usually have significant impacts on time scales greater than 1 month [27], so drought
indices are usually calculated on the timescale of multiple months. In this study, the three-month SPI
is adopted to reflect the seasonal droughts [69–71]. It is calculated with the following three steps.

(1) The s (s = 3 here) months’ accumulated precipitation (P_summ) is calculated for each specific
month m (m = 1, 2, . . . , 12, m ≥ s):

P_summ =
j=m

∑
j=m−s+1

Pj (1)

(2) A gamma distribution is used to fit the time series P_summ for each month (1–12 months
individually):

g(x) =
1

baΓ(a)
xa−1e−x/b f or x > 0 (2)

G(x) =
1

baΓ(a)

∫ x

0
ta−1e−t/bdt f or x > 0 (3)

where g(x) is the probability density function (PDF) of the gamma distribution, G(x) is the
corresponding cumulative distribution function (CDF), x (or the integral variable t in Equation (3)) is
the 3-months’ accumulated precipitation (P_summ in Equation (1)), and a and b are two parameters
estimated by the maximum likelihood method (MLE). Considering that non-precipitation may exist
while it is excluded when using continuous gamma distribution, Equation (4) serves as a supplement.

H(x) = q + (1 − q)G(x) (4)

where q is the probability of zero precipitation and H(x) is the revised cumulative probability.
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(3) The SPI value is calculated by transforming H(x) to the standard normal distribution:

SPIs = Φ−1(H(x)) (5)

in which Φ is the inverse of the normal CDF. Positive SPI values reflect wet conditions, while negative
SPI values reflect dry conditions. The drought/wet conditions of different SPI values are presented in
Table 2.

Table 2. Classification of SPI Values.

SPI Range Classes

>2.00 Severely wet
1.50~1.90 Moderately wet
1.00~1.49 Slightly wet
0.00~0.99 Normal
−0.99~0.00 Near normal
−1.00~−1.49 Slightly dry
−1.50~−1.99 Moderately dry

<−2.00 Severely wet

3.3. Definitions of Droughts

In this study, a drought event is defined as a time period when the drought index (SPI3) is
continuously below −1.0 using “the theory of run” [72]; the drought event terminates when the drought
index becomes above −1.0. According to the theory of run, two important characteristics—drought
duration and severity—are used to characterize a drought event. Drought duration is the length of a
time period for which the index (SPI3) remains below the threshold (e.g., −1.0), and drought severity
is the cumulative index value during this period. They are calculated using Equations (6) and (7),
respectively. To facilitate analysis, the absolute drought severity (the accumulated SPI3 value) was
used here.

Dd = te − ti (6)

Ds = −
Dd

∑
t=1

SPIt (7)

where Dd and Ds are drought duration and severity, respectively. ti is the initiation time and te is the
termination time for a drought event.

3.4. Calculation of Drought Return Periods

The duration/severity (Dd and Ds) of a drought are further analyzed using a frequency analysis
approach. The return periods of Dd and Ds are calculated using Equation (8) [73,74].

T =
E(L)

1 − F(x)
(8)

where T represents the return period of a drought duration or severity, F(x) represents the CDF for
a probability distribution used to describe a series of droughts’ duration or severity, and E(L) is the
expected inter-arrival time of a drought event, which is equal to the ratio of the whole length of the
time period to the total drought events over that period.

F(x) is usually represented by some theoretical probability distributions. The most commonly
used distributions include the Exponential, Weibull, Gamma, Lognormal, Kernel and extreme value
distributions [14]. The use of these theoretical probability distributions is a tradeoff between a limited
sample size and a long return period. However, when the sample size is large enough to approximately
represent the population, empirical distribution might be a good choice to conduct frequency analysis.
In this study, the application of MMEs, which multiply the sample size, enables the utilization of
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empirical distribution, even though only 30 years of data are employed. In detail, all samples from
multiple members can be assembled in the frequency analysis, as each member represents a possible
realization in the real world. Therefore, the F(x) here is estimated using the empirical cumulative
frequency with the mathematical expectation (estimated) formula (Equation (9)) [75]:

F̂k(x) =
1

n + 1

k

∑
i=1

1(xi ≤ x) (9)

where F̂k(x) is the kth cumulative distribution probability and n is the length of series X (x1, x2, . . . , xn,
sorted in an ascending order).

