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Highlights:

What are the main findings?

• The HRB most frequently suffers from continued dryness followed by transition from dry-ness
to wetness.

• Dryness–wetness combinations generally occur more frequent under climate change.
• Frequency of prolonged dryness/wetness escalates more rapidly than abrupt transition events.

What is the implication of the main finding?

• The spatial and temporal preference of inter-seasonal dryness–wetness combinations are elucidated.
• Bivariate hazard assessment of dryness–wetness combinations enriches water-related hazard

atlas and facilitates more integrated mitigation planning.

Abstract: Accumulated evidence reminds one that abrupt transitions between dry and wet spells,
though attracting less attention, have harmful influences upon global continents as extensively
investigated droughts and floods. This study attempts to incorporate dryness–wetness transitions
into the current hazard assessment framework through bivariate frequency analysis and causal
attribution from a teleconnection perspective. In the study, regional dry and wet conditions are
monitored using the multivariate standardized drought index (MSDI) which facilitates the integrated
evaluation of water deficits/surplus from a combined viewpoint of precipitation (largely denoting
the received atmospheric water) and runoff (representing an important source of surface water).
On such a basis, a copula-based method is subsequently utilized to calculate joint return periods of
dryness–wetness combinations in three (i.e., moderate, severe and extreme) severity scenarios. The
changing frequency of diverse dryness–wetness combinations is also estimated under a changing
climate using a 25-year time window. Furthermore, the cross-wavelet transform is applied to attribute
variations in dry and wet conditions to large-scale climate indices, which benefits the early warning of
dryness–wetness combinations by providing predictive information. A case study conducted during
1952–2010 in the Huai River basin (HRB)—a typical climatic transition zone in China—shows that the
HRB is subject to prolonged dryness with the highest frequency, followed by the abrupt transition
from dryness to wetness. Spatially, abrupt dryness–wetness transitions are more likely to occur in the
southern and central parts of the HRB than in the rest of the proportion. The past half-century has
witnessed the dominantly higher frequency of occurrence of dryness–wetness combinations under
three severity scenarios. In particular, the occurrence of the continued dry/wetness escalates more
rapidly than transition events under climate change. Moreover, a preliminary attribution analysis
discloses the link of the dry and wet conditions in the HRB with climate indices, such as the El Niño
southern oscillation, the Pacific decadal oscillation and the Arctic oscillation, as well as sunspot
activities. The results of the study enrich the current atlas of water-related hazards, which may benefit
more effective hazard mitigation and adaptation.
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1. Introduction

Droughts and floods are the most common types of natural hazards, which result in dis-
astrous consequences in many parts of the world. Statistics from the World Meteorological
Organization indicate that over the period 2000–2019, droughts and floods, jointly account-
ing for 49% of the total number of disasters worldwide, triggered over 721,000 deaths and
economic losses as high as USD 779 billion. Extensive studies on water-related hazard
assessment, thereby, mainly focus on the monitoring of regional dry and wet spells, the risk
assessment of droughts and floods and the quantification of their adverse influence upon
human communities [1–4]. However, less attention has been paid to abrupt transitions
between dry and wet spells. The occurrence of abrupt dryness–wetness transitions with
high severity tends to cost more relief efforts than either individual drought or flood. The
influential dryness–wetness transition events are noted to prevail in climatic transition
zones, such as the middle-lower reach of the Yangtze River basin and the Huai River
basin in China [5–7], as well as Texas transitioning from the arid southwest United States
to the humid southeast United States [8,9]. Additionally, increasing evidence provides
a reminder that the accelerated water cycle largely due to climate warming has resulted in
a more frequent emergence of precipitation and streamflow extremes in many parts of the
globe [10–13]. It is still unclear whether the increasing number of hydro-meteorological
extremes has intensified risks of abrupt transitions between dryness and wetness in re-
gions of concern. Therefore, there exists the growing need for the hazard assessment of
abrupt dryness–wetness transitions, with the purpose of enriching the current water-related
hazard atlas and facilitating the development of more integrated mitigation planning.

This study more generally takes into account combinations of dryness and wetness
between adjacent seasons, which encompass four elements, namely mutual transitions
between dryness and wetness, the prolonged dryness and the prolonged wetness. Diverse
dryness–wetness combinations have been recently reported to happen with an ascending
frequency over the Asian and American continents. In 2011, the middle-lower reach of
the Yangtze River basin suffered from an abrupt transition from spring dryness to early
summer wetness [14]. The precipitation anomalies were observed to vary from 60% below
the long-term mean in May to 100% above the long-term mean in June. When the focus
shifts to Texas of the U.S., a historic four-year dry spell ended up with a flood persisting
for several weeks in May 2015. A more recent transition event was present in 2017 when
one of the top ten driest autumns emerged in the wake of the Hurricane Harvey flood
inundating Texas in August, which resulted in at least USD 125 billion in damage. The
year 2017—following 1919, 1957 and 2015—subsequently became the fourth time when
Texas was subject to the sudden shifting between dry and wet spells in the latest century.
Cases of the continued dryness and wetness are reported as well. An inter-seasonal dry
spell persisted from spring to autumn over the Huai River basin (HRB) in 1994, ultimately
triggering economic losses up to RMB 16 billion, crop failure estimated to be 5.6 million
metric tons and the drinking water shortage affecting 9 million people and 1.5 million
livestock. In contrast, the Meiyu front together with the typhoon influence often brings
intense rainfall to the HRB, which makes it historically vulnerable to prolonged wetness
in summer and early autumn [15]. Therefore, listed cases with severe socio-economic
influence remind one that diverse combinations of dryness and wetness between adjacent
seasons ought to catch our sufficient attention.

