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Abstract: The prediction of typhoon tracks in the Northwest Pacific is key to reducing human ca-
sualties and property damage. Traditional numerical forecasting models often require substantial
computational resources, are high-cost, and have significant limitations in prediction speed. This
research is dedicated to using deep learning methods to address the shortcomings of traditional meth-
ods. Our method (AFR-SimVP) is based on a large-kernel convolutional spatio-temporal prediction
network combined with multi-feature fusion for forecasting typhoon tracks in the Northwest Pacific.
In order to more effectively suppress the effect of noise in the dataset to enhance the generalization
ability of the model, we use a multi-branch structure, incorporate an atmospheric reconstruction
subtask, and propose a second-order smoothing loss to further improve the prediction ability of the
model. More importantly, we innovatively propose a multi-time-step typhoon prediction network
(HTAFR-SimVP) that does not use the traditional recurrent neural network family of models at all.
Instead, through fine-to-coarse hierarchical temporal feature extraction and dynamic self-distillation,
multi-time-step prediction is achieved using only a single regression network. In addition, combined
with atmospheric field reconstruction, the network achieves integrated prediction for multiple tasks,
which greatly enhances the model’s range of applications. Experiments show that our proposed net-
work achieves optimal performance in the 24 h typhoon track prediction task. Our regression network
outperforms previous recurrent network-based typhoon prediction models in the multi-time-step
prediction task and also performs well in multiple integration tasks.

Keywords: tropical cyclone; tracking forecast; hierarchical temporal feature; atmospheric field
reconstruction; self-distillation

1. Introduction

Tropical cyclones (TCs) are large-scale meteorological phenomena that originate over
the surfaces of tropical or subtropical oceans. TCs are one of the major extreme meteoro-
logical disasters facing humankind, and the accurate prediction of TCs’ tracks can greatly
reduce property damage and casualties. However, the formation of a TC is influenced by a
variety of factors, including the meteorological environment in which the tropical cyclone is
located, thermodynamic and kinetic factors, etc. In addition, numerous variables influence
the trajectory of a TC, including atmospheric circulation, latitude, longitude, topography,
seasonal wind fields, and ocean temperature. The interactions among these factors make
tropical cyclone track prediction a great challenge. Therefore, considering the complexity of
tropical cyclone prediction and its great impact on human beings, it is of great importance
to study new and more efficient methods for tropical cyclone prediction.

Traditional forecasting methods are mainly categorized into statistical forecasting
methods [1–5] and numerical forecasting methods [6–11]. Statistical forecasting methods
usually look for factors of TC motion and establish relationships based on historical TC track
records. For example, the climatology and persistence method (CLIPER) usually constructs
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the features affecting the TC track according to the variables TC latitude, longitude, wind
speed, and time and establishes regression equations to realize the 72 h prediction of
the TC track [12–14]. However, manually selected features are limited in their ability to
represent the features, and this method only extracts two-dimensional features of the TC
associated with the path without taking into account three-dimensional features of the
TC, such as wind fields and geopotential fields at the surface of the TC, so it is difficult to
produce accurate prediction results. Since the 1990s, with the improvement of computer
performance, the numerical weather prediction (NWP) system [15], which simulates the
partial differential equations of the atmospheric state, has gradually become the mainstream
method for meteorological forecasting by various organizations. However, this method
needs to deal with complex thermodynamic equations and simulate the internal structure
of TCs, which requires substantial computational resources but still cannot achieve the
desired prediction accuracy.

Presently, an increasing number of researchers are employing machine learning
methodologies for the prediction of TC. Jinkai Tan et al. [16–19] utilized GBDT, MLP,
SVM, and BP networks to capture the nonlinear relationships from input data for predict-
ing TC trajectories. Machine learning-based methods demand minimal computational
resources, resulting in a significant enhancement in inference speed when compared to
conventional methodologies. However, due to the simplicity of the network structure, they
are unable to efficiently capture complex relationships during TC motion. Moreover, most
machine learning methods use regression to predict TCs, which loses temporal information
during TC motion.

For the reasons mentioned above, traditional statistical methods and machine learning
methods face difficulties in effectively predicting TC trajectories. And deep learning meth-
ods based on multilayer neural networks are more suitable for TC trajectory prediction.
The current deep learning-based TC trajectory prediction methods are mainly divided
into two categories based on the selection of data. One class is based on the TC trajec-
tory sequence data and utilizes recurrent networks to capture the temporal information
and nonlinear relationships from the sequence data. The other category is based on var-
ious remote sensing image data or a combination of multiple data sources to predict TC
trajectories using a multimodal approach. For instance, Moradi et al. [20–22] employed
an RNN to extract nonlinear features for 2D TCs. Leveraging the memory capabilities
of RNNs, they extended the prediction horizon, yielding results over longer time spans.
Additionally, they integrated variational inference, enabling the network to provide a good
approximation in terms of uncertainty quantification while maintaining the prediction
accuracy. However, the plain RNN suffers from the long-term dependency problem. This
means that the current trajectory may be influenced by trajectories that occurred long ago.
But RNNs cannot effectively learn information over large intervals. For this reason, Song
Gao et al. [23–25] utilized long short-term memory (LSTM) networks and gated recurrent
units (GRUs) to capture the long-term features of TCs. They further enhanced predictive
accuracy by combining an auto-encoder (AE) and generative adversarial networks (GANs).
These RNN-based methods can effectively extract the temporal features during TC motion
but are not able to do anything about 3D TC features.

In order to solve the above problems, in some recent studies, researchers have preferred
to use data of various forms to make predictions of TC trajectories using a multimodal
fusion approach. Considering that generative adversarial networks can use past remote
sensing images to automatically generate TC centers and cloud structures at future mo-
ments, Ruttgers et al. [26] used a GAN to predict TC trajectories up to 6 h ahead of time,
and the predicted TC trajectory images could effectively identify the future location of TC
centers, as well as the cloud structures near the TC centers. They also found that when
the velocity field is used in combination with satellite images, the prediction results can be
significantly improved; however, this method requires high-resolution satellite images and
only takes into account the information around the TC, still not the three-dimensional struc-
ture of the TC. To comprehensively consider the three-dimensional spatial characteristics of
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TCs, Mudigonda et al. [27,28] proposed a spatio-temporal model based on the convolutional
LSTM (ConvLSTM), which is able to capture not only the temporal dynamics but also the
spatial distribution of the TC trajectory. Nonetheless, the ConvLSTM model suffers from an
excessive number of parameters and can easily overfit the data, and it is difficult to extract
effective 3D nonlinear features. Consequently, it is difficult to generate predicted trajectory
maps that accurately reflect the exact location of TCs. Therefore, determining how to better
fuse the 3D TC atmospheric state with 2D features has become a hot research topic in recent
years [29,30]. Guangning Xu et al. [31,32] proposed a fusion of convolutional networks and
recurrent networks, combined with segmented training, to fully integrate 2D positional
features and 3D geopotential features. This approach further enhances the accuracy of tra-
jectory prediction. Both of the above methods only consider the geopotential field features
in 3D TC features, and the wind field also has an important influence on the TC trajectory.
Giffard et al. [29,33] took the wind field data into account and generated predictions by
fusing the geopotential field and wind field features. Pingping Wang et al. [33] designed
a method combining a 3D convolutional neural network (3DCNN), gated recurrent unit
(GRU), and smoothing algorithm in a hybrid optimization model. The 3DCNN is used to
explore the complex relationship between wind and geopotential fields under different
pressure levels, and the GRU is used to transform the TC trajectory prediction problem
into a spatio-temporal sequential problem. The 24 h prediction error of this method is
112.05 km, significantly lower than that of the previous deep learning methods; however,
the training time of this model is longer, and it directly stacks the wind field data with
geopotential field data, which causes the interaction of noise in the multiple 3D TC features,
subsequently impacting the model’s predictions.

In previous studies, TC trajectories were often predicted individually, which could lead
to overfitting and a reduction in the model’s generalization capability. The main objectives
of this study are to extract the 3D features of TCs more effectively, reduce the impact of
anomalous mutations in TC trajectories on the prediction results, suppress the interaction
among various types of noise in the dataset, and integrate TC trajectory prediction with
atmospheric field reconstruction tasks to further enhance the generalization capability of
the model. In addition, a spatio-temporal prediction network SimVP [34,35] is utilized
to extract large-scale spatio-temporal TC features, and a novel multi-step TC prediction
framework based on hierarchical temporal feature extraction and dynamic self-distillation
is proposed. Finally, the medium- and long-term predictions of TC trajectories are explored.

2. Datasets
2.1. Data Sources

The dataset utilized in this study comprises two distinct components. The first is the
fifth generation of reanalysis data (ERA5) for global climate and weather published by
the European Center for Medium-Range Weather Forecasts (ECMWF) [36]. The reanalysis
combines modeled data with observations from around the world to form a complete and
consistent dataset. In contrast to the previous generation of ERA-Interim reanalysis data,
ERA5 incorporates more advanced data assimilation techniques, a more comprehensive
set of observational data, and enhanced model parameters. The ERA5 data can provide
reanalysis data for atmospheric, oceanic, and land-related meteorological variables on an
hourly basis. These data give a detailed picture of the evolution of the weather on an hourly
basis. In this study, some meteorological variables from ERA5 were selected for modeling.

The second part is the TC best-trajectory dataset published by the China Meteorological
Administration (CMA) [37,38]. This dataset comprises 6-hourly data on TCs developed
over the NW Pacific Ocean from 1949 to the present. The CMA Best-Track dataset contains
the time of occurrence of the TCs, the longitude (0.1◦ E), the latitude (0.1◦ N), the minimum
pressure (hPa), and the two-minute-averaged maximum sustained winds in the vicinity of
the center of the TCs. All TC data occurring in the Pacific Northwest between 1979 and
2022 were selected for this study.
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2.2. Data Pre-Processing

In order to prepare the 2D TC dataset needed for this study, the CLIPER method [12]
was used to transform 4 variables, namely, time, latitude, longitude, and central wind
speed, in the CMA dataset into the 53 features shown in Table 1, where the subscript i
denotes the value of the variable i hours ago; for instance, LONG6 denotes the value of
the longitude of the TC six hours ago. The 2D information of the TC is described in terms
of these 53 variables, where features 1 to 15 provide the basic historical characteristics of
the TC, feature 16 indicates the annual characteristics of the TC, features 17 to 28 indicate
the structural change characteristics of the TC, and features 29 to 53 indicate the nonlinear
characteristics of the TC. This type of feature is mainly used to describe information about
the direction of movement, acceleration, and angle of movement of the TC in physical terms.
Furthermore, to perform the CLIPER method, historical characteristics for the initial 24 h of
tropical cyclones (TCs) are required. Consequently, in order to predict the TC trajectory
beyond the initial 24 h, TCs with a duration of less than 12 time points (equivalent to 72 h)
were excluded from the dataset.

Table 1. The CLIPER features.

Factors Feature Name Description

X1-X5 LAT0, LAT6, LAT12, LAT18, LAT24 Latitude in the last 24 h
X6-X10 LONG0, LONG6, LONG12, LONG18, LONG24 Longitude in the last 24 h
X11-X15 WND0, WND6, WND12, WND18, WND24 Wind speed in the last 24 h
X16 MONTH Current month
X17-X20 LAT0 − LAT6, LAT6 − LAT12, LAT12 − LAT18, LAT18 − LAT24 Six-hour latitude difference
X21-X24 LONG0 − LONG6, LONG6 − LONG12, LONG12 − LONG18, LONG18 − LONG24 Six-hour longitude difference
X25-X28 WND0 − WND6, WND6 − WND12, WND12 − WND18, WND18 − WND24 Six-hour wind speed difference

X29 ∑3
i=0(LAT6i − LAT6(i+1))

2 Sum of squares of six-hour latitude
difference

X30 ∑3
i=0(LONG6i − LONG6(i+1))

2 Sum of squares of six-hour
longitude difference

X31

√
∑3

i=0(LAT6i − LAT6(i+1))
2 Square root of feature 29

X32

√
∑3

i=0(LONG6i − LONG6(i+1))
2 Square root of feature 30

X33-X34
√

LAT0,
√

LONG0
Square root of current latitude
and longitude

X35-X38 Acc(LOC6, LOC0), Acc(LOC12, LOC6), Acc(LOC18, LOC12), Acc(LOC24, LOC18) Physical acceleration
X39-X42 Angle(LOC0, 0◦ N), Angle(LOC6, 0◦ N), Angle(LOC12, 0◦ N), Angle(LOC18, 0◦ N) Zonal angle
X43-X46 Angle(LOC0, 0◦ E), Angle(LOC6, 0◦ E), Angle(LOC12, 0◦ E), Angle(LOC18, 0◦ E) Meridional angle

X47-X50
Angle(LOC0, LOC6), Angle(LOC6, LOC12), Angle(LOC12, LOC18), Angle of historical location
Angle(LOC18, LOC24)

X51-X53
Angle(PATH0,6, PATH6,12), Angle(PATH6,12, PATH12,18), Angle of historical path
Angle(PATH12,18, PATH18,24)

The 3D characterization data of TCs were obtained from the ERA5 data. There are
numerous factors affecting the TC trajectory, among which the geopotential is a manifesta-
tion of the Earth’s gravity field and the effect of the Earth’s rotation, which can reflect the
three-dimensional structural information of the TC. For a rotationally symmetric system
such as a TC, the geopotential can help us to understand the structure of the vertical motion
inside the TC, such as the distribution of updrafts and downdrafts, which are the key
factors affecting the trajectory of the typhoon. And the u-wind and v-wind component
scales in the wind field characteristics represent the motion components of the TC in the
east–west and north–south directions, which, together, describe the three-dimensional
wind field structure of the TC, which is crucial for understanding the motion characteristics
of the TC and predicting its trajectory. The wind field data not only reflect the speed and
direction of the TC’s movement but also reveal the airflow patterns within the TC, such as
the rotating eye wall and the spiral rainbands at the periphery. Therefore, in order to fully
describe the 3D spatial characteristics of TCs, we selected three meteorological variables,
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geopotential (Z), the u-component of wind (U), and the v-component of wind (V), in the
ERA5 dataset, as shown in Figure 1. In the two-dimensional horizontal direction, the TC
radius can often extend from hundreds to a thousand kilometers, so, using the center of the
TC as a standard, a 15◦ radius range was selected with a resolution of 1◦ to describe the
TC, where each TC at each moment can be represented by a horizontal range of 31◦ × 31◦.
In the three-dimensional vertical plane, the TC can generally be divided into three parts:
the inflow layer, intermediate layer, and outflow layer; therefore, for each meteorological
variable, four pressure levels of 1000, 750, 500, and 250 hPa were selected to represent the
three-dimensional vertical structure of the TC.

Figure 1. Three-dimensional TC atmospheric characterization, where u, v, and z represent the wind
field and geopotential features that we chose over the four isobars, and the red box is a subset of the
entire TC range for which we visualize the 3D TC features.

After obtaining the 2D and 3D data of the TCs, we mapped the latitude and longitude
of the center of each TC trajectory in the CMA Best-Track dataset to the ERA5 data. Then,
the 3D structure of the TC was built with this center to obtain the data field of three
atmospheric variables at four pressure levels. The 3D data were subsequently organized
chronologically for each TC trajectory, creating a sample. Therefore, for the samples at each
time step, the corresponding 3D features were obtained, and the height (H) and width (W)
of the 3D features were each 31. To ensure that the geopotential data and the wind field
data do not affect each other and thus produce better characterization data, these two data
types were constructed separately. So, for the geopotential data, the number of channels
is the same as that for the pressure level (C1), i.e., four, and for the wind field data, since
there are two u-wind and v-wind variables, the value is eight (C2). For each sample at each
time step, the sizes are C1 × H × W and C2 × H × W. In addition to this, the TC 2D features
extracted by the CLIPER method are also used as inputs to the model for describing the 2D
structure of the TC.

2.3. Segmentation of Datasets

Following data processing, the entire dataset was divided into three distinct sets based
on the year: the training set, testing set, and validation set. These sets were used to train
and evaluate the neural network, ensuring separate subsets for different stages of model
development and assessment. Among them, 1098 TCs totaling 24,869 data points from 1979
to 2014 and 2018 to 2021 were used for training, 24 TCs totaling 451 data points from 2022
were used for validation, and, in order to make it easier to compare with other methods,
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we chose 82 TCs totaling 1951 data points from 2015 to 2017 for testing. The basic division
of the three datasets is shown in Table 2.

Table 2. Dataset segmentation. To facilitate comparisons with previous methods, we followed the
division method used in past studies and chose the 2015–2017 TC data as the test set.

Years TCs Samples

Train 1979–2014, 2018–2021 1098 24,869
Test 2015–2017 82 1951

Valid 2022 24 451

3. Methods
3.1. AFR-SimVP for Single-Step Prediction

Many recent studies have shown that large-kernel convolution has great advantages
in obtaining larger effective receptive fields and more effective detailed features [39,40].
Since TC trajectory prediction can be regarded as a spatio-temporal sequence prediction
problem, it is important to extract both spatial and temporal features, and a TC is also a
large-scale weather event. Therefore, we believe that the SimVP network for video frame
prediction based on large-kernel convolution is well suited for extracting the temporal and
spatial information of the TC and reconstructing the 3D TC atmospheric field. We built the
TC trajectory prediction model AFR-SimVP based on SimVP, combined with atmospheric
field reconstruction and the coordinate attention mechanism, as well as second-order
loss constraints, as shown in Figure 2. First, the 3D TC atmospheric features u, v, and z
are extracted by the Spatial Encoder to extract the 2D spatial features on each isobaric
surface through the two branches of AFR-SimVP. After extracting the TC isobaric features,
the temporal features of the 3D TC variables are extracted by the Temporal Encoder,
which is mainly based on large-kernel convolutional attention. Through large-kernel
convolutional attention, we can more accurately capture the information interactions in
the large-scale 3D atmospheric field of the TC at different time points. Finally, the 3D
TC atmospheric field is reconstructed by the Decoder module. The three reconstructed
atmospheric variables effectively capture the highly responsive regions of the TC trajectory
through the coordinate attention mechanism. Finally, the abstract features are extracted by
MLP, and the TC trajectory after 24 h is finally predicted by late fusion.

3.2. Atmospheric Field Reconstruction

Since the 3D TC reanalysis data themselves are obtained through data assimilation or
post-processing, they contain a significant amount of noise, and such noise will have some
impact on our predictions. And if the network is allowed to focus on the processing of a
single task, overfitting can easily occur, leading to the poor generalization of the model.
Therefore, we propose an atmospheric field reconstruction strategy. Previous methods often
stack multiple atmospheric variables together, which allows the extraction of interactions
between different atmospheric variables but also introduces more noise, leading to poorer
prediction accuracy. Therefore, we propose a multi-branch structure and utilize late fusion
at the end of the network to extract the relationships between the variables. To further
mitigate the above effects, we perform two auxiliary reconstruction tasks on each of the two
branches to reconstruct the wind field (u and v) and geopotential field (z) as atmospheric
variables of the TC. It is worth mentioning that when aiming to forecast the wind speed
or three-dimensional geopotential field of a TC, it is possible to utilize only the first two
branches of AFR-SimVP and obtain predictions for all four time steps through a single
regression (the reconstructed atmospheric variables have the same dimensions as the input
data and represent predictions at four time steps). The reconstructed UV variable can be
utilized to predict the TC central wind speed, while the Z variable can guide researchers in
further understanding the internal state of a TC. Finally, the reconstructed atmospheric state
is computed with the real future atmospheric state to calculate the loss and backpropagate
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it at the same time as the main task during training, and the loss is computed as shown in
Equation (1):

Lossu,v/z =
1
n

n

∑
j=1

(
pj − oj

)2, (1)

where pj denotes the true values of the 3D TC variables, oj denotes the values predicted by
the model for the u, v, and z variables, and n denotes the number of observed variables,
which, in this case, are the predicted values of all isobaric meteorological variables for the z
variable, that is, 4 × 4 × 31 × 31. Indeed, during the training process of the entire network,
our objective goes beyond solely predicting the future 24 h trajectory of the tropical cyclone
(TC). Simultaneously, our network is also tasked with predicting the future atmospheric
state of the TC, which involves the prediction of the three-dimensional variable fields of u
(longitudinal wind), v (latitudinal wind), and z (geopotential field). Moreover, these three
branches are used simultaneously, and the losses of the three tasks are backpropagated
simultaneously, which prevents the network from focusing on learning features that are
valid for only a single task, which leads to overfitting and forces the network to learn fea-
tures that are valid for all three tasks as it learns. Our experiments show that this approach
enhances the generalization ability of the network and suppresses the effect of noise in
the three-dimensional atmospheric variables on the main task. Additionally, integrated
predictions for various TC tasks can be achieved by employing auxiliary reconstruction
task branches for TC wind field and geopotential field predictions.
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Figure 2. The network architecture of AFR-SimVP. The Spatial Encoder is used to extract the 2D
spatial features of TC variables, the Temporal Encoder is used to extract the temporal features of
TCs, and the Decoder is used to reconstruct the 3D TC atmospheric field and use the reconstructed
3D atmospheric field for the soft labeling of subsequent dynamic self-distillation. The red block
represents the coordinate attention mechanism, which is used to extract regions with a high response
of the 3D features to the TC trajectory. The last multiple MLP layers are used to perform late fusion
of the extracted features to predict the TC trajectory after 24 h. The U,V hidden state, Z hidden state,
and wide hidden state together are used as the initial hidden state of AFRGRU-SimVP, and the state
at 24 h is used as part of the input to AFRGRU-SimVP.
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3.3. Second-Order Smoothing Loss

We found that when directly predicting the 24 h trajectories of TCs using regression,
our model was often not able to accurately predict them where they abruptly changed,
which may be due to the chaotic nature of the TCs themselves as well as the complex
interactions between the different variables, which makes such abrupt changes more
difficult to predict. Moreover, our predicted trajectory images tend to show different
degrees of upward and downward bumps or depressions. However, after our examination
of more than 1000 TC trajectory images, we found that most of the TC trajectories tend to
show a smooth trend, and even though there may be some sudden abrupt changes at some
points in time, the overall trajectories are smooth for most of the TCs. Given these two
problems, we believe that we need to add some constraints so that the TCs predicted by
the model maintain a smooth trend as much as possible and reduce the impact of abnormal
mutations of TCs on our prediction results. To this end, we optimized the final trajectory
prediction loss function and proposed a second-order smoothing loss function for the TC
consisting of three parts, as shown in Equations (2)–(4):

Lloc =
1
m

m

∑
i=1

∣∣LOCti − LOCpi
∣∣ (2)

Ldis =
1
m

m

∑
i=1

∣∣∣√(
LATpi − LAT(t−6)i

)2
+

(
LONpi − LON(t−6)i

)2

−
√(

LATti − LAT(t−6)i

)2
+

(
LONti − LON(t−6)i

)2∣∣∣
(3)

Langle =
1
m

m

∑
i=1

(
1 − cos

(
LOCpi − LOC(t−6)i, LOCti − LOC(t−6)i

))
, (4)

where m denotes the number of samples, LOCti denotes the reference latitude and longitude
of the prediction, LOCpi denotes the latitude and longitude of the network prediction,
and LAT(t−6)i and LON(t−6)i denote the reference latitude and longitude of the prediction
six hours before the prediction time point. For example, in this study, we predicted the
latitude and longitude of the TC after 24 h, so here, these values represent the TC reference
latitude and longitude after 18 h. Constraining the 24 h prediction result of the TC by
distance loss and cosine similarity loss forces the TC to maintain a smooth curve, which
improves the accuracy of the prediction, and one can also understand this method as a
regularization means by adding some a priori knowledge to the model, thus making it
difficult for the model to be overfitted. We tested our second-order smoothing loss on TC
Nakri No. 10 in 2002, keeping the random number unchanged and training for the same
number of epochs. After adding the second-order smoothing loss, the model error caused
by the sudden change in the TC trajectory is effectively reduced compared with the original
model, and the predicted TC curve is kept as smooth as possible, as shown in Figure 3.

As shown in the picture above, our main optimization objective is still to limit the
length of the pink line; secondly, we would like to keep the yellow line and the green
line as long as possible at the same length; and lastly, we want to constrain the angle
between the yellow line and the green line to be 0◦ as much as possible. It can be seen
that by introducing the second-order smoothing loss, the model shows better prediction
results with a sudden change in the TC trajectory and does not produce a huge error due
to the sudden change in the TC trajectory. On the contrary, the original model without
the second-order loss fails to accurately predict the sudden change in the TC trajectory,
which leads to a huge prediction error. On the whole, after adding the second-order loss,
the prediction curves of the model remain smoother compared with the original model,
which is what we would like to see.
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Figure 3. The prediction results of the model after adding the second-order loss are plotted against
the prediction results of the original model, where the blue curve represents the correct trajectory
of Nakri, the red curve represents the prediction result curve of the original model for 24 h, and the
green curve represents the prediction result curve of the model after adding the second-order loss.
The pink line in the small figure represents the distance error between the predicted value and the
real value, the yellow line represents the error between the predicted value and the real value at the
previous moment, the green line represents the error between the real value and the real value at the
previous moment, and the red angle between the green line and the yellow line represents the angle
between the real position at the previous moment to the real position at this moment and the real
position at the previous moment to the predicted position at this moment.

3.4. HTAFR-SimVP for Multi-Step Prediction

AFR-SimVP uses a regression-based approach and is able to directly predict TC
trajectories after 24 h; however, short-term predictions such as 6 h and 12 h also play
an important role. AFR-SimVP can only be used to perform short-term predictions by
training different short-term prediction models to predict each time separately, which will
undoubtedly consume a lot of resources. Therefore, we considered modifying the structure
of AFR-SimVP so that it can predict each short-term time point at the same time.

If one wants to predict the trajectories of TCs at multiple time steps (6 h, 12 h, 18 h, 24 h)
at the same time, a commonly used method is the recurrent network of the RNN family,
where the recurrent network is utilized to extract the temporal information contained
in the TC motion and thus recursively predicts the trajectories of TCs at multiple time
steps [20,21,32,33]. In contrast, regression-based predictions often only predict the trajectory
of the TC after one time step at a time [29,31].

We propose a novel approach that allows our regression-based AFR-SimVP network
to predict TC trajectories at multiple time steps simultaneously without the use of a tradi-
tional RNN network, and the obtained prediction results outperform those of a traditional
RNN-based network. We named this network the hierarchical temporal feature-based
atmospheric field reconstruction TC prediction network (HTAFR-SimVP), and the specific
structure is shown in Figure 4.

Inspired by the pyramid structure commonly used in target detection to extract multi-
scale features and the self-distillation structure [41–43], we think that a hierarchical concept
can also be used for temporal features. For a 6 h TC prediction, we think that we can achieve
good prediction performance by using only fine-grained temporal features, while for longer
prediction times, more coarse-grained global features are needed to guide the model’s
prediction. So, we came up with the idea of a fine-to-coarse architecture that introduces
the concept of multi-scale temporal features, and soft labels are obtained through dynamic
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self-distillation to assist the training of our model. Specifically, we use our main model,
AFR-SimVP, as the teacher model and use the 24 h prediction outputs generated by the two
branches of the main model as the soft-label supervised signals, and we reverse-supervise
the (6 h, 12 h, 18 h) predictions, which do not require too much temporal information. We
obtain eight temporal blocks by splitting the main model into four equal parts, where two
blocks in each part are responsible for predicting the TC trajectory and atmospheric field at
one time point, thus achieving simultaneous (6 h, 12 h, 18 h, 24 h) predictions of the TC.
Among them, the first three copies serve as three students of the main model, which are
supervised by the 3D TC state feature maps generated by the teacher network. And each
of these four blocks is one layer more abstract than the one before it; that is, the first copy
may contain only a small number of temporal features, whereas, by the fourth copy, highly
abstract temporal features are generated, which is similar to a multi-scale architecture. We
use the first copy to predict the TC trajectory and atmospheric field after 6 h, the second
copy to predict them after 12 h, and so on. Using this architecture, we obtain 12 predictions
with only one forward inference, with each student being responsible for the prediction
of the 3D wind field, the 3D geopotential field, and the trajectory at that time step for 6 h,
12 h, or 18 h and the teacher being responsible for the prediction of all three tasks for 24 h.

It should be noted that, because the soft-label feature map generated by the main
network teacher comes after the Decoder’s up-sampling, there may be a difference in the
size of the feature maps of the three students. Therefore, here, each student is added to
the bottleneck Decoder, which is used to up-sample the feature map of the student, so that
the sizes of the real labels and soft labels match the calculation of the loss. In addition,
the soft-label dimension generated by the main network is (4, 4, 31, 31), from which the
batch dimension is omitted, where the first 4 represents the time dimension, the second
4 represents the different isobaric surfaces of the TC, and the two 31s represent the range
of the TC. However, when it is used as a soft label in the three-student network, not all
four time dimensions will be used; however, the corresponding time dimensions will be
dynamically selected according to the different time points of the student’s prediction.
For example, when a student model is making a 6 h prediction, it utilizes only the first
time dimension from the teacher’s four time dimensions as a soft label. Similarly, for a
12 h prediction, the student model incorporates the first two time dimensions from the
teacher’s data, and for an 18 h prediction, it utilizes the first three time dimensions from
the teacher’s data.

During the experiment, we found that the teacher’s soft labels were easier to learn
for the three students in the early stages of training. However, as training progressed,
the predictions of the three students gradually matched those of the teacher. At this point,
the hard labels were more helpful for the students’ learning. In addition, since our model
has three students and the training time to reach the optimal prediction is different for each
student, we found in the experiment that, compared to the other two students, the student
with the 6 h prediction time point could reach the prediction accuracy matching the teacher
with a faster training time, while the other two students needed a longer training time.
Therefore, we used cosine weight decay to dynamically adjust the contribution of soft and
hard labels and set different decay coefficients for each student, as shown in Equation (5):

ε =
1 − cos

(
xπi

epochs

)
2

× (µ − 1) + 1, x ∈ [0, epochs], i ∈ (4, 2, 1) (5)

where µ denotes the proportion of the teacher’s soft-label weight at the end of the decay;
here, we set µ to 0.01, i denotes the decay rate for each student, and for the 6 h student,
we set the decay rate to 4. This means that, when we train for 500 rounds, at 125 rounds,
the weight contribution of the teacher’s soft label for the 6 h student reaches the minimum
value and stops decaying. For the 12 h and 18 h students, the soft-label contribution
takes longer.
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Figure 4. The specific architecture of HTAFR-SimVP, where only the 6 h prediction process is drawn,
and all other time points are similar. The Decoder is used to up-sample the feature maps of the
students, and the up-sampled three-dimensional atmospheric state feature maps are utilized for
auxiliary tasks, namely, TC wind field prediction and three-dimensional geopotential field prediction,
where the coordinate attention block and some fully connected layers after up-sampling the network
for each student are omitted. “Soft label” represents the soft label of the atmospheric state after the
reconstruction of the network by the teacher, and “label” represents the real atmospheric state.

3.5. AFRGRU-SimVP for Long-Term Prediction

Up to this point, our model has been able to adapt to the task of forecasting at various
points in time over a 24 h period. So, is there a way to adapt our model to make longer-term
predictions? We attempted to employ AFR-SimVP directly to predict the 48 h and 72 h
trajectories of TCs; however, the prediction results were not satisfactory. We believe that
for the prediction of a TC at 48 h and even longer, it may be difficult to achieve better
prediction accuracy using a regression approach, and it is necessary to more fully extract
the temporal features of the TC trajectory to achieve the desired prediction accuracy.

Therefore, to make our network applicable to the long-term prediction of TC trajecto-
ries, we added a gated recurrent network (GRU) to the network to capture the long-term
temporal information of TCs. Compared to the RNN, the GRU has better long-term mem-
ory capability and does not suffer from gradient vanishing or gradient explosion problems.
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In order to combine both the advantages of our network in 24 h prediction and the ability
of the GRU to extract long-term features, instead of simply connecting our AFR-SimVP
to the GRU, we chose to first predict the 24 h trajectory of TCs using AFR-SimVP, fol-
lowed by connecting the trained AFR-SimVP to the GRU, using the hidden layer state
of AFR-SimVP as the initial state of the GRU and splicing the 24 h TC state and the 24 h
latitude and longitude predicted by the network as the input of the first moment of the
GRU. With this two-stage training approach, we retain the advantage of the network’s
prediction at 24 h while fully extracting the temporal information required for long-term
TC prediction. The GRU module is shown in Figure 5.

(128,)

U,V hidden 

state

Z hidden 

state

Lin
e
a
r

Lin
e
a
r

Flatten

Flatten

Wide hidden 

state

(64,)

(64,)

Concat
Lin

e
a
r

(256,)

Lin
e
a
r

H_GRU

GRU_C2

GRU_C1

Lin
e
a
r

State of 24h

Y_24

GRU_C2

GRU_C1

FC FC

Y_30 Y_36

Figure 5. The GRU structure for implementing 24 h to 72 h trajectory prediction, where initial hidden
states and inputs are obtained from the AFR-SimVP network. H_GRU represents the initial hidden
state of the GRU fused from the three parts of the hidden state of the AFR-SimVP network. The state
at 24 h serves as part of the input for all time steps of the GRU, and the other part of the input consists
of the prediction results for each time step.

According to the experiments, the AFRGRU-SimVP network can effectively extract
temporal features and has a good performance in 48 h prediction while ensuring 24 h
prediction accuracy, which is an improvement compared to the previous network.

3.6. Loss Function

We trained our model in an end-to-end manner. Although the model has an additional
atmospheric field reconstruction task, the training time of the model does not become
longer, but it is easier to train. We believe that this is because there is a complementary
relationship between the three tasks, which can promote each other during the training
process, leading to the faster convergence of the model. The loss function of AFR-SimVP is
defined as shown in Equation (6):

L f inal = 0.5Lloc + 0.1Ldis + 0.4Langle + αLu,v + βLz (6)

where Lloc denotes the position loss, Ldis denotes the distance loss, Langle denotes the cosine
similarity loss of the angle, Lu,v denotes the atmospheric state reconstruction loss of the
u and v variables, Lz denotes the atmospheric state reconstruction loss of the z variable,
and the rest of the numbers are hyperparameters. For AFRGRU-SimVP, no atmospheric
field reconstruction is involved, so the loss consists only of the first three components.

The teacher loss for HTAFR-SimVP is the same as above, and the loss function for the
three students is shown in Equation (7):
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LHT = 0.5Lloc + 0.1Ldis + 0.4Langle + αLuv + ε(1 − α)LSuv + βLz + ε(1 − β)LSz (7)

The first three of these are consistent with the network of AFR-SimVP; Luv and Lz represent
the loss between the student-generated atmospheric state and the true atmospheric state,
and LSuv and LSz represent the loss between the soft labels generated by the teacher’s
network and the atmospheric state predicted by the student. ε is used to dynamically
control the proportion of the loss contribution from the teacher’s soft labeling.

3.7. Training Details

We use the Pytorch framework to train our AFR-SimVP and HTAFR-SimVP in an
end-to-end manner, using the Adam optimizer and setting the initial learning rate to 0.0001
and the batch size to 64. The hyperparameters α and β in Equation (5) are set to 1.2 and 1.2,
respectively. We train the AFR-SimVP and HTAFR-SimVP on a single NVIDIA GeForce
RTX 3080 GPU. The training of AFRGRU-SimVP is based on AFR-SimVP. After training
AFR-SimVP, we freeze its weights, add the GRU module, and then fine-tune the network;
the learning rate is still set to 0.0001, and the batch size is set to 64. This can greatly reduce
the training time, and it only takes 30 min to finish AFRGRU-SimVP training.

3.8. Evaluation Metrics

The performance of the model on the test set is quantitatively evaluated through three
evaluation metrics: mean absolute error (MAE), root mean square error (RMSE), and mean
distance error (MDE). MAE averages the absolute error between the predicted value and
the reference value. MSE is the squared mean of the difference between the predicted
value and the reference value, and RMSE is the square root of MSE. Mean distance error
(MDE) is a commonly used metric for measuring the mean distance error between model
predictions and the ground truth. The larger the values of these metrics, the worse the
model performance. These three evaluation metrics are calculated separately, as shown in
Equations (8)–(10):

MAEloc =
1
m

m

∑
i=1

∣∣LOCti − LOCpi
∣∣ (8)

RMSEloc =

√
1
m

m

∑
i=1

(
LOCti − LOCpi

)2 (9)

MDE = 2 × R × arcsin

√
sin2

(
φpre − φgt

2

)
+ cos φpre cos φgt sin2

(
λpre − λgt

2

)
, (10)

where m represents the number of test samples, LOCti denotes the reference position of
the TC, and LOCpi denotes the predicted position of the TC. R represents the radius of
the Earth, φpre and φgt represent the predicted and true latitude values, and λpre and λgt
represent the predicted and true longitude values, respectively.

4. Results
4.1. Effectiveness of Coordinate Attention Mechanisms

To demonstrate the effectiveness of coordinate attention, we created a graph to visu-
alize the predicted outcome of Typhoon Bavi, the fourth typhoon in 2015. The effect of
attention is visualized in Figure 6.

As shown in the figure, the network fails to allocate attention to the geopotential field
in the direction of the TC’s movement when no attention is added. With the addition of
attention, our model effectively captures the direction in which the TC is moving. From our
experiments, it is observed that the incorporation of the attention mechanism significantly
enhances the prediction accuracy of tropical cyclone (TC) trajectories.
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Figure 6. The visualization of the effect of attention. The left figure represents the predicted geopo-
tential field without adding attention, and the right figure represents the effect after adding attention.

4.2. Comparison with Statistical/Deep Learning Methods in Trajectory Prediction Tasks
4.2.1. Twenty-Four-Hour Trajectory Forecast

The 24 h prediction of a TC can help people know the path of the TC in time so as
to take corresponding precautions, which plays a vital role in reducing the casualties and
property losses caused by a TC. We first compare our approach with traditional statistical
and deep learning-based 24 h TC trajectory prediction methods, including extrapolation,
the CLIPER method [13], Fusion CNN [29], AE-GRU [24], AM-convgru [31], and the more
recently developed DBF-Net [32] and Smoothed-3DGRU [33]. The CLIPER method serves
as a benchmark for other models and official predictions and can be used as our baseline.
Fusion CNN makes use of multimodal data along similar lines to ours, but it does not take
into account the interplay among various types of noise in multimodal data. The remaining
several RNN-based methods can effectively capture the complex temporal features of TCs
but rarely consider the role of multiple influences on TCs. Smoothed-3DGRU combines a
GRU and 3DCNN and considers the temporal state while combining multiple atmospheric
features; however, the model simply stacks multiple atmospheric features, which causes
the noise in different features to interact, thus affecting the final prediction. To facilitate
the comparison, we only change the labels during model training without changing the
model structure and methodology, thus training four comparison models to predict the TC
trajectories at 6 h, 12 h, 18 h, and 24 h. The comparison results of the various models are
shown in Table 3.

It can be seen that our proposed AFR-SimVP outperforms previous methods for almost
all prediction times. The substantial accuracy improvement achieved by our AFR-SimVP
compared to the baseline proves the effectiveness of our method. Compared to Smoothed-
3DGRU, our method only slightly lags behind at the 6 h prediction, but as the prediction
time increases, our model gradually improves its prediction accuracy and outperforms
Smoothed-3DGRU at the 12 h, 18 h, and 24 h prediction times, especially at the 24 h
prediction, where it achieves a performance improvement of 8%. This indicates that our
model effectively reduces the influence of various types of noise on the prediction results
and significantly improves the generalization capability.

Despite not achieving optimal prediction performance, the HTAFR-SimVP model
demonstrates a notable improvement in accuracy compared to traditional multitemporal
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step TC prediction models based on recurrent networks, proving the effectiveness of our
architecture. Compared to AFR-SimVP, HTAFR-SimVP only needs to be trained once to
predict the TC trajectories at four time points simultaneously, which greatly reduces the
time needed for model training.

Table 3. Forecast errors (km) for the proposed model and traditional methods in 6 h, 12 h, 18 h, and
24 h prediction. Bold represents the minimum error.

Methods 6 h 12 h 18 h 24 h

Extrapolation (2003) 33.78 79.20 135.48 201.28
CLIPER-BP (1975) 37.53 73.31 115.13 162.62

Fusion CNN (2020) 32.90 - - 136.10
AE-GRU (2020) - - 138.67 143.23

AM-convgru (2022) - - - 140.67
MMSTN (2022) 27.57 59.09 - 139.19
DBF-Net (2022) 31.30 58.94 87.60 119.05

Smoothed-3DGRU (2022) 27.89 52.37 79.16 112.05
HTAFR-SimVP 31.46 52.80 77.97 108.21

AFR-SimVP 29.31 50.06 75.45 102.68

4.2.2. Long-Term Forecasting

We attempted to apply our model to the 48 h and 72 h predictions of TCs to demon-
strate the validity of our model by comparing AFR-SimVP with the RNN, GRU, and LSTM
in a direct cascade with our AFRGRU-SimVP. The MAE and RMSE values between the
model-predicted latitude and longitude and the true values are shown in Table 4. It can be
seen that AFRGRU-SimVP obtains the best metrics at all predicted time points.

Table 4. The long-term prediction effectiveness evaluation (MSE/RMSE) of multiple models, where
RNN, LSTM, and GRU represent the direct cascading of AFR-SimVP with the recurrent network,
SimVP represents our 24 h prediction model, and GRU∗ represents AFRGRU-SimVP. Bold highlights
the best performance.

Lat Long
Forecast Hour 6 h 12 h 18 h 24 h 48 h 72 h 6 h 12 h 18 h 24 h 48 h 72 h
RNN MAE 0.307 0.422 0.536 0.683 1.587 2.884 0.489 0.564 0.695 0.854 2.001 4.078

RMSE 0.426 0.567 0.714 0.910 2.213 3.863 0.718 0.781 0.927 1.138 2.598 5.334
LSTM MAE 0.288 0.388 0.502 0.648 1.482 2.780 0.322 0.449 0.592 0.753 1.831 3.706

RMSE 0.369 0.501 0.666 0.870 2.128 3.806 0.430 0.596 0.783 1.003 2.449 4.892
GRU MAE 0.208 0.322 0.445 0.583 1.429 2.789 0.278 0.423 0.583 0.746 1.771 3.498

RMSE 0.272 0.424 0.588 0.774 2.009 3.755 0.369 0.562 0.772 1.002 2.355 4.658
SimVP MAE 0.155 0.277 0.417 0.583 1.509 2.841 0.206 0.328 0.501 0.673 1.860 3.709

RMSE 0.210 0.374 0.564 0.787 2.073 3.846 0.277 0.449 0.678 0.919 2.571 4.843
GRU⋆ MAE 0.155 0.277 0.417 0.583 1.316 2.492 0.206 0.328 0.501 0.673 1.617 3.400

RMSE 0.210 0.374 0.564 0.787 1.790 3.386 0.277 0.449 0.678 0.919 2.166 4.592

Table 5 compares the prediction results of AFRGRU-SimVP with various deep learning
methods, expressed in terms of mean distance error. It is clear that the RNN-based model is
significantly weaker in performance than the GRU- and LSTM-based models. This is due to
the poor performance of the RNN in dealing with long-sequence problems. The GRU and
LSTM, on the other hand, both introduce special gating mechanisms, which gives them an
advantage in dealing with long sequences. And our AFRGRU-SimVP fully integrates the
advantages of AFR-SimVP and the GRU, which also gives the model an absolute advantage
in dealing with long-term TC prediction. Our two-stage training significantly improves
the prediction accuracy compared to directly cascading the two parts, while the prediction
error is also greater if only AFR-SimVP is used for long-term prediction. Compared to
the MMSTN [25] method proposed by Huang et al., our method drastically shrinks the
prediction error. Therefore, we believe that regression is more advantageous for short-term
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prediction, while, when it comes to long-term prediction, temporal information needs to be
fully considered.

Table 5. A comparison of the average distance error (km) of multiple deep learning models. Bold
represents the best value.

Methods 6 h 12 h 18 h 24 h 48 h 72 h

CLIPER (1992) - - - 213 442 659
RNN 67.44 82.67 103.19 129.35 295.35 557.99
LSTM 51.42 70.02 91.19 116.56 273.45 523.17
GRU 40.57 62.72 86.43 111.00 263.70 503.02

AFR-SimVP 29.31 50.06 75.45 102.68 271.89 528.48
MMSTN(2022) 27.52 59.09 - 139.18 336.16 544.16

AFRGRU-SimVP 29.31 50.06 75.45 102.68 239.21 472.15

As shown in Figure 7, compared to the direct-cascade recurrent network and AFR-
SimVP, our strategy has a significant advantage in long-term prediction, with a significant
reduction in both the maximum error and the average error in 48 and 72 h predictions.

Figure 7. Distance error box plots of 6-72 h trajectory prediction distances for three recurrent neural
networks and AFR-SimVP and AFRGRU-SimVP.

Figure 8 shows a scatterplot of predicted versus true values, where we plot the
predictions for 12 h, 24 h, 48 h, and 72 h. The distance between the data points and the
diagonal line indicates the prediction error of the model. It can be seen that as the prediction
time increases, the prediction accuracy of the model gradually decreases. On the other hand,
the maximum wind speed at the center of the TC also has an effect on the prediction results
of the model, and the larger the central wind speed, the higher the prediction accuracy
of the model. In addition, we found that the prediction accuracy of the model decreases
significantly when the TC moves northward. Based on the aforementioned comparison, we
observe a strong correlation between the prediction accuracy of the TC central wind speed
and the prediction accuracy of the TC trajectory. Consequently, we conducted subsequent
experiments focusing on TC wind prediction.
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Figure 8. The scatterplot distributions of latitude and longitude for 12 h (a,b), 24 h (c,d), 48 h (e,f),
and 72 h (g,h) forecasts. Colors represent the maximum wind speed at the TC center.

4.3. Comparison with NWP Forecast Methods

We compare AFR-SimVP with numerical weather prediction models commonly used
in the industry (NWP). Numerical weather prediction models are currently the mainstream
models in weather forecasting operations, and we selected the global forecast models T213
and T639 released by the China Meteorological Administration (CMA) and the Shanghai
Typhoon Region model (SHTP) released by the Shanghai Typhoon Research Institute of the
China Meteorological Administration (CMA) in Shanghai, China [9–11], to compare with
our method. In contrast to our method, numerical weather prediction methods often require
expensive computational resources and very high-resolution data to effectively construct
the partial differential equations of the atmosphere to obtain more accurate results, and this
prediction method requires a long inference time, which needs to be improved for TC
prediction. Our deep learning method, on the other hand, requires only a small amount of
computational resources and a single inference time of only a few seconds. However, NWP
can still achieve better performance than current deep learning-based methods. As shown
in Table 6, our AFR-SimVP achieves a significant accuracy improvement of more than 15%
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compared to T213/T639. However, compared with SHTP, our deep learning-based method
still falls short.

Table 6. A comparison of AFR-SimVP and numerical weather prediction method trajectory prediction
results. The variable “#Samples” represents the number of TCs in the current year used for model
testing, while “AVG” represents the average error of the model predictions for all TCs over the
three-year period.

Year T213/T639 SHTP AFR-SimVP

2015 #Samples 46 440 908
24 h MDE(km) 150.6 67.8 98.28

2016 #Samples 412 194 489
24 h MDE(km) 114.9 88.5 106.02

2017 #Samples 301 253 554
24 h MDE(km) 98.7 89.1 103.73

AVG 121.4 81.8 102.68

Inference time - - 1.51s

In contrast, our AFR-SimVP achieves relatively high prediction accuracies with lower-
resolution (1◦ for all u, v, and z atmospheric field data) inputs and less computational
resources, and our inference time is several orders of magnitude faster compared to NWP.
In addition, we believe that by improving the resolution of the data and expanding the number
of parameters in the model, our AFR-SimVP can achieve even higher prediction accuracies.

4.4. Effectiveness of Atmospheric Field Reconstruction

As an additional task in our model, atmospheric field reconstruction also significantly
impacts the accuracy of trajectory prediction. As can be seen in Figure 8, there is a close
relationship between the prediction accuracy of the TC central wind speed and the pre-
diction of its track. Our model had already achieved good prediction accuracy in the
trajectory prediction task. Therefore, we speculated that our model might also achieve
good predictive performance in wind field reconstruction. Therefore, to demonstrate the
effectiveness of our atmospheric field reconstruction strategy and integrated model, we
utilized the three-dimensional atmospheric state prediction branches of AFR-SimVP and
HTAFR-SimVP trained on the track prediction task to predict the central wind speed of the
TC. For the purpose of facilitating comparisons, we calculated the central wind speed of
the TC using the reconstructed near-surface (1000 hPa) u-wind and v-wind components
from the model and approximated the intensity of the TC by using the central wind speed.
We compared our prediction results with numerical forecasting methods [44–47] and deep
learning approaches [48–53], and the results are shown in Table 7.

As shown in Table 7, our model also achieved comparable performance in TC central
wind speed prediction, which further validates the effectiveness of the atmospheric field
reconstruction tasks that we selected. In terms of average prediction errors over the past
three years, our HTAFR-SimVP model achieved the best prediction accuracy. We believe
this is because the students’ learning regularizes the training process of the network,
allowing the teacher to benefit from the student and thereby improving the prediction
accuracy. In the multi-time-step prediction task, we directly use three student models to
predict the TC central wind speed at 6 h, 12 h, and 18 h. We compared these results with
previous methods, and the results are shown in Table 8.

The relatively low prediction accuracy of AFR-SimVP in multi-time-step forecasting
can be attributed to its direct regression of the three-dimensional wind field state on four
time steps and four isobaric surfaces without fully considering the progressive relationship
between different time steps. As a result, the prediction accuracy for the four time steps
is not significantly different. In contrast, HTAFR-SimVP assigns each student to predict
the three-dimensional wind field for a specific time step without considering other factors.
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By acquiring knowledge from the soft labels of the main teacher network and leveraging the
hierarchical progression in the extraction of time features, HTAFR-SimVP achieves a further
improvement in the prediction accuracy for multiple time steps. Compared to other deep
learning models, our model not only predicts the central wind speed but also reconstructs
the three-dimensional geopotential field due to the branch tasks. The three-dimensional
geopotential field predicted by the model is visualized in Figure 9.

Table 7. The proposed method is compared with previous deep learning methods and numerical fore-
casting methods in terms of prediction errors (m/s) for the 24 h central wind speed forecasting task.
Bold represents the minimum error.

Methods 2015 2016 2017 Avg

CMA 4.26 5.10 5.63 4.99
JMA 5.08 5.30 5.05 5.14

JTWC 4.88 5.40 5.23 5.17
ECMWF-IFS 5.44 9.22 6.40 7.02
NCEP-GFS 6.42 6.42 5.92 6.25

TC-Pred (2022) - - - 3.98
SAF-Net (2022) 4.54 4.78 3.95 4.42
TITP-Net (2022) 3.87 4.61 3.60 4.03
Transformer (2023) - - - 5.04

AFR-SimVP 4.02 4.13 3.80 3.98
HTAFR-SimVP 3.95 4.01 3.68 3.88

Figure 9. The predicted results of the geopotential field at the 1000 hPa isobaric surface at a specific
point along the track of Typhoon Bavi.

It can be observed that the model shows good performance in predicting the geopo-
tential field at 6 h and 24 h intervals. This provides researchers with valuable references
for further understanding the movement process of TCs and demonstrates that our model
achieves good prediction results across multiple tasks.
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Table 8. A comparison of the proposed method with previous deep learning approaches in terms
of multi-time-step prediction errors (m/s) for the TC central wind speed. Bold represents the
minimum error.

Methods 6 h 12 h 18 h 24 h

Transformer (2023) 1.72 2.89 4.06 5.04
TC-Pred (2022) 1.74 2.52 3.27 3.98

AFR-SimVP 3.02 3.41 3.74 3.98
HTAFR-SimVP 1.98 2.59 3.31 3.88

4.5. Ablation Experiment

To further demonstrate the effectiveness of our proposed AFR-SimVP network for
TC trajectory prediction, we conducted ablation experiments on the network, and by
sequentially deleting modules from the network and calculating the average distance error
predicted by the model, we obtained the results shown in Table 9.

Table 9. Ablation study table. A tick indicates that the module is used, a cross indicates that it is
not used.

Second-
Order Loss

Data En-
hancement Catten UV Atmospheric

Variables
Atmospheric Field

Reconstruction
Distance

Error

% % % % % 128.58
! % % % % 121.28
! ! % % % 119.9
! ! ! % % 112.86
! ! ! ! % 106.98
! ! ! ! ! 102.68

It can be seen that each of our proposed modules and methods is effective, among which
the two-stage loss, coordinate attention, and atmospheric field reconstruction drastically
reduce the prediction error of the model, thus further confirming the excellent performance
of AFR-SimVP in TC trajectory prediction tasks.

4.6. Visualization of Model Prediction Results

To further demonstrate the effectiveness of our proposed model in predicting TC
tracks, we selected Typhoon Nangka, the 11th typhoon in 2015, and Typhoon NORU,
the 6th typhoon in 2017, to visualize the 24 h paths predicted by our model. We predicted
the future 24 h path based on the first 24 h historical path of the typhoon. Figure 10 a,b show
the 24 h prediction results for Typhoon Nangka and Typhoon NORU, respectively. The red
line represents the true path of the TC, and the blue line represents the track predicted
using our AFR-SimVP model.

As shown in the figure above, the average prediction distance of our model on the two
TCs is about 80 km, which indicates that our model has fully learned the potential features
of the TC trajectory motion, further proving the effectiveness of AFR-SimVP. As can be
seen in the figure, both TCs contain obvious trajectory mutations during their motion,
but our model is able to accurately predict such mutations in advance due to the presence
of atmospheric field reconstruction tasks and second-order loss, and the overall trend of
TC trajectories predicted by AFR-SimVP is smoother, which is in line with the trend of the
real TC motion.
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(a) Nangka (b) NORU
Figure 10. Track prediction results.

5. Conclusions and Future Work

In this paper, we propose a TC trajectory prediction network, AFR-SimVP, based on
large-kernel convolutional attention and atmospheric field reconstruction, and, based on
this network, combined with hierarchical temporal feature extraction and dynamic self-
distillation, we propose a new architecture, HTAFR-SimVP, for the multi-step prediction
of TC trajectories, which is different from the traditional RNN network. The proposed
AFR-SimVP network achieves the optimal prediction accuracy for the 24 h prediction of
TC trajectories, and STAFR-SimVP achieves integrated multi-task prediction at multiple
time steps and achieves good performance on both the trajectory and central wind speed
prediction tasks. The main contributions of this paper can be summarized as follows:

• The large-kernel convolutional attention network SimVP, combined with atmospheric
field reconstruction, is used to fully extract a wide range of spatio-temporal features
of TCs and reduce the impact of various types of noise in the reanalyzed data on the
task of TC trajectory prediction. A second-order loss is proposed, which can further
constrain the prediction results of the network, enabling the network to better predict
the trajectory mutations of TCs, and the predicted TC trajectories are closer to the real
trajectories of TCs.

• Introducing the hierarchical temporal feature extraction and dynamic self-distillation
technique into our network, we propose a novel multi-step prediction framework.
The framework uses multi-scale temporal features to segmentally predict the multi-
step trajectories of TCs and uses soft labels generated by the main network to guide
the learning of the shallow network, which makes the training of the network more
efficient. The framework achieves multi-step prediction without using the recur-
rent network at all and achieves higher prediction accuracy than past TC prediction
models based on recurrent networks. Meanwhile, it also provides inspiration for
future research.

• Medium- and long-term predictions of TCs were explored using a two-stage training
method. Combining AFR-SimVP with the GRU ensures the accuracy of short-term TC
prediction so that the model has comparable performance in medium- and long-term
predictions as well.

• Multiple TC prediction tasks were integrated into a single model, and good prediction
results were achieved. The integrated prediction of multiple tasks can be achieved by
only one inference, which greatly reduces the time needed to train multiple networks.

Since our network is based on large-kernel convolutional attention, we believe that
it should have better prediction performance on higher-resolution 3D data. In addition,
our hierarchical temporal feature extraction strategy is very similar to the U-Net architec-
ture in image segmentation, so we should follow the up-sampling strategy in U-Net to
progressively up-sample the highly abstract 24 h features, thereby aligning them with the
6 h features of the shallow network, and further fuse the two parts of the aligned features
so as to further fuse the global temporal features with the local temporal features, letting
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the 24 h global temporal features guide the learning of 6 h local temporal features. This
will be a direction that we will try in the future.
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