In order to verify the performance of empirical distributions based on a large sample size,
this study examined the goodness-of-fit based on the ordinary least square (OLS) [63]. In addition,
conventional methods of fitting parametric theoretical distributions [14] (the Exponential, Weibull,
Gamma and Lognormal distributions) were employed to serve as a comparison here. Parameters of
these theoretical distributions were estimated using the maximum likelihood estimation method (MLE)
based on a 30-year single member of the CESM1. Drought duration and drought severity calculated
from the 30-year observed data were used as the baseline and corresponding results were presented in
Figure 2.

The X-axis and Y-axis in Figure 3 present the sum of squared errors (SSEs) in the OLS criterion for
drought duration and drought severity for 10 stations across China, respectively. A smaller SSE value
represents a better performance [76]. As shown in the figure, empirical distributions based on the
two MMEs show robust results for both drought duration and drought severity over the 10 stations.
This proves the superiority of utilizing the MMEs in frequency analysis for extreme climate events and
the rationality of employing an empirical distribution.
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Figure 3. Ordinary least squares (OLSs) for both drought duration (DUR) and severity (SEV) for
10 stations across China. EXP, WB, GAM, LON represent the Exponential, Weibull, Gamma and
Lognormal distributions, respectively. CE and MK represent empirical distributions based on the
CESM1 and the CSIRO, respectively.
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To further examine the superiority of empirical distributions based on large sample sizes provided
by the MMEs, cumulative distributions of the drought severity using the different number of
simulations (one-member, 10-member and 40-member simulations) of CESM1 for one station in
China were analyzed in Figure 4. Here, the gamma distribution was used to serve as a comparison.
As represented by the confidence intervals (CI) in Figure 4, the fitting uncertainty, which is mainly
derived from parameter estimation, will significantly decline with increasing sample sizes. This shows
that frequency analysis, which is based on a large sample size, will be more reliable. However,
the corresponding fitting error will also increase with increase in sample sizes, especially for the
tail, as indicated by pronounced disparities between the empirical distributions and the gamma
distributions. This increasing fitting error will thus partially weaken the superiority of large sample
sizes. On the other hand, empirical distributions characterize authentic features of a sample when the
sample size is large enough. Therefore, it is reliable to employ empirical distributions combined with
MMEs in frequency analysis.
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members within the same period are pooled together to construct a sample. All stations with a 
significant climate change signal at the p = 0.05 significance level will be highlighted in figures.  

Figure 4. Illustration of frequency analysis for drought severity under the empirical distribution (EMP,
the dark circle) and the gamma distribution (Gam-fit, the red circle). The dashed grey line shows the
95% confidence intervals (CI) of the gamma distribution in parameter estimation. (a) The cumulative
distributions based on one-member simulation of CESM1; (b)The cumulative distributions based on
10-member simulations of CESM1; (c)The cumulative distributions based on 40-member simulations
of CESM1.

3.5. Data Analysis

In order to quantify the effects of bias correction and future changes in drought
conditions, the relative errors (RE) between MMEs and observed precipitation in the reference
period—Equation (10)—and relative changes (RC) of drought variables between future and reference
periods—Equation (11)—are calculated:

RE =
Vsim − Vobs

Vobs
× 100% (10)

RC =
Vf ut − Vre f

Vre f
× 100% (11)

where RE represents the relative error, Vsim is the statistic (e.g., mean and SD) in MMEs precipitation
and Vobs is the corresponding statistic in observed precipitation. As for RC, Vfut stands for the future
drought variables (e.g., drought frequency, maximum drought duration and severity) and Vref stands
for the corresponding variables in the reference period. Additionally, the statistical significance of the
changes in drought frequency, drought duration, and drought severity in future periods relative to
the reference period is tested by using the “Welch’s t test” [77,78]. When using the “Welch’s t test”,
all values corresponding to drought frequency, drought duration, or drought severity from all members
within the same period are pooled together to construct a sample. All stations with a significant climate
change signal at the p = 0.05 significance level will be highlighted in figures.
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4. Results

4.1. Validation of Downscaling Methods

Figure 2 presents the relative errors of the mean and standard deviation for precipitation in
July simulated by two climate model large ensembles without bias correction for the reference
period. The relative error was calculated based on ensemble mean, rather than each individual
member. Since similar correction performances are observed for all months, only results from July are
presented in Figure 2 for illustration. Generally, both MMEs without post-processing are considerably
biased in simulating mean July precipitation in China, with the relative errors ranging from −10%
to 50% over most areas. Both ensembles overestimate mean precipitation in the Qinghai-Tibetan
plateau. The CESM1 also overestimates mean precipitation in northern China and the CSIRO
overestimates the mean values in southern China. On the other hand, the CESM1 underestimates
mean precipitation for southeastern China, whereas the CSIRO underestimates the mean values for
central and northeastern China.