Hazard assessment of dryness–wetness combinations primarily benefits from the ac-
curate characterization of water anomalies. Univariate indices are widely used by existing
studies to monitor water deficits and surplus, which include the standardized precipita-
tion index (SPI), the standardized runoff index (SRI) and the standardized groundwater
index [16]. Dry and wet spells identified by different types of univariate indices, however,
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often differ in their timing of onset, persistence and termination [17]. Water anomalies, in
fact, represent the abnormal status of usable water resources from multiple sources, such
as precipitation, runoff and groundwater [18]. A current consensus subsequently reached
among researchers [18–22] highlights that dryness/wetness characterization exclusively
based on a single hydro-meteorological variable is likely insufficient to support reliable
hazard assessment and rational decision making. Nowadays, the monitoring of water
anomalies is increasingly believed to be more appropriately conducted with consideration
for changes in multiple water sources. Following the prevailing trend in water variabil-
ity monitoring from a multivariate perspective, the present study utilizes a multivariate
standardized drought index (MSDI) which integrates both precipitation (representing the
received atmospheric water) and runoff (denoting an important source of surface water
usable for human communities) information under a nonparametric framework proposed
by Hao and AghaKouchak [23], in an attempt to distinguish between dry and wet spells in
an integrated way.

Hazard assessment of dryness–wetness combinations between adjacent seasons subse-
quently requires the estimation of their joint return periods, which is accomplished using
bivariate frequency analysis. The reliability of the derived return periods of dryness–wetness
combinations is closely associated with how exactly the connections between dry and wet
spells are modeled in the form of a bivariate probability distribution. A bivariate probability
distribution joining dry and wet spells can be derived using either the parametric method
(i.e., multivariate distribution models connecting specified marginals) or nonparametric
approaches (including the kernel density estimation and copula functions) [24–27]. The use
of well-defined multivariate distribution models is limited to combining random variables of
interest with the same marginals [28]. Amongst three approaches for deriving multivariate
distribution, copula functions are increasingly applied in the field of hydrology predom-
inantly due to their superiority in connecting correlated variables drawn from arbitrary
marginal distribution and the availability of robust parameter estimation methods (such as
the maximum likelihood estimation and moment estimation) [29–31]. Therefore, the return
periods of diverse dryness–wetness combinations are estimated with the aid of copula
functions in the present study.

Meanwhile, the other major motivation of the study is to preliminarily investigate
the linkage between diverse dryness–wetness combinations and large-scale circulation
patterns, aiming at benefiting the hazard early warning by providing predictive signals.
Zong et al. [32] noted that abrupt transitions from dryness to wetness in the middle-
lower reach of the Yangtze River basin (MLRYRB) were strongly linked to the anomalous
circulation pattern featuring the late retreat of winter circulations and the early build-up
of summer circulations bringing abundant rainfall. Wu et al. [33] described, in detail,
the large-scale atmospheric anomalies in advance of the occurrence of dryness–wetness
and wetness–dryness transitions. Their key findings were that the Southern Hemisphere
annular mode in conjunction with the Northern Hemisphere annual mode in the preceding
February had a significant relationship with transitions between dry and wet spells in
the MLRYRB [34]. Additionally, Dai [35] summarized from an ensemble of studies that
prolonged dryness/wetness presented a strong association with changes in tropical sea
surface temperatures (SSTs). In East China neighboring the western Pacific, the El Niño-like
SST warming tends to be responsible for persistent water deficits and the La Niña-like SST
cooling for the long-term water surplus. In comparison, the reverse relationship was noted
in North America situated in the eastern edge of the Pacific Ocean. Najibi et al. [36] linked
the high-severity wetness persisting for a long period of time in the Missouri River basin
to the geopotential height anomalies which were modulated by the large-scale oceanic
teleconnections. Typically, the aforementioned various climate indices can be forecasted
with the lead time of a few months [37]. Consequently, the identification of teleconnections
of dry and wet spells with climate indices may benefit the early warning of dryness–wetness
combination by offering some predictive signals.
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The current study shifts the particular focus to the hazard assessment and preliminary
attribution analysis of the inter-seasonal combination of dry and wet spells, which, although
catching less of our attention previously, are sufficient to cause severe damage as heavily
investigated droughts and floods. Detailed objectives include (1) the evaluation of the joint
return period of inter-seasonal dryness–wetness combinations, (2) the assessment of how
the frequency of diverse dryness–wetness combinations evolves in response to a changing
climate and (3) the identification of the associated driving forces from the teleconnection
perspective. The results of the study serve as the supplement for the current atlas of
water-related hazards and further benefit the development of elaborated relief planning.

2. Study Area and Data

A hazard assessment of inter-seasonal combinations of dry and wet spells was per-
formed in the HRB, which is a typical climate transition zone located in East China.

2.1. An Overview of the HRB

The Huai River, which flows 1100 km from west to east, is the seventh-longest river in
China. The HRB drains an area of approximately 270,000 km2 extending from 111◦55′ E to
121◦25′ E and from 30◦55′ N to 36◦36′ N. The basin, as shown in Figure 1, has a mountainous
landscape in the western edge and northeastern parts, and plains dominate the rest of the
proportion. Climates of the HRB broadly transition from the subtropical to the temperate
types. Annually, the basin receives precipitation with a mean value of 888 mm, whereby
most (60–80%) of which occurs during June–September as a result of the influence of the East
Asian summer monsoon and typhoons. The annual runoff yielded from the HRB is estimated
to be 62.1 billion m3. The spatial patterns of precipitation and streamflow are observed to
irregularly vary on an annual scale [15], giving rise to the frequent occurrence of extreme
hydro-meteorological events, such as droughts and floods. Official statistics indicate the
occurrence of drought with a short time interval of 1.7 years over the past 500 years. The first
half of the twentieth century witnessed 42 instances of flood inundation, thereby evidencing
the high frequency of floods in the basin. Additionally noted is that abrupt dryness–wetness
transitions have occurred 13 times over the past half-century, serving as a reminder of the
prevalence of the sudden shift in usable water resources in the HRB as well.
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For the ease of presenting a more elaborated hazard pattern, the HRB was divided into
four sub-regions according to the Water Resources Regionalization published by the Ministry
of Water Resources of the People’s Republic of China. Four sub-regions shown in Figure 1
are comprised of the upper, middle and lower reaches as well as the Yishusi River basin
located in the northeastern proportion.

2.2. Data Description

Hazard assessment of inter-seasonal dryness–wetness combinations in the HRB was
conducted via the analysis of the monthly precipitation and surface runoff over the period
of 1952–2010. In situ precipitation observations were retrieved from the Resource and
Environment Science and Data Center, Chinese Academy of Sciences (https://www.re
sdc.cn/data.aspx?DATAID=230, accessed on 8 February 2023). Data quality was strictly
controlled before release. Surface runoff utilized was the output of the variable infiltration
capacity (VIC) model at the spatial resolution of 0.25◦ × 0.25◦. The VIC model, a grid-
based macro-scale hydrological model, has the advantage of dynamically simulating the
infiltration-excess and saturation-excess runoff processes [38,39]. The gridded runoff data
were subsequently aggregated to yield the corresponding areal values to pair the HRB
regionalization as depicted in Figure 1.

Climate indices including the Niño 3.4 SST index, the Pacific decadal oscillation
(PDO) index and the Arctic oscillation (AO) index, as well as sunspot numbers, were
analyzed to detect their linkage with changes in dry and wet conditions. Their monthly
values are freely available from the NOAA Earth System Research Laboratory at https:
//psl.noaa.gov/data/climateindices/list/ (accessed on 8 February 2023) and from the
World Data Center for the production, preservation and dissemination of the international
sunspot number at https://www.sidc.be/silso/dayssnplot/ (accessed on 8 February 2023).

3. Method Description

A flowchart as depicted in Figure 2 illustrates how to perform hazard assessment
of dryness–wetness combinations between adjacent seasons. Methods utilized are also
outlined as follows.
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3.1. Multivariate Standardized Drought Index (MSDI)

The reliable hazard assessment of dryness–wetness combinations firstly stresses the
necessity of the accurate identification of dry and wet spells. Dry and wet conditions actually
represent the shortage and surplus of water resources in a generalized sense, which means
that water availability from multiple sources ought to be evaluated jointly. It is, therefore,
more reasonable to monitor water variations with the consideration of multiple hydro-
meteorological variables. To this end, this study utilizes an MSDI incorporating information
of atmospheric water (i.e., precipitation) and an important source of surface water (namely,
runoff) under a nonparametric framework proposed by Hao and AghaKouchak [23]. Via
analogy with the widely used standardized precipitation index (SPI), the developed MSDI
can be computed on a variable time scale. The formulation of the nonparametric MSDI is
presented as follows.

Initially, precipitation and runoff observations were aggregated on the pre-specified
time scale (also termed the accumulative period) of interest to yield their composites to be
analyzed. Afterward, the joint non-exceedance probability of pairwise precipitation and
runoff composites was used as a metric of water variability in a statistical sense, with the
probability being close to zero indicating water deficits and the probability approaching one
representing water surplus. If one assumes random variables P and R to be the precipitation
and runoff composites, the joint non-exceedance probability of concern can be described as
Equation (1).

Pr(P ≤ pk, R ≤ rk) = F(pk, rk) (1)

To decrease the computational burden, herein the nonparametric Gringorten plotting
position formula is adopted for the calculation of the empirical joint non-exceedance
probability. The Gringorten formula is expressed as

Pr(P ≤ pk, R ≤ rk) ≈
mk − 0.44
n + 0.12

(2)

where n is the total number of pairwise precipitation–runoff composites and mk denotes
the number of paired composites concurrently satisfying conditions of pi ≤ pk and ri ≤ rk.
Finally, the MSDI, as shown in Equation (3), can be derived with the aid of the inverse
function of the standard normal distribution. This standardization procedure, in essence,
conducts an equiprobability transformation that gives rise to the resultant MSDI value
having the same non-exceedance probability as the precipitation–runoff observation under
investigation [40].

MSDI(k) = Φ−1(pk) (3)

in which Φ−1(x) is the symbol denoting the inverse function of the standard normal distribution.
The MSDI is an integrated index that comprehensively reflects water variability from

the perspectives of atmospheric and surface water. Similar to the SPI, positive and negative
values inform users of the presence of water surplus and deficits, respectively [41]. Table 1
further elaborates a detailed categorization of dry and wet conditions on the basis of a set
of MSDI thresholds.

Table 1. The categorization of dry and wet conditions based on the MSDI thresholds.

Categorization MSDI Thresholds Occurrence Probability

Extremely wet MSDI ≥ 2 2.3%
Severely wet 1.5 ≤MSDI < 2 4.4%

Moderately wet 1 ≤MSDI < 1.5 9.2%
Nearly normal −1 < MSDI < 1 68.2%
Moderately dry −1.5 < MSDI ≤ −1 9.2%

Severely dry −2 < MSDI ≤ −1.5 4.4%
Extremely dry MSDI ≤ −2 2.3%
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3.2. Mann–Kendall (MK) Trend Analysis

The MK analysis was conducted to examine the trend against randomness in the
MSDI series. The regression coefficient test, Sen’s T test, the MK test, Spearman’s Rho
test and covariance analysis [42,43] represent distribution-dependent and distribution-free
statistic methods available for trend identification. Distribution-dependent trend detection
methods typically with the assumption of the data being normally distributed can be hardly
applied to the hydrological time series which are skewed and contain outliers, when any
modification is not made. However, the rank-based distribution-free MK analysis has
been recommended by the World Meteorological Organization due to its insensitivity to
outliers and the robustness against nonlinear trends. A major disadvantage of the MK
trend analysis is that the trend may be misinterpreted as a result of the negative influence
of autocorrelation in the time series. Correlation analysis revealed that the derived MSDI
series were free of autocorrelation, thereby motivating the use of the original MK method
for trend detection in this study.

The MK analysis yields a standardized statistic Z for trend identification. The sign
of Z signifies the direction of the trend in time series [44]. A positive sign represents
an ascending trend and vice versa. In addition, Z is often compared against a standard
normal variable |Z1−α/2| to determine whether the detected trend is significant at the
specified significance level α. When the absolute value |Z| is greater than |Z1−α/2|, the
trend can be classified as being statistically significant. In the study, the 5% significance
level was utilized and the corresponding critical value |Z1−α/2| used for evaluation equaled
1.96. For a more detailed description of the MK method, interested readers can refer to
Hamed [45] and Sagarika et al. [44].

3.3. Copula-Based Method for Hazard Assessment of Dryness–Wetness Combinations

Hazard assessment of dryness–wetness combinations mainly followed the sequence
of fitting the marginal distribution to seasonal water variability (quantified by the MSDI),
modeling the joint distribution of water changes between adjacent seasons and estimating
the frequency of diverse dryness–wetness combinations.

3.3.1. Marginal Distribution

The marginal distribution is the projection of a multivariate joint distribution onto
one of its constituent variables. According to the definition in Section 3.1, the MSDI values
can theoretically vary from negative to positive infinity. In the study, the normal, logistic,
generalized extreme value (GEV) and stable distributions, which are valid for both positive
and negative values, were fitted to the derived MSDI series. Parameters of candidate
marginals were estimated using the maximum likelihood method. In the further selection
of the optimal marginal, the Kolmogorov–Smirnov (K-S) test was initially used to check
whether MSDI values could be drawn from candidate marginals. Metrics of the goodness-
of-fit including the root mean square error (RMSE) and the Akaike information criterion
(AIC) were subsequently calculated through the comparison between theoretical non-
exceedance probabilities derived from candidate marginals and empirical non-exceedance
probabilities acquired via the Gringorten plotting-position formula as shown in Equation (2).
A candidate marginal yielding the smallest values of the RMSE and AIC ultimately qualifies
as the optimal one.

3.3.2. Copula Functions for Deriving the Joint Distribution

As water variability within a season is of concern, marginal distributions of the
MSDI on a three-month scale were specifically derived for each season by following the
procedures proposed in Section 3.3.1. Afterward, marginal distributions of the MDSI
between adjacent seasons (spring and summer, for instance) were combined using the
copula function to derive joint distribution.

A copula function with its independent variables being uniformly distributed in the
interval of [0, 1] is increasingly popular in hydrology, finance [46] and medicine [47] for
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diverse applications. The use of copulas simplifies the modeling of joint distributions into
two steps (i.e., the estimation of marginals and the determination of an appropriate copula
function to describe the dependence structure of variables of interest). Sklar’s theorem [48]
states that an arbitrary n-dimensional distribution function can be derived by means of the
copula function C(x) as follows:

F(x1, x2, . . . , xn) = C
(

FX1(x1), FX2(x2), . . . , FXn(xn)
)

(4)

in which FXi (xi) denotes the cumulative distribution function of a random variable Xi.
As shown in Table 2, Gaussian, Clayton, Gumbel and Frank copulas were applied to

modeling joint distributions of the MSDI series between adjacent seasons, among which
Gumbel and Clayton copulas were favored in describing the upper and lower tail de-
pendence, respectively. The goodness-of-fit of candidate copulas was evaluated using
the Cramér–von Mises statistic and the AIC [49], which could be computed using the
‘VineCopula’ package for R environment. Smaller values of the employed metrics indicate
higher fitness. Herein presented is merely a brief introduction to the copula theory and
more details can be found in Nelsen [50] and Genest and Favre [51].

Table 2. The description of candidate copulas.

Name Expression Parameter Range Generator Kendall’s Tau

Gaussian Φρ

(
Φ−1(u), Φ−1(v)

)
ρ ∈ [−1, 1] / 2arcsinρ

π

Frank − 1
θ ln
{

1 + [exp(−θu)−1][exp(−θv)−1]
exp(−θ)−1

}
θ ∈ (−∞, ∞)\{0} − ln exp(−θt)−1

exp(−θ)−1 1 + 4(D1(θ)−1)
θ

Gumbel exp
{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

θ ∈ [1, ∞) (− ln t)θ 1− 1
θ

Clayton max
[(

u−θ + v−θ − 1
)−1/θ

, 0
]

θ ∈ [−1, ∞)\{0} 1
θ

(
t−θ − 1

)
θ

2+θ

3.3.3. Joint Return Period

Joint return periods of dryness–wetness combinations between adjacent seasons can
be estimated conditioned on the derived joint distribution. Let X and Y denote the MSDI
series of two successive seasons. FX(x) and FY(y) are their marginal distributions and
the corresponding joint distribution is FXY(x, y). Joint return periods of four types of
combinations of dry and wet spells (namely, the continued dryness, the continued wetness,
The transition from dryness to wetness and The transition from wetness to dryness) are
given by Equations (5)–(8), respectively.

TX<x∩Y<y =
1

P(X < x, Y < y)
=

1
FXY(x, y)

(5)

TX>x∩Y>y =
1

P(X > x, Y > y)
=

1
1− FX(x)− FY(y) + FXY(x, y)

(6)

TX<x∩Y>y =
1

P(X < x, Y > y)
=

1
FX(x)− FXY(x, y)

(7)

TX>x∩Y<y =
1

P(X > x, Y < y)
=

1
FY(y)− FXY(x, y)

(8)

In order to present the results of hazard assessment in an elaborated way, return
periods were jointly computed for dryness–wetness combinations with three severity levels.
The severity of dry and wet conditions was differentiated using a set of the MSDI thresholds
(see Table 1). The corresponding formulas are displayed in Table 3.
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Table 3. Joint return periods of dryness–wetness combinations under three severity scenarios.

Type of Dryness–Wetness
Combinations Moderate Scenario Severe Scenario Extreme Scenario

The continued dryness TMD−MD = T(x < −1, y < −1) TSD−SD = T(x < −1.5, y < −1.5) TED−ED = T(x < −2, y < −2)

The continued wetness TMW−MW = T(x > 1, y > 1) TSW−SW = T(x > 1.5, y > 1.5) TEW−EW = T(x > 2, y > 2)

The transition from dryness to wetness TMD−MW = T(x < −1, y > 1) TSD−SW = T(x < −1.5, y > 1.5) TED−EW = T(x < −2, y > 2)

The transition from wetness to dryness TMW−MD = T(x > 1, y < −1) TSW−SD = T(x > 1.5, y < −1.5) TEW−ED = T(x > 2, y < −2)

3.4. Rescaled Range (R/S) Analysis

The Hurst coefficient (also referred to as the Hurst exponent) was used as a metric
to quantify the persistence or long-term memory in natural time series. The Hurst co-
efficient can be estimated through classic R/S analysis, detrended fluctuation analysis,
the aggregated variances, wavelet analysis or the semi-variogram [52,53]. Among the
diverse approaches available, R/S analysis, first proposed by Hurst [54] in the design of
the Aswan Dam, is extensively utilized in fields of hydrology and geophysics due to its
robustness and the ease of calculation. Hence, R/S analysis was adopted to assess the
persistence of frequency of various dryness–wetness combinations, which possibly arises
from a changing climate.

Assume a time series X = {x1, x2, . . . , xn} to be analyzed. The mean of the partial
time series over the time span τ is calculated as

〈x〉τ =
1
τ

τ

∑
i=1

x(i), τ = 1, 2, . . . (9)

Then, the accumulative deviation from the mean is expressed below

X(t, τ) =
t

∑
i=1

[x(i)− 〈x〉τ ], 1 ≤ t ≤ τ (10)

The adjusted range R(τ) over the time span τ (Equation (11)) is defined, which is the
difference between the maximum and the minimum of the accumulative deviation series.

R(τ) = maxX(t, τ)−minX(t, τ), 1 ≤ t ≤ τ (11)

The adjusted range R(τ) is subsequently standardized by the standard deviation
S(τ) of the partial time series Xτ = {x1, x2, . . . , xτ} given by Equation (12) to derive the
rescaled adjusted range statistic formulated as R(τ)/S(τ). The main finding by Hurst
is that for many natural phenomena, R(τ)/S(τ) follows the asymptotic law as shown
in Equation (13).

S(τ) =

√
1
τ

τ

∑
i=1

(x(i)− 〈x〉τ)
2 (12)

R(τ)/S(τ) = (cτ)H (13)

in which H denotes the Hurst coefficient, and c is a constant. To estimate the Hurst
coefficient H, Equation (13) is rewritten to yield Equation (14) [55]. Given that the value of
R(τ)/S(τ) over the contrasting time spans τ is already known, a log–log plot of R(τ)/S(τ)
against τ can be depicted, in which the slope of the straight line denotes the estimate
of H eventually.

log[R(τ)/S(τ)] = H log(τ) + H log(c) (14)
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The Hurst coefficient with a value greater than 0.5 notifies one that statistical char-
acteristics of time series in the past are likely to persist in the near future. The Hurst
coefficient closer to one denotes the increasingly stronger persistence. H = 0.5 means
that observations in time series are the result of the Brownian movement and thereby are
independent. For a Hurst coefficient smaller than 0.5, statistical characteristics of time
series in the near future are opposite to those in the past. The Hurst coefficient increasingly
approaching zero indicates the higher probability of the existence of anti-persistence [17].

3.5. Wavelet Analysis

The cross-wavelet transform is applied to investigating linkages between climate sig-
nals and variations in dry and wet conditions. The cross-wavelet transform is the extension
of the univariate continuous wavelet transform (CWT) in a two-dimensional space. The
CWT decomposes a time series in time and frequency domains jointly, dependent on the
selected wavelet function. The CWT of a time series (x(t), t = 1, . . . , n), in a mathematical
sense, is the convolution of x(t) with a dilated and translated wavelet function, which is
expressed as follows:

WX
t (a, τ) =

1√
a

∫ +∞

−∞
x(t)ψ∗

(
t− τ

a

)
dt (15)

in which the asterisk represents the complex conjugate. ψ
( t−τ

a
)

is a wavelet function dilated
and translated by a and τ, respectively.

Given that complex nonlinear associations tend to extensively exist among hydro-
meteorological variables especially in the context of climate change, the classic correlation
analysis based on the Pearson or Spearman correlation coefficients, however, is unlikely to
capture the potential nonlinearity. To this end, the cross-wavelet transform is brought in
towards the proper identification of nonlinear correlation by revealing the common power
and relative phase of two series in time–frequency space [56]. Equation (16) provides the
mathematical expression of the cross-wavelet transform (WXY

t (a, τ)).

WXY
t (a, τ) = WX

t (a, τ)WY∗
t (a, τ) (16)

where WX
t (a, τ) and WY

t (a, τ) are separately the CWTs of time series x(t) and y(t), and
WY∗

t (a, τ) represents the complex conjugate of WY
t (a, τ). The argument of the cross-wavelet

coefficient WXY
t (a, τ) indicates the time delay between two series at the time point τ on

the scale a. Via analogy to the CWT, the power spectrum of the cross-wavelet transform
is calculated as

∣∣WXY
t (a, τ)

∣∣ and further represents the strength of dependence. Interested
readers are directed to Torrence and Compo [57] for more details.

4. Results
4.1. An Overview of Water Variability in the HRB

The use of the MSDI benefits the reliable monitoring of water deficits and surplus
from a multivariate perspective (i.e., the joint consideration of precipitation and runoff
anomalies). Trend detection of the MDSI series in an individual month via the MK test
further allows one to reveal when the HRB has a trend towards dryness and wetness.
A negative value of the MK test statistic Z represents a decreasing trend of the MSDI
which is further interpreted as a drying trend, and vice versa. Figure 3 shows the MK
test results of the monthly MSDI series in four sub-regions of the HRB over the analysis
period 1952–2010.
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None of the absolute values of Z being greater than 1.96 reminds one that there exists
no ascending or descending trend of the monthly MSDI being statistically significant at
the 5% significance level. In detail, it is shown by the negative Z that the MSDI values
dominantly exhibit downward trends in March, April, September, October and November,
which implies that the HRB has an insignificant trend towards dryness in early and middle
spring as well as in the whole of autumn over the past half-century. Statistics indicate that
grain yields from the HRB account for over one sixth of the national total. Seed sprouts
and crop growth in spring largely determine annual yields in agricultural sectors. The
drying trend in early and middle spring, therefore, ought to catch the sufficient attention of
decision-makers in order to cope with the increasing water deficits. In contrast, the MSDI
values in February, May, June, July and August are generally dominated by upward trends,
suggesting the existence of wetting trends in late winter and the flood season. Given that
the most precipitation (60–80%) occurs between June and September in the HRB, the wetter
flood season stresses the requirement of more efforts to mitigate the adverse influence of
possibly intensified floods. It is noted that the dryness and wetness trends detected above
are in line with findings by He et al. [58] that there has been a prevailing trend of drying in
spring and autumn and wetting in summer during 1961–2013.

4.2. Frequency Analysis of Inter-Seasonal Combinations of Dry and Wet Conditions in the HRB

The MSDI series on a three-month scale was computed to monitor dry and wet condi-
tions in each season. The time spans of spring, summer, autumn and winter are March–May,
June–August, September–November and December–the next February, respectively. The
return periods of four kinds of inter-seasonal combinations of dry and wet conditions were
calculated for hazard assessment using the copula-based method presented in Section 3.3.

4.2.1. The Selection of Suitable Marginal Distributions

Normal, logistic, GEV and stable distributions were fitted to seasonal MSDI series from
1952 to 2010. The determination of suitable marginals relies on the comparison of the fitness
regarding four candidate marginals. The results of the goodness-of-fit test are given in Table 4.

In Table 4, the logical variable H being equivalent to zero suggests that the four
candidate marginals jointly pass the K-S test, and the null hypothesis that observations are
drawn from the hypothesized distribution is accepted. Afterward, supportive evidence
was provided by the AIC and RMSE for screening out the optimal marginals. Candidates
with the smallest values of AIC and RMSE were identified as the appropriate ones and
are highlighted in bold. The results in Table 4 indicate that none of the four marginal
distributions can variably outperform their counterparts in terms of goodness-of-fit metrics
used in the present study, revealing the potential risk of exclusively applying a designated
marginal for fitting the seasonal MSDI series. Therefore, the joint use of multiple candidate
marginals and a goodness-of-fit test is considered as a crucial step towards the accurate
characterization of the seasonal MSDI series.
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Table 4. The goodness-of-fit of four candidate marginals.

Sub-
Basin Season

Normal Logistic GEV Stable

H P RMSE AIC H P RMSE AIC H P RMSE AIC H P RMSE AIC

The upper
reach

of the HRB

Sp 0 0.99 0.01 −484.29 0 0.96 0.02 −450.48 0 1.00 0.01 −492.98 0 0.99 0.01 −480.31
Su 0 0.98 0.02 −462.82 0 0.99 0.02 −464.64 0 1.00 0.02 −470.09 0 0.98 0.02 −458.77
A 0 0.92 0.02 −464.88 0 0.99 0.02 −458.25 0 0.82 0.02 −450.81 0 0.92 0.02 −460.86
W 0 1.00 0.02 −475.51 0 0.98 0.02 −456.84 0 1.00 0.02 −472.57 0 1.00 0.02 −471.51

The
Yishusi
River
basin

Sp 0 0.87 0.02 −437.00 0 0.81 0.03 −414.88 0 0.95 0.02 −450.43 0 0.87 0.02 −433.02
Su 0 1.00 0.02 −466.38 0 0.99 0.02 −438.35 0 1.00 0.02 −476.90 0 1.00 0.02 −462.39
A 0 1.00 0.02 −465.80 0 0.99 0.02 −453.86 0 0.99 0.02 −457.26 0 1.00 0.02 −461.81
W 0 1.00 0.02 −457.57 0 0.99 0.02 −436.69 0 1.00 0.02 −460.51 0 1.00 0.02 −453.57

The
middle
reach

of the HRB

Sp 0 0.94 0.02 −448.92 0 0.98 0.02 −451.66 0 0.96 0.02 −448.68 0 0.94 0.02 −444.92
Su 0 1.00 0.02 −454.72 0 1.00 0.02 −456.96 0 1.00 0.02 −448.95 0 1.00 0.02 −450.73
A 0 1.00 0.01 −499.75 0 1.00 0.01 −487.98 0 1.00 0.02 −475.42 0 1.00 0.01 −495.76
W 0 1.00 0.01 −490.26 0 1.00 0.02 −477.54 0 1.00 0.01 −499.12 0 1.00 0.01 −486.28

The lower
reach
of the
HRB

Sp 0 1.00 0.02 −479.21 0 0.99 0.02 −452.71 0 1.00 0.02 −480.53 0 1.00 0.02 −475.19
Su 0 1.00 0.02 −477.11 0 0.98 0.02 −448.49 0 0.99 0.02 −466.89 0 1.00 0.02 −473.11
A 0 1.00 0.01 −494.16 0 0.99 0.02 −457.46 0 1.00 0.01 −496.56 0 1.00 0.01 −490.15
W 0 1.00 0.01 −529.31 0 1.00 0.01 −488.33 0 1.00 0.01 −518.05 0 1.00 0.01 −525.32

Note: Sp, Su, A and W are abbreviations for spring, summer, autumn and winter, respectively. Results of the K-S
test are presented in the form of H and P. H = 0 indicates the failure to reject the null hypothesis. H = 1 suggests
rejecting the null hypothesis. P is a scalar variable in the range of [0, 1], with a smaller value (usually P ≤ 0.05)
indicating the strong evidence against the null hypothesis. Bolded values of goodness-of-fit metrics highlight the
optimal marginal distributions.

4.2.2. The Determination of Appropriate Copulas

After the derivation of univariate probability distributions of the MSDI series in each
season, they were joint together using copulas to yield joint distributions of dryness–wetness
combinations between adjacent seasons.

Before constructing the joint distribution, it was necessary to analyze the correlation
of the MSDI to be combined between two adjacent seasons. The paired adjacent seasons
included S–S, S–A, A–W and W–S, illustrated in Table 5 The mean value of the Kendall
correlation coefficient of the MSDI between adjacent seasons is 0.2627, −0.0054, −0.4059
and 0.4164, respectively. It can be seen from the table that the MSDI correlation between
winter and spring is the strongest, which is followed by autumn and winter.

Table 5. Kendall’s tau correlation coefficient of the MSDI in adjacent seasons.

Sub-Basin S–S S–A A–W W–S

The upper reach of HRB 0.31 0.24 −0.35 0.46
The Yishusi River basin 0.26 0.27 −0.39 0.49

The middle reach of HRB 0.22 −0.23 −0.50 0.37
The lower reach of HRB 0.26 −0.30 −0.38 0.35

Note: pairwise adjacent seasons include S–S, S–A, A–W and W–S, which are abbreviations for spring–summer,
summer–autumn, autumn–winter and winter–spring, respectively.

The determination of appropriate copulas relies on a statistical test based on Rosenblatt’s
transform and the AIC estimate. The statistical test gives rise to two goodness-of-fit met-
rics. One is the Cramér–von Mises statistic (Sn) measuring the distance between empirical
probabilities and theoretical probabilities. The other is the p-value. For the computation of
p-values, the parametric bootstrap described by Genest et al. [59] was used. It is observed in
Table 6 that p-values of four candidates (Gaussian, Frank, Clayton and Gumbel copulas) are
all greater than 0.05, suggesting that these candidate copulas are applicable to modeling joint
distributions of dryness–wetness combinations of concern. The AIC is further employed to
screen out the appropriate copulas capable of yielding the smallest bias. To this end, copulas
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with the smallest AIC values are highlighted in bold in Table 6 and are ultimately determined
as the most preferred ones. Note that there are some null values in the table. This is because
MSDI series between adjacent seasons sometimes exhibit a negative correlation. However,
the use of Clayton and Gumbel copulas is limited to exclusively modeling the dependence
structure of two random variables which are positively correlated.

Table 6. The goodness-of-fit of four candidate copulas.

Sub-Basin Adjacent
Seasons

Gaussian Clayton Gumbel Frank

Sn p-Value AIC Sn p-Value AIC Sn p-Value AIC Sn p-Value AIC

The upper
reach

of the HRB

S–S 0.08 0.74 1.44 0.08 0.67 1.54 0.08 0.70 1.84 0.08 0.61 1.67
S–A 0.08 0.72 1.96 0.09 0.48 1.99 0.09 0.70 2.00 0.09 0.60 2.00
A–W 0.10 0.55 1.42 / / / / / / 0.09 0.65 1.12
W–S 0.19 0.15 0.85 0.22 0.03 1.67 0.18 0.17 1.36 0.09 0.48 −1.77

The
Yishusi

River basin

S–S 0.12 0.36 1.90 / / / / / / 0.09 0.63 2.00
S–A 0.09 0.64 1.83 0.09 0.72 1.90 0.11 0.57 2.00 0.10 0.49 1.96
A–W 0.21 0.25 −1.33 / / / / / / 0.25 0.08 −3.23
W–S 0.09 0.59 1.63 0.08 0.64 1.77 0.06 0.86 −0.34 0.06 0.81 0.79

The middle
reach

of the HRB

S–S 0.09 0.62 1.58 0.09 0.50 1.89 0.10 0.58 1.20 0.10 0.49 1.88
S–A 0.15 0.25 1.97 / / / / / / 0.14 0.31 1.78
A–W 0.15 0.43 0.44 / / / / / / 0.15 0.29 0.06
W–S 0.09 0.61 −0.60 0.13 0.24 0.83 0.09 0.54 −0.23 0.06 0.80 −3.22

The lower
reach

of the HRB

S–S 0.13 0.36 1.28 0.10 0.44 1.36 0.12 0.34 1.36 0.13 0.29 1.96
S–A 0.11 0.52 1.72 / / / / / / 0.12 0.41 1.62
A–W 0.08 0.78 −0.96 / / / / / / 0.06 0.93 0.36
W–S 0.08 0.72 0.97 0.06 0.88 0.15 0.08 0.64 −1.42 0.09 0.56 1.02

Note: Pairwise adjacent seasons include S–S, S–A, A–W and W–S, which are abbreviations for spring–summer,
summer–autumn, autumn–winter and winter–spring, respectively. Values of goodness-of-fit metrics are high-
lighted in bold to highlight the optimal copula functions.

4.2.3. Return Periods of Dryness–Wetness Combinations between Adjacent Seasons in
the HRB

According to Equations (5)–(8), return periods of dryness–wetness combinations
between adjacent seasons can be estimated. Meanwhile, to systematically support the
hazard assessment, diverse combinations at moderate, severe and extreme severity levels
(see Table 3) were separately considered. The corresponding results are presented in
Figure 4. For each pairwise adjacent season, bolded values highlight dryness–wetness
combinations with the shortest return period. Additionally, joint return periods were
calculated for four sub-basins to notify water managers of the spatial variability across the
HRB. It is noticed that under the moderate scenario, nine out of sixteen combinations with
the shortest joint return periods are classified as being the continuously dry conditions
(represented by the yellow rectangle in the figure). The transition from dryness to wetness
(denoted by the green rectangle) emerges as a combination with the shortest joint return
periods five times, finally ranking in the second position. Under the severe scenario,
out of sixteen combinations having the shortest joint return periods, eight and five come
from the continued dryness and the transition from dryness to wetness. Similarly, at
the extreme level, these two kinds of combinations make up the half and a quarter of
sixteen shortest-return-period combinations, respectively. Therefore, frequency analysis of
dryness–wetness combinations under three severity scenarios achieves an agreement that
the HRB is subject to the continuously dry conditions with the highest frequency throughout
the year. Meanwhile, the transition from the dry condition to the wet condition—the second-
ranked frequent combinations—should catch the sufficient attention of decision-makers
as well.
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Figure 4. Joint return periods of dryness–wetness combinations between adjacent seasons under
three severity scenarios at (a) the upper reach, (b) the Yishusi River basin, (c) the middle reach and
(d) the lower reach of the HRB. D–D (W–W) represents a continuously dry (wet) condition between
adjacent seasons. D–W (W–D) denotes an abrupt transition from dryness (wetness) to wetness
(dryness). Pairwise adjacent seasons include S–S, S–A, A–W and W–S, which are abbreviations for
spring–summer, summer–autumn, autumn–winter and winter–spring, respectively.

When the specific focus shifts to each season pair, it is found that in spring–summer,
four sub-basins (i.e., the whole HRB) are jointly characterized by the shortest joint return
periods of the continuous dryness. In the subsequent summer–autumn, the upper reaches
of the HRB and the Yishusi River basin, which is situated in the western and northern
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parts of the HRB, are still the most frequently subject to the continuously dry condition
(i.e., the yellow rectangle), whereas the most frequent combinations turn into the transition
from dryness to wetness (i.e., the green rectangle) in the middle and lower reaches of the
HRB, which dominantly cover the central and eastern parts of the HRB. When it comes to
autumn–winter, abrupt transitions between dry and wet conditions have shorter joint return
periods than continuously dry (wet) conditions in all sub-basins. As for winter–spring,
the continued dryness has the shortest return period against other combinations, which is
observed in three out of four sub-regions. The exception is that the lower reach of the HRB
features the most frequent occurrence of the continuously wet conditions in winter–spring.
The identification of frequent dryness–wetness combinations for each season pair may
enrich the current water-related hazard atlas and contribute to the development of more
integrated mitigation strategies.

The calculation of joint return periods also favors revealing the pathway along which
the frequent dryness–wetness combinations evolve within a year. The western and northern
portions of the HRB (i.e., the upper reach and the Yishusi River basin) are sequentially
characterized, under three severity scenarios, by the frequent occurrence of the continued
dryness (in spring–summer and summer–autumn), transitions between the dryness and
wetness (in autumn–winter) and the continued dryness/wetness (in winter–spring). In
comparison, the intra-annual evolution of frequent dryness–wetness combinations in the
southern and central parts of the HRB (namely, the middle and lower reaches) follows
the pathway of the continuously dry conditions (in spring–summer), transitions between
dry and wet conditions (in summer–autumn and autumn–winter) and the continuously
dry/wet conditions (in winter–spring). It is noted that compared with the western and
northern proportions, the southern and central HRB is subject to the higher frequency of
abrupt transitions in advance (i.e., starting from summer–autumn). This spatial difference
can be interpreted by the earlier influence of the Meiyu front upon southern and central
parts during the East Asian summer monsoon. The Meiyu front moves forward from south
to north and brings heavy precipitation in zonal bands with a southwest–northeast tilt, thus
resulting in the early reception of abundant rainfall in the southern and central parts during
the monsoon active period [60,61]. As a consequence, the southern and central parts of
the HRB are more likely to suffer from the abrupt transition events than the northern and
western parts.

4.3. Temporal Evolution of Frequency of Dryness–Wetness Combinations under Climate Change

In order to analyze how the frequency of dryness–wetness combinations varies in
a changing climate, temporal trends of joint return periods, as well as their persistence in
the near future, were examined by means of the MK test and R/S analysis. Using a 25-year
time window to slide from the beginning to the end of the 3-month MSDI series for each
season, 34 sets of sub-series can be generated in sequence over the period 1952–2010. For
an individual set of MSDI sub-series, a collection of joint return periods, as displayed in
Figure 4, was calculated using the copula-based method described in Section 3.3. Hence,
the joint return period of each kind of dryness–wetness combination will have 34 values on
the time axis, which correspond to different time periods. Trend detection of the joint return
period series eventually benefits understanding the changing pattern of the frequency of
various dryness–wetness combinations in the context of global warming.

Results regarding trend detection and persistence analysis are presented in Figures 5 and 6
in the form of the MK test statistic Z and the Hurst coefficient, respectively. A negative value
of Z means the existence of a decreasing trend in the joint return period of concern, and vice
versa. When the Hurst coefficient is greater than 0.5, the detected trend is believed to be
persistent in the near future. In Figure 5, 140 out of 192 Z values are negative, indicating that
a majority (72.9%) of dryness–wetness combinations had descending return periods during
1952–2010. Moreover, a total of 99 Z values are smaller than −1.96, which corresponds to
the critical value at the 5% significance level. This means that more than half (51.5%) of
the dryness–wetness combinations have shown significantly downward trends in their
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return periods. Therefore, the past half-century has generally witnessed the increasingly
frequent occurrence of dryness–wetness combinations under three severity scenarios across
the entire HRB. In Figure 6, all values of Hurst coefficients exceeding 0.5 further provide
supporting evidence that the increasing frequency is likely to persist in the near future. With
respect to individual kinds of combinations, 43 out of 48 continuously dry conditions have
negative values of Z. The same number is presented by the continuously wet condition.
However, a much smaller number of negative Z values is observed in the transition from
dryness to wetness or the transition from wetness to dryness, which amounts to being
30 and 24, respectively. As a result, the HRB is more characterized by the widespread
intensification of frequency of the continuous dryness/wetness, as compared with the
condition in abrupt transitions between dryness and wetness.
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Figure 5. Trend detection of joint return periods of dryness–wetness combinations under three severity
scenarios over the past half-century at (a) the upper reach, (b) the Yishusi River basin, (c) the middle
reach and (d) the lower reach of the HRB. Results are presented in the form of the MK test statistic Z.
Z values in bold correspond to the most frequent combinations identified for each season pair.
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Figure 6. Persistence of trends in return periods of dryness–wetness combinations under three
severity level scenarios over the past half-century at (a) the upper reach, (b) the Yishusi River basin,
(c) the middle reach and (d) the lower reach of the HRB. Results of persistence analysis are presented
in the form of the Hurst coefficient. Values in bold correspond to the most frequent combinations
identified for each season pair.

As a striking characteristic of the hazard map of the inter-seasonal combinations of dry
and wet conditions, the intra-annual evolution pathway of the most frequent combinations
invariably catches the attention of decision-makers. In spring–summer, the upper reach of the
HRB and the Yishusi River basin are subject to the continuously dry condition with the highest
frequency. Z values under three severity scenarios all smaller than −1.96 indicate significant
downward trends in the joint return periods of the continuously dry condition, further suggest-
ing the more frequent occurrence of the spring–summer dry condition at the upper reach of
the HRB and the Yishusi River basin. Similarly, at the upper reach and the Yishusi River basin,
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the most frequent dryness–wetness combinations in the following three season pairs (i.e.,
summer–autumn, autumn–winter and winter–spring) have jointly shown decreasing trends
in their joint return periods over the analysis period of 1952–2010. Thereby, the enhanced
frequency of the most frequent combinations in each season pair over the past half-century
gives rise to a higher possibility of intra-annual evolution of dryness–wetness combinations
following the pathway of the prolonged dryness (in spring–summer and summer–autumn),
the shift from dryness to wetness (in autumn–winter) and the prolonged dryness/wetness
(in winter–spring). When it comes to the middle and lower reaches of the HRB, the return peri-
ods of the most frequent dryness–wetness combinations in spring–summer and winter–spring
declined during 1952–2010. An earlier analysis of the intra-annual evolution pathway of the
frequent combinations confirms that in the remaining season pairs (namely, summer–autumn
and autumn–winter), the middle and lower reaches are most frequently hit by transitions
between dryness and wetness. However, marked divergence is noted in the changing rates of
two types of transition events. In summer–autumn, the transition from wetness to dryness
has a trend test statistic (i.e., Z value) towards more negative values than the transition from
dryness to wetness, