
Citation: Salam, A.; He, Q.; Abbas, A.;

Wu, T.; Zhang, J.; Jie, W.; Liu, J.

Boundary Layer Height and Trends

over the Tarim Basin. Atmosphere 2024,

15, 541. https://doi.org/10.3390/

atmos15050541

Academic Editors: Ahmed Elbeltagi,

Quanhua Hou and Bin He

Received: 14 April 2024

Revised: 22 April 2024

Accepted: 23 April 2024

Published: 28 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Boundary Layer Height and Trends over the Tarim Basin
Akida Salam 1, Qing He 2,*, Alim Abbas 3,*, Tongwen Wu 4 , Jie Zhang 4, Weihua Jie 4 and Junjie Liu 5

1 Kezhou Meteorological Administration, Kezhou 845350, China; akidasalam@163.com
2 Institute of Desert Meteorology, China Meteorological Administration, Ürümqi 830002, China
3 College of Resources and Environment, Xinjiang Agricultural University, Ürümqi 830052, China
4 Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing 100081, China;

twwu@cma.gov.cn (T.W.); jiezhang@cma.gov.cn (J.Z.); jiewh@cma.gov.cn (W.J.)
5 Anhui Climate Center, Hefei 230031, China; jieagle@126.com
* Correspondence: qinghe@idm.cn (Q.H.); alimabbas@xjau.edu.cn (A.A.)

Abstract: This study aimed to examine the spatio-temporal variations in the atmospheric boundary
layer height (ABLH) over the Tarim Basin (TB). Monthly ABLH data from the ERA-Interim dataset
from January 1979 to December 2018 were used. Periodicity analysis and the Mann–Kendall Abrupt
Changes test were employed to identify the change cycle and abrupt change year of the boundary
layer height. The Empirical Orthogonal Function (EOF) method was utilized to determine the spatial
distribution of the boundary layer height, and the RF method was used to establish the relationship
between the ABLH and influencing factors. The results demonstrated that the highest values of
ABLH (over 1900 m) were observed in the middle parts of the study area in June, and the ABLH
exhibited a significant increase over the TB throughout the study period. Abrupt changes in the
ABLH were also identified in 2004, as well as in 2-, 5-, 9-, and 15-year changing cycles. The first EOF
ABLH mode indicated that the middle and northeast regions are relatively high ABLH areas within
the study area. Additionally, the monthly variations in ABLH show a moderately positive correlation
with air temperature, while exhibiting a negative correlation with air pressure and relative humidity.

Keywords: atmospheric boundary layer height; surface air temperature; Taklamakan Desert; abrupt
change

1. Introduction

Solar radiation and its daily fluctuations play a crucial role in the exchange of heat
fluxes between the Earth’s surface and the atmosphere. However, these heat fluxes are
primarily limited to a shallow layer near the land surface known as the atmospheric
boundary layer (ABL) [1]. The ABL directly influences various factors such as water vapor,
heat, and pollutants between the land surface and the free atmosphere [2–6], thereby
impacting atmospheric and weather-scale adjustments [7,8]. Additionally, the ABL also
plays a significant role in extreme climate events [9]. As the lowest part of the atmosphere,
the ABL is greatly influenced by the characteristics of the land surface [10].

The thickness of the ABL, referred to as the ABLH, varies from a few meters to several
kilometers [11]. It depends on factors such as atmospheric system types, surface fluxes,
and land cover [12,13]. The ABLH has significant implications for air quality, as well as
for various environmental issues such as heat transmission, land surface modeling, air
pollution, and drought [2–4,9,14–23].

Previous research on ABLH has predominantly focused on calculation methods [2,4,11,
24,25], influencing factors [13], and changing characteristics [26,27]. However, most studies
have been limited to specific stations or short time scales. With regard to global warming,
the tropopause height has shown an upward trend [28]. Therefore, it is worth investigating
whether the ABLH exhibits a similar trend. In 2013, Zhang et al. [29] evaluated ABLH trends
in Europe and found that daytime boundary layer heights at most stations significantly
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increased during all four seasons. Similarly, Zhang et al. [23] reported a significant upward
trend in the average ABLH in the arid and semi-arid regions of East Asia from 1900 to 2015.
Additionally, Darand et al. [30] indicated an upward trend in the ABLH over Iran.

Arid and semi-arid areas cover approximately 30% of the Earth’s surface and are
highly vulnerable to the impacts of climate change. However, there is a lack of studies
on the ABLH in these regions due to insufficient observational data and meteorological
measurements. Therefore, the main objective of this study is to investigate the temporal
and spatial variations in ABLH over the Tarim Basin, which will serve as a foundation for
future studies on the impact of the ABL on climate.

2. Data

Situated in the southern region of Xinjiang in northwestern China, the Taklamakan
Desert (TB) covers an area of 53 × 104 km2 [31]. As the second largest shifting desert glob-
ally, the Taklamakan Desert experiences minimal precipitation and high evapotranspiration
rates. This region falls under a continental arid climate and serves as a significant source of
sand–dust storms in China (Figure 1).
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Figure 1. The territory of the study area. Located in northwestern China, lies between Tianshan
Mountain, Kunlun, and Altun Mountain. The black, green, and red circles represent stations in oases,
desert, and mountainous terrain, respectively.

For this study, we utilized the ERA Interim ABLH dataset, which offers a spatial reso-
lution of 0.125◦ spanning from January 1979 to December 2018. The satellite data (GLAS
boundary layer height) are typically 200–400 m higher than the ERA interim over oceans,
but smaller-scale and global patterns of ABL height exhibit similar characteristics [32,33].
Additionally, the ERA Interim dataset has been validated worldwide [9] when compared
to observational radiosoundes. ERA Interim data have been widely applied in many
academic studies and have become some of the most important data in the field of at-
mospheric science in the past few years. The research and validation of these data have
been widely recognized, and their accuracy and reliability have been confirmed in many
studies. Moreover, these data have identified that the deviation between the boundary layer
height reanalysis data (ERA-interim) and the measured data is relatively small [34–36]. The
dataset is freely available online https://www.ecmwf.int/en/forecasts/datasets/archive-
datasets/reanalysis-datasets/era-interim (accessed on 5 April 2020).

To supplement our analysis, we incorporated data from 39 weather stations during
the period of 1979–2018. Specifically, we utilized ground-based monthly mean air tem-
perature (1.5 m) (Mean air TEM), maximum air temperature (Max air TEM), minimum
air temperature (1.5 m ± 5 cm) (Min air EM), air pressure (1.2 m), and relative humidity

https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim
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(1.5 m). Figure 1 displays the locations of these weather stations. It is important to note
that the meteorological data are part of the synoptic observation program and consist of
two series: 8892 data points in the result part, and 59 data points in the study area part.
Xinjiang Meteorological Administration provided the data, which underwent stringent
quality control procedures before release.

3. Methodology

To uncover the evolutionary characteristics and influential factors of ABLH in the
Tarim Basin, this study employs a range of methodologies including trend analysis, abrupt
change analysis, wavelet analysis, Emperial Orthogonal Function (EOF) analysis, random
forest model, and other techniques (Table 1).

Table 1. The main research methods used in this paper.

Methods Characteristics Purposes

Linear regression method Identifies the continuity of long-term trends Revealing the changing trend characteristics
of continuous meteorological data

Morlet wavelet analysis Simultaneously analyzes time and frequency
characteristics Determine the period of data change

Abrupt changes test Abnormal recognition ability Monitoring in abrupt change point of
detection data

EOF method Decomposes spatial and temporal principal
components of data,

Determine the main characteristics of
data distribution

Random forest model Based on Decision Tree Ensemble Model Feature
Importance, Prediction Accuracy Prediction Analysis

Determine the importance of meteorological
factors on the height of the boundary layer

3.1. The Linear Regression Method

Linear regression is one of the main methods used to test the changing trend and can
express the changing trend of variables in a time series. The equation is as follows:

Y = a0 + a1t (1)

where Y is the precipitation; t is the time; a0 is the regression constant; a1 is the regression
coefficient; and a1 × 10 is the changing trend rate of per decade.

3.2. Morlet Wavelet Analysis

In this study, Morlet wavelet analysis is applied to display the periodic change of
ABLH; it results in a number of wavelet coefficients. The corresponding wavelet family
involves sub-wavelets that are generated from the basic wavelet function ψ(t) shown as
follows [37]:

ψa,b(t) = |a|−
1
2 ψ

(
t − b

a

)
a, b ∈ R, a ̸= 0 (2)

where ψa,b (t) is the sub-wavelet, and parameters a and b denote the scale factor and the
horizontal shift, respectively.

For any function f (t) ∈ L2 (R), its WT is expressed as:

W f (a, b) = |a|−
1
2

∫ +∞

−∞
f (t)Ψ∗(

t − b
a

)dt (3)

where Wf (a,b) is wavelet coefficient. According to the wavelet coefficient, the wavelet
variance is computed according to the following Equation (4).

Var(a) =
∫ +∞

−∞

∣∣∣W f (a, b)
∣∣∣2db (4)
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Wavelet analysis decomposed the signal series on a time scale, and the time–frequency
field change can be clearly observed and distinguished.

3.3. Mann–Kendall Test of Abrupt Changes

In this study, the time series data were assumed to be steady and independent. Vari-
ables (i.e., X = {x1, x2, . . ., xn}) shows no change because of the null hypothesis predicting
no trends in the data. For data point xi, ni is calculated by the number of data points that
exceed xi. The Mann–Kendall statistic ni is calculated as [38]:

E(dk) =
k(k − 1)

4
, 2 ≤ k ≤ n (5)

Var(dk) =
k(k − 1)(2k + 5)

72
, 2 ≤ k ≤ n (6)

The standard value of dk is computed by:

u(dk) =
dk − E(dk)√

Var(dk)
, 2 ≤ k ≤ n (7)

Given that u(d1) = 0, all u(dk) will result in a curve, UF. A retrograde u(dk) is expressed
in Equation (8).

u′(dk) = −u(dk′) k′ = n + 1 − k, 2 ≤ k ≤ n (8)

Given that u(d1) = 0, all u(dk) will establish a curve, UB. The intersection points of UF
and UB are located between the confidence lines when abrupt climate change occurs.

3.4. EOF Method

The EOF method is used to calculate orthogonal functions, representing spatio-temporal
components. Each component may represent a changing characteristic of the variable [39]. The
EOF method provides the spatio-temporal change patterns of the variable [40].

3.5. Random Forest Model

The random forest (RF) model is capable of processing diverse data and can be
effectively applied in data collection. RF selection can be utilized to identify the most
significant variables for regression by selecting a reduced set of partition variables, and its
output represents the average value derived from all decision-making trees. The RF model
employs multivariate sorting to determine the variables and provide insights into their
relative importance [41]. In this study, ABLH served as the dependent variable.

4. Results
4.1. Long-Term Mean of ABLH

In winter, the lowest ABLH was observed in January and December with a value of
100 m in the southwestern mountain area of the TB. In February, with the increase in air
temperature, the ABLH increased by 200 m in comparison to January. In March, an ABLH
of 1800 m was observed in the southeast and central area due to high levels of air dryness.
As the air temperature gradually rose in spring, the ABLH increased, with the lowest value
(400 m) observed in the north, northwest, and west part of the TB, mainly in mountain
areas, indicating a major role of high latitude. The spatial distribution of ABLH in May
is similar to that in April, but the value has increased. The highest value (1700 m) was
observed in May in the central part of the basin, which is mainly influenced by low altitude,
desert climates, low moisture, and high air temperature.

In June, the ABLH reached over 1900 m due to changes in air temperature, but
it significantly decreased in September. In October, the ABLH was above 1000 m. The
ABLH in the center of the desert decreased by 1400 m in comparison to its peak height of
1900 m, resulting in a decline of 500 m. This downward trend continued in November and
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December. In November, the decrease in ABLH was particularly rapid, with ABLH values
less than 200 m in most regions except for a small area. The lowest ABLH was observed in
December over the entire area, with a value of less than 100 m.

The minimum ABLH (600 m) is observed in the southwest and northwestern parts
of the TB, which were influenced by high latitude and high humidity. Meanwhile, the
highest ABLH value (1000 m) was observed in the center of the desert, attributed to high air
temperature and the absence of vegetation. The ABLH gradually decreased from the center
to the surrounding areas of the basin, influenced by terrain and temperature (Figure 2).
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4.2. Trends in ABLH

The trend analysis of the Atmospheric Boundary Layer Height (ABLH) data from
ECMWF for the period 1979–2018 revealed both upward and downward trends, represented
by the colors red, yellow, and green. Figure 3 illustrates the monthly trends of ABLH in the
Tarim Basin. In January, the annual ABLH tendency rate ranged from −30 to 60 m/10 a. The
lowest value of −30 m/10 a was observed in the eastern and southeastern parts of the basin,
while the highest value of 60 m/10 a was observed in the eastern and southwestern parts.
Most areas in the basin showed an upward trend, with a tendency rate of approximately
10 m/10 a. In February, the annual ABLH tendency rate ranged from −50 to 50 m/10 a.
The lowest value of −50 m/10 a was observed in the southern part of the basin, while the
highest value of 50 m/10 a was observed in the southwestern part. Similar to January, most
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areas showed an upward trend. In March, the annual ABLH tendency rate ranged from
−110 to 70 m/10 a. The lowest value of −110 m/10 a was observed in the southern part,
mainly in mountainous areas, while the highest value of 70 m/10 a was observed in the
western part. Significant high-value centers were found in the south, southwest, and west,
indicating an upward trend in most areas. For April, the ABLH tendency rate ranged from
−10 to 130 m/10 a. The lowest value of −10 m/10 a was observed in the northern and
northeastern parts of the basin, while the highest value of 130 m/10 a was observed in the
southern part. Significant high-value centers were present in the west, with a low-value
center in the east of the desert. Most parts of the study area showed an upward trend in
ABLH. In May, the ABLH tendency rate ranged from −30 to 70 m/10 a. The lowest value
of −30 m/10 a was observed in the northern, eastern, and western parts of the basin, while
the highest value of 70 m/10 a was observed in the southern part. Significant low-value
centers were found in the east, west, and north, with a high-value center in the south of the
desert. The height of the boundary layer showed an increasing trend in most parts of the
study area. In June, the ABLH tendency rate ranged from −30 to 60 m/10 a. The lowest
value of −30 m/10 a was observed in the eastern and southwestern parts of the basin,
while the highest value of 60 m/10 a was observed in the northeastern and southeastern
parts. There was a dominant upward trend in the height of the boundary layer, while
the surrounding mountains showed a downward trend. In July, the ABLH tendency rate
ranged from −30 to 100 m/10 a. The lowest value of −30 m/10 a was observed in the
surrounding mountains of the basin, while the highest value of 100 m/10 a was observed
in the northeastern and central parts of the desert. There is an evident zonal distribution
from the center of the desert to the surrounding regions.

The plain areas were dominated by an upward trend in ABLH, whereas the surround-
ing mountains showed a downward trend. In August, the ABLH tendency rate ranged
from −60 to 110 m/10 a; the lowest value of −60 m/10 a was observed in the eastern
part of the basin, while the highest value of 110 m/10 a was observed in the western
part. There is an obvious zonal distribution from the low and high-value centers to the
surrounding regions. The eastern and southeastern parts of the basin demonstrated a
significant downward trend, while the western and southwestern parts showed a notice-
able upward trend. The zonal distribution of either an upward or downward trend is
highly pronounced. In September, the ABLH tendency rate ranged from −70 to 50 m/10 a.
The lowest value of −50 m/10 a was observed in the eastern part of the basin, while the
highest value of 50 m/10 a was observed in the northern and western parts. There is an
evident zonal distribution and two high-value centers. The north and northwest parts
of the basin exhibited a significant upward trend, while the east and southeast showed a
distinct downward trend. The zonal distribution of either an increasing or decreasing trend
is highly apparent. In October, the ABLH tendency rate ranged from −30 to 70 m/10 a. The
lowest value of −30 m/10 a was observed in the eastern, southeastern, and southern parts
of the basin, while the highest value of 70 m/10 a was observed in the southwestern part.
The zonal distribution is not very pronounced. Most regions in the basin were dominated
by ABLH tendency rates of 10 m/10 a and 20 m/10 a, with no clear zonal distribution.
In November, the ABLH tendency rate ranged from −40 to 80 m/10 a. The lowest value
of −40 m/10 a was observed in the eastern part of the basin, while the highest value of
80 m/10 a was observed in the southwestern part. There was a zonal distribution, but it
is not very evident. Most regions in the basin were dominated by ABLH tendency rates
of 10 m/10 a and 20 m/10 a. In December, the ABLH tendency rate ranged from −20 to
70 m/10 a. The lowest value of −20 m/10 a was observed in the southern part of the basin,
while the highest value of 70 m/10 a was observed in the southwestern part. Most regions
in the basin were dominated by an ABLH tendency rate of 20 m/10 a.

The ABLH tendency rate (Figure 3m) ranges from −20 to 40 m/10 a. The lowest value
of −20 m/10 a was observed in the eastern part of the basin, while the highest value of
40 m/10 a was observed in the western part. Most regions of the basin were dominated by
ABLH tendency rates of 10 m/10 a and 20 m /10 a. The increasing trend was dominant in
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most regions, displaying evident zonal distribution. Figure 4 depicts the annual average
time series of ABLH during the period of 1979–2018, showing an upward trend with an
increase of approximately 30 m per decade.
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4.3. Periodicity Analysis and the Mann–Kendall Abrupt Changes Test

Wavelet analysis was employed to detect periodic changes in ABLH. Figure 5 illus-
trates the wavelet variances of ABLH from 1979 to 2018. In this plot, a positive real part
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corresponds to the annual average ABLH during a high (increasing) period, while a nega-
tive real part indicates that the annual average ABLH belongs to a low (decreasing) period.
Figure 5 shows a real-line contour plot of the Morlet wavelet coefficient of the annual
average ABLH in the Tarim basin. It reveals four main cycles of ABLH: 2-, 5-, 9-, and
15-year cycles. Among these cycles, the time scale of approximately 15 years corresponds to
the most significant variance-extreme value, followed by 9 and 5 years. The annual changes
of about 2 years are too rapid and relatively insignificant.
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Figure 5. Distribution of wavelet frequency and wavelet variance of ABLH.

The periodic oscillations with a characteristic time scale of 2 years have undergone
alternating changes over 13 periods. These oscillations were weak during 1979–1990 and
2004–2008, while they were more pronounced from 1991 to 2003 and from 2009 to 2016.
They consist of seven periods with a negative real part center (decreasing) and 6 periods
with a positive real part center (increasing). On the other hand, the periodic oscillations with
a characteristic time scale of 5 years have undergone alternating changes over 21 periods.
These oscillations were weak during 1979–1990, but became more evident from 1990 to 2018.
The study reveals the presence of 11 consecutive periods characterized by negative real part
center (decreasing) and 11 consecutive periods with positive real part center (increasing).
The periods showing a decreasing trend are 1981–1982, 1984–1985, 1988–1990, 1992 −1993,
2002–2003, 2006–2008, 2010–2011, and 2014–2015. Conversely, the periods exhibiting an
increasing trend are 1982–1983, 1986–1987, 1990–1991, 1994–1995, 1997–1998, 2000–2001,
2004–2005, and 2012–2013. The presence of any clear cycles in the remaining periods is
not apparent. The periodic oscillations, with a characteristic time scale of 9 years, have
experienced alternating changes over 14 periods. The periodic oscillation was weak during
1979–1989 and it was more obvious from 1989 to 2018. The oscillation pattern observed
in this study exhibits a characteristic time scale of 15 years, with alternating changes
occurring over nine periods. Among these cycles, the periodic oscillation is most prominent
and displays a relatively stable and intense pattern. Specifically, there are seven periods
characterized by a negative real part center (decreasing), and seven periods characterized
by a positive real part center (increasing). The decreasing periods span from 1979 to 1981,
1987 to 1991, 2001 to 2007, and 2011 to 2016. On the other hand, the increasing periods
occur from 1981 to 1983, 1987 to 1990, 1997 to 2001, 2007 to 2011, and 2017 to 2018.

The M-K abrupt change method was utilized to demonstrate the abrupt change year
in ABLH within the study area. Figure 6 illustrates the year of abrupt change as tested
by the M-K method. The findings indicate that an abrupt change was observed in 2004.
The factors contributing to the abrupt changes in ABLH in this specific study area remain
unknown, necessitating further investigations into the interplay between land use and the
spatial distribution of air temperature in order to address this unresolved issue.
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Figure 6. Annual average BLH Mann–Kendall abrupt change test from 1979 to 2018.

4.4. EOF Analysis of ABLH

The analysis of Empirical Orthogonal Function (EOF) modes revealed that the first
four modes accounted for 42.3%, 15.6%, 10.9%, and 5.7% of the total variation in the
ABLH data, respectively, explaining a combined variability of 74.5% (Figure 7). The spatial
pattern of the first EOF mode of ABLH was primarily observed in the northeast part of the
region, indicating similar changes in the southwest and northeast areas of the basin. This
distribution suggests that the ABLH is relatively low in the southwest and relatively high
in the northeast, which may be influenced by air temperature and terrain.
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Furthermore, the time series analysis revealed an upward trend since 2003, with
intermittent positive amplitudes in several years. The most significant changes occurred
during the period 1995–2000, while the weakest changes were observed in 1992. This
indicates a rapid downward trend in ABLH from 2002 to 2009, with the minimum ABLH
recorded in 1992.

The second EOF mode explains 15.6% of the total variance, representing another
important spatial distribution of boundary layer changes. Positive loadings were primarily
observed in the eastern portion of the study area, while the weakest loadings were found
in the northeast and west. Prior to 2000, the loadings were mostly positive, but turned
negative after 2000. Notably, the highest value was observed in 1984, whereas the lowest
value was recorded in 2006.

The third mode accounted for 10.9% of the total change, with the strongest positive
loadings observed in the center of the desert and negative loadings in the surrounding
regions of the Taklamakan Desert. The strongest negative value was recorded in 1984,
while the strongest positive value was observed in 2012.

Similarly, the fourth mode explained 5.77% of the total change, with positive loadings
in the southwest and negative loadings in the northeast. The strongest negative value was
seen in 1992, while the most positive value was recorded in 2002.

In summary, the modal distribution of ABLH values indicates higher values in the
northeast and lower values in the southwest, with high-value centers primarily situated in
the northeast of the basin and the middle of the desert. This spatial pattern corresponds
to the distribution of air temperature and land surface temperature, with the northeast
regions of the basin characterized by lower average air temperatures and corresponding
lower boundary layer heights in mountainous areas [42].

4.5. Relation between ABLH and Meteorological Factors

The movement of air within the atmospheric boundary layer (ABL) is heavily influ-
enced by ground friction and primarily depends on the thermal and dynamic effects of
the ground surface. The variation in thickness of this layer is related to the speed of the
outer airflow, its own meteorological conditions, and underlying surface conditions such
as terrain, topography, buildings, and vegetation. Changes in land–atmosphere conditions
can lead to changes in the ABL height (ABLH), with higher air temperatures resulting in a
higher ABLH [30]. Latitude, solar radiation, topography, and underlying surface type are
the major factors affecting the ABLH. We applied five indicators (i.e., mean air temperature,
maximum air temperature, minimum air temperature, air pressure, relative humidity) to
study the principal factors influencing changes in ABLH. The RF model was employed to
quantitatively analyze the selected indicators, and the results are shown in Figure 8a.

Air temperature is the most fundamental and direct factor in meteorological conditions
that affect the ABLH. High air temperatures increase the heat capacity of the atmosphere,
leading to an increase in the ABL and subsequently increasing the ABLH. During the day,
the ground is heated by solar radiation, causing an increase in ground temperature. This
results in hot air rising and a strong convective motion. In this case, the boundary layer



Atmosphere 2024, 15, 541 11 of 14

often exhibits characteristics such as decreasing temperature, increasing wind speed, and
decreasing humidity. Conversely, at night, the ground releases heat, causing the tempera-
ture to gradually decrease, and the air no longer produces convective motion. As a result,
the boundary layer begins to stabilize, exhibiting characteristics such as increasing temper-
ature, decreasing wind speed, and increasing humidity. This phenomenon is commonly
known as the nighttime stable layer. The correlation coefficients of mean, maximum, and
minimum air temperatures were high, at 0.95, 0.94, and 0.95, respectively, with significant
positive correlations.
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The air pressure and atmospheric composition also have a certain impact on the
structure of the boundary layer. Changes in air pressure affect the pressure gradient
force, gravity, and inertia force of the air, thereby altering the flow field and temperature
field. Humidity is another important factor affecting the structure of the boundary layer.
Changes in humidity can affect its stability, as well as heat and water vapor exchange
within the boundary layer, and chemical reaction processes in the atmosphere. Under
humid conditions, water vapor enhances the condensation and precipitation processes
in the atmosphere, thus affecting the vertical distribution and dynamic characteristics of
the boundary layer. The correlation coefficients of air pressure and relative humidity with
ABLH were 0.91 and 0.67, respectively, exhibiting a noticeable negative correlation.

Furthermore, wind speed, precipitation, and altitude also greatly affect the evolution
of ABLH. Due to ground friction, wind speed near the surface gradually decreases, forming
a wind speed gradient layer. This phenomenon is often observed as varied wind speeds
at different heights, such as kites experiencing stronger wind speeds at higher altitudes.
Within the boundary layer, the vertical gradient of wind speed is also important, with
the magnitude of this gradient determining the dynamic characteristics and degree of
mixing. Precipitation significantly impacts the height of the boundary layer, with increased
rainfall intensity causing a decrease in boundary layer height. The development history
and height of the stable boundary layer are also related to altitude. In high-altitude areas,
the stable boundary layer has a longer development history and higher height compared to
low-altitude areas.

There is a certain correlation between the ABLH and atmospheric pollution. Local
accumulation of atmospheric pollutants under conditions of weak wind speed, low bound-
ary layer height, and low ventilation can easily cause moderate to severe pollution. Air
pollution usually has a reducing effect on the height of the boundary layer. Continuous
pollution emissions can lead to an increase in the concentration of pollutants in the atmo-
sphere, causing a decrease in the heat and water vapor released within the boundary layer,
thereby making the boundary layer more stable and reducing its height. In addition, certain
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pollutants may affect the thermal characteristics and radiation balance of the atmosphere,
leading to changes in the temperature distribution and height of the boundary layer, which
usually results in a decrease in the height of the boundary layer. Therefore, atmospheric
pollution usually reduces the height of the boundary layer [43].

5. Conclusions and Discussion

This study examined the spatio-temporal distribution and influencing factors of the
atmospheric boundary layer height (ABLH) in the Tarim Basin from January 1979 to Decem-
ber 2018. The results showed that the ABLH was higher (over 1900 m) in the middle parts
of the study area in June, which was associated with higher air temperatures. The ABLH
demonstrated a significant increasing trend across different seasons, which was consistent
with the findings of Zhang et al. [18] in Europe and those of Mohammad et al. [30] in Iran.

The analysis also revealed that the highest upward trend rates of ABLH (120–130 m/decade)
occurred in August over the western part of the basin, while the surrounding mountain
regions experienced a downward trend. Overall, the annual ABLH exhibited a downward
trend in most parts of the region, with the highest upward trend rate being approximately
30–40 m per decade.

Furthermore, the Morlet wavelet analysis identified four main cycles of the annual
ABLH: 2, 5, 9, and 15 years. Among these cycles, the time scale of approximately 15 years
corresponded to the most significant variance extreme value, followed by 9 and 5 years.
The annual changes of about 2 years were comparatively fast and relatively insignificant.
The M-K method also detected an abrupt change in the ABLH in 2004.

The first four Empirical Orthogonal Function (EOF) modes of ABLH explained ap-
proximately 74.5% of the total variance. Specifically, the first EOF mode indicated that
the middle and northeast regions of the study area were characterized by a relatively
high ABLH.

This correlation analysis showed that between the ABLH and mean, maximum, and
minimum air temperature in the Tarim Basin demonstrated positive correlations, with
correlation coefficients of 0.95, 0.94, and 0.95, respectively. Conversely, air pressure and rel-
ative humidity exhibited negative correlations, with correlation coefficients of 0.91 and 0.67,
respectively. These findings are consistent with previous studies conducted in Europe [19],
China [21,24], East Asia, and North Africa, which reported the sensitivity of ABLH to air
temperature [23].
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