The relative errors of the standard deviation (SD) range from −10% to 30% for CESM1- and
CSIRO-simulated July precipitation over most stations. Both climate model ensembles (especially the
CESM1) overestimate the SD in the arid Qinghai-Tibetan plateau. In addition, for all other regions,
the SD of precipitation is generally underestimated by both ensembles, with the exception of some
southwestern regions, where the SD of July precipitation is overestimated by the CSIRO.

For the bias-corrected precipitation, both the mean and the SD are almost identical to that of
observations all over China, as indicated by the white background in Figure 5. This proves the
reasonable performance of the bias correction method for multi-member climate ensembles.
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4.2. Future Drought Frequencies 
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simulated by two MMEs for the reference period and their relative changes for the near and far future 
periods. In the reference period, the drought frequency ranges between 12 and 34 times for CESM1 

Figure 5. The relative error (RE) of the mean (MEAN) and standard deviation (SD) for July precipitation
for two climate model ensembles (CESM1; CSIRO) with (COR) bias correction for the reference period
(1971–2000). (a) The RE of the mean July precipitation for CESM1 with corrected data; (b) The RE of the
SD of July precipitation for CESM1 with corrected data; (c) The RE of the mean July precipitation for
CSIRO with corrected data; (d) The RE of the SD of July precipitation for CSIRO with corrected data.

4.2. Future Drought Frequencies

Figure 6 presents frequencies of droughts (defined by the threshold value of −1 for SPI) simulated
by two MMEs for the reference period and their relative changes for the near and far future periods.
In the reference period, the drought frequency ranges between 12 and 34 times for CESM1 and between
12 and 35 times for CSIRO, across all stations in China. Even though the range of drought frequency is
similar between two climate models, the uncertainty related to climate models cannot be neglected,
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as indicated by the higher drought frequency simulated by CESM1 for most regions in China. The low
drought frequency in the reference period tends to appear in northwestern China, whereas the high
drought frequency is mainly located in northeastern and central China. Additionally, moderate
drought frequencies can be seen in southern China.
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In the near future, changes in drought frequencies vary among different regions. A half of
stations show statistically significant changes at the p = 0.05 level, when using CESM1. The percentile
of stations is 20% when using CSIRO. Generally, the frequency is projected to increase in western
China, with relative changes ranging between 10 and 30%. On the other hand, a slight decrease of
drought frequency can be seen in northern and northeastern China, approximately ranging between
−10 and −20% for the CESM1 and CSIRO. The climate model uncertainty can also be inspected by
the two climate model ensembles. For example, CESM1 projects a decrease in drought frequency
in northern China, while CSIRO projects a much weaker decrease or even an opposite sign in some
northern regions.

Changes of drought frequencies in the far future can exceed that of the near future, in spite
of considerable inconsistency between the two multi-member ensembles (Figure 6e,f). The ratio of
stations that show significant changes can reach up to 99% for CESM1 (and 64% for CSIRO). Compared
with the near future period, projected changes in the end of century are less certain, especially in
southwestern China where the CESM1 projects a decline in drought frequency while the CSIRO
projects an increasing change. Parts of northwestern China present rising frequency ranging between
20 and 50% projected by CSIRO, in line with the case of CESM1. On the other hand, negative frequency
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changes are projected by CESM1 and CSIRO in northeastern China. Considerably decreasing frequency
of droughts is projected to appear in northern China with relative changes approaching about −50%.
In contrast, southeastern China will experience a slight decrease in the frequency of droughts with
relative changes varying from −10 to −20%.

4.3. Future Drought Hazards

The future drought hazards represented by 30- and 50-year return periods of drought duration
and drought severity are analyzed based on the empirical distribution.

Figures 7 and 8 present the 30-year return periods of drought duration and drought severity
in China for the reference period and their relative changes for two future periods. In the reference
period, there exists distinctive spatial variability for the 30-year return period in terms of drought
duration and drought severity across China. The 30-year return period of drought duration simulated
by CESM1 ranges between 4 and 7 months and the 30-year return period of drought severity ranges
between 5 and 13. A larger spatial variability is projected by CSIRO with the 30-year return period of
drought duration ranging from 4 to 11 months and drought severity ranging from 7 to 21. Additionally,
the spatial patterns of the 50-year return levels (Figures 9 and 10) are quite similar with that of the
30-year return levels for both drought duration and drought severity.
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Figure 7. Spatial patterns of drought duration with a 30-year return period in the reference period
(REF) and the relative changes (RC) in future periods (FUT1, FUT2) for two climate model ensembles.
Stations that present statistically significant changes are marked with filled dots. (a)The 30-year return
period of drought duration in REF for CESM1; (b) The 30-year return period of drought duration
in REF for CSIRO; (c) The RC of the 30-year return period of drought duration in FUT1 for CESM1;
(d) The RC of the 30-year return period of drought duration in FUT1 for CSIRO; (e) The RC of the
30-year return period of drought duration in FUT2 for CESM1; (f) The RC of the 30-year return period
of drought duration in FUT2 for CSIRO.
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Figure 8. Spatial patterns of drought severity with a 30-year return period in the reference period
(REF) and the relative changes (RC) in future periods (FUT1, FUT2) for two climate model ensembles.
Stations that present statistically significant changes are marked with filled dots. (a)The 30-year return
period of drought severity in REF for CESM1; (b) The 30-year return period of drought severity in REF
for CSIRO; (c) The RC of the 30-year return period of drought severity in FUT1 for CESM1; (d) The RC
of the 30-year return period of drought severity in FUT1 for CSIRO; (e) The RC of the 30-year return
period of drought severity in FUT2 for CESM1; (f) The RC of the 30-year return period of drought
severity in FUT2 for CSIRO.

In the near future, deteriorating drought hazards represented by 30-year return periods of drought
duration and drought severity can be observed in most regions over China. When using CESM1, more
stations show statistically significant changes for both drought duration and drought severity than
using CSIRO. Generally, the relative changes of 30-year return period of drought severity are projected
to be more remarkable than that of 30-year return period of drought duration, with more pronounced
changes projected by CSIRO than that by CESM1. Specifically, CSIRO projects a relative change in
30-year return period of drought duration ranging between −33% and 60% across China and a relative
change in 30-year return period of drought severity ranging between −34% and 83%. The values
range between −27% and 45% (drought severity) and between −33% and 25% (drought duration) for
CESM1. For relative changes in 50-year return levels, their spatial patterns are similar to that in 30-year
return levels for both drought duration and drought severity. However, CSIRO projects a slightly more
prominent spatial variability than CESM1 for both drought duration and drought severity.
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Figure 9. Spatial patterns of drought duration with a 50-year return period in the reference period
(REF) and the relative changes (RC) in future periods (FUT1, FUT2) for two climate model ensembles.
Stations that present statistically significant changes are marked with filled dots. (a)The 50-year return
period of drought duration in REF for CESM1; (b) The 50-year return period of drought duration in
REF for CSIRO; (c) The RC of the 50-year return period of drought duration in FUT1 for CESM1; (d)
The RC of the 50-year return period of drought duration in FUT1 for CSIRO; (e) The RC of the 50-year
return period of drought duration in FUT2 for CESM1; (f) The RC of the 50-year return period of
drought duration in FUT2 for CSIRO.

For the far future period, the amplitudes of changes in drought hazards represented by 30- and
50-return periods of drought duration and drought severity are further extended. The number of
stations that show statistically significant changes for both drought duration and drought severity
will also increase during this period for both models. In addition, a lesser agreement can be observed
between the two climate models. Generally, in contrast to the near future period, drought hazards
are projected to be alleviated for the far future period with more significant and widespread negative
changes across China. In specific, the negative change is more pronounced for the 30-year return
period of drought severity compared with that for the 30-year return period of drought duration.
In addition, CESM1 projects more negative changes in both 30-year return period of drought duration
and drought severity than CSIRO. With an exception of a few stations in the northwestern regions,
the drought hazards projected by CESM1 will be relieved across China with the lowest value up to
−60% for the 30-year return period of drought duration and −67% for the 30-year return period of
drought severity. However, a larger spatial variability is projected by CSIRO. Similar magnitudes and
spatial patterns of drought duration and drought severity are observed for 50-year return periods.



Water 2018, 10, 1702 14 of 20
Water 2018, 10, x FOR PEER REVIEW  15 of 21 

 

 
Figure 10. Spatial patterns of drought severity with a 50-year return period in the reference period 
(REF) and the relative changes (RC) in future periods (FUT1, FUT2) for two climate model ensembles. 
Stations that present statistically significant changes are marked with filled dots. (a)The 50-year return 
period of drought severity in REF for CESM1; (b) The 50-year return period of drought severity in 
REF for CSIRO; (c) The RC of the 50-year return period of drought severity in FUT1 for CESM1; (d) 
The RC of the 50-year return period of drought severity in FUT1 for CSIRO; (e) The RC of the 50-year 
return period of drought severity in FUT2 for CESM1; (f) The RC of the 50-year return period of 
drought severity in FUT2 for CSIRO.  

5. Discussion 

Internal climate variability (ICV) is one of the major components contributing to climate change, 
especially for the historical period with less external forcing from greenhouse gas emissions [79]. 
However, it is usually not considered in climate change impact studies, as long time series used to 
represent the ICV are usually not available. The development of MMEs provides an opportunity to 
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assembled to investigate the role of ICV in climate change impacts. Until now, MMEs of several 
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Figure 10. Spatial patterns of drought severity with a 50-year return period in the reference period
(REF) and the relative changes (RC) in future periods (FUT1, FUT2) for two climate model ensembles.
Stations that present statistically significant changes are marked with filled dots. (a)The 50-year return
period of drought severity in REF for CESM1; (b) The 50-year return period of drought severity in REF
for CSIRO; (c) The RC of the 50-year return period of drought severity in FUT1 for CESM1; (d) The RC
of the 50-year return period of drought severity in FUT1 for CSIRO; (e) The RC of the 50-year return
period of drought severity in FUT2 for CESM1; (f) The RC of the 50-year return period of drought
severity in FUT2 for CSIRO.

5. Discussion

Internal climate variability (ICV) is one of the major components contributing to climate change,
especially for the historical period with less external forcing from greenhouse gas emissions [79].
However, it is usually not considered in climate change impact studies, as long time series used to
represent the ICV are usually not available. The development of MMEs provides an opportunity to
consider ICV in climate change impact studies. The MME is achieved by running a climate model
several times with the same climate forcing, but different initial conditions. Remarkably different
climate scenarios may be predicted in a MME, even though a very minor change had been made
in the initial conditions of a climate model. Thus, each member contains information of intrinsic
variability in the climate system and its responses under human-induced climate change. Any member
can be considered as a possible realization of real climate if model biases are not considered. Thus,
the inter-member difference can represent the ICV in a climate system, and all members can be
assembled to investigate the role of ICV in climate change impacts. Until now, MMEs of several climate
models have been developed and widely used in climate change studies [41,42]. These MMEs perform
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reasonably well with respect to reproducing the long-term observed ICV of mean precipitation and
temperature, especially at multi-decadal scales [54].

It is well known that the climate model itself is one of the largest uncertainty contributors to
climate change impacts [79]. Due to data availability, only two climate models with large ensemble
members were used in this study. Other climate models in the Coupled Model Inter-comparison
Project Phase 5 (CMIP5) database usually have fewer ensemble members, which could be inadequate
to represent the ICV. Even though it would be better to include more models, the two models applied
here reflect the model uncertainty to a certain extent, especially for the far future period. For example,
the disparities in spatial distributions of changes in drought frequencies, 30- and 50-year return periods
of drought duration, and drought severity between CESM1 and CSIRO all become more remarkable in
the far future period than in the near future. Besides, the uncertainty is pronounced in southwestern
China where two models suggest different directions of drought changes for the far future period.
In addition, though the CSIRO contains fewer runs than the CESM1, it often presents more significant
changes, as indicated by larger amplitudes in drought frequencies, 30- and 50-year return periods
of drought duration, and drought severity for the two future periods. Overall, different model
structures combined with different initial conditions may lead to divergent inter-member variability
and subsequently result in divergent spatial patterns and corresponding absolute values.

To better reveal the role of ICV in future drought projections, the results of climate change
impacts with and without the consideration of ICV are demonstrated as follows by comparing the
multi-member-ensemble (CSIRO or CESM1) with the multi-model-ensemble (single simulations
from 29 climate models) in estimating the relative changes of 30-year return period of drought
severity between the near future and the reference period in China (Figure 11). When using the
multi-member-ensemble, an empirical distribution was fitted based on samples of all members to
calculate return periods of drought severity. When using the multi-model-ensemble, the average of
29 climate models with a single simulation was used. Specifically, a single simulation was used to
calculate the 30-year return period of drought severity based on the gamma distribution. The mean
value was then calculated over all 29 climate models. As shown in Figure 11, without consideration
of ICV, more stations in China present deteriorating drought hazards, as indicated by the increase in
the 30-year return period of drought severity. Even though it is unable to determine which method is
more reliable in estimating the climate change impacts on drought, the use of multi-member ensemble
specifically considers the effects of ICV, which is an irreducible uncertainty source for impact studies.
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Moreover, the signal to uncertainty ratio (SNR, [80]) of changes in drought frequency for the near
future period relative to the reference period was also calculated (Figure 12). The signal is defined
as the mean of future changes in drought frequency over all 29 climate models. The uncertainty
related to the choice of a climate model was compared to that related to the ICV in estimating the
changes of drought frequency. Specifically, the uncertainty related to climate models was defined as
the standard deviation of changes in climate change signals projected by 29 climate model simulations.
The uncertainty related to ICV was defined as the inter-member variability (standard deviation) of the
multi-member ensemble (CSIRO or CESM1). As shown in Figure 12, the uncertainty related to ICV is
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comparable to that related to climate models. In addition, the ICV plays a significant role in drought
impact studies, especially for southern China, where the SNR is smaller than 1. This further indicates
the necessity of taking into account the ICV in climate change impact studies.
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Overall, the results presented in Figures 11 and 12 indicate that the ICV contributes large
uncertainty in drought projections and plays a significant role in climate change impacts on droughts.
Thus, the impacts of ICV should be specifically considered in drought projections. Since the observed
time series is usually not long enough to manifest the ICV, especially at the multi-decadal scale, the use
of multi-member ensemble is an alternative solution. In fact, if multi-member ensembles are available
for all climate models, it is ideal to use all of them to adequately represent the overall uncertainty
from climate models and ICV [81,82]. However, it is computationally too expensive to run all climate
models with multiple members. Since previous studies [54] have shown that the multi-member
ensemble of a climate model can reasonably represent the observed ICV, especially at the multi-decadal
scale, when the ensemble member is larger than 5, a compromise solution may combine multi-model
ensembles with multi-member ensemble for impact studies. This may be achieved by adding the ICV
estimated using a single multi-member ensemble on the top of the climate change signal estimated
using multi-model ensembles. This can be an avenue for future studies.

As mentioned in the Introduction, droughts have several categories; this study only considered
meteorological drought because other types of droughts are basically derived from meteorological
drought and especially abnormal precipitation conditions. In fact, the assessment of other
types of droughts follows a similar framework. The differences mainly lie in the selection
of hydro-meteorological variables and criteria. In order to describe drought conditions more
systematically, more drought indices from various hydro-meteorological variables should be conducted
in future studies.

Moreover, drought duration and drought severity may be dependent on each other [26], but the
univariate return periods/levels calculated in this study ignored this dependence. However, this
dependence can be induced by using joint distributions for drought duration and severity, such as
copula functions or conditional distributions. This will also be an avenue for future studies.

6. Conclusions

In this paper, two MMEs are employed to investigate the joint impacts of ICV and anthropogenic
climate change on future meteorological drought conditions. Based on the large sample size provided
by MMEs, the empirical distributions are able to be used in frequency analysis to depict drought
hazards. The following conclusions can be drawn.

(1) Precipitation predictions simulated by CESM1 and CSIRO ensembles have considerable biases,
while these biases can be effectively reduced by the bias correction method.

(2) Based on bias-corrected CESM1 and CSIRO ensembles, northwestern China experiences mild
drought conditions in the reference period, as indicated by low drought frequencies and hazards.
Remarkably frequent droughts with relatively short drought duration and small drought severity
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are found in northeastern China. Southern China is subject to moderate drought frequencies but
with long drought duration and large drought severity.

(3) In the middle of the 21st century, CESM1 and CSIRO ensembles project decreases in the
drought frequency and drought duration in northern and northeastern China, and increases in
drought severity, resulting in shorter but heavier droughts. In contrast, drought conditions will
significantly deteriorate in southwestern China, while drought frequencies will go up and the
30- and 50-year drought duration and severity will increase.

(4) At the end of the 21st century, drought frequencies and drought hazards are projected to
decrease in northern and, especially, northeastern China for both climate models. However,
a large uncertainty related to climate models is observed when simulating drought conditions.
For example, drought conditions will continue to deteriorate in southwestern China under the
CSIRO, while they will greatly alleviate under the CESM1.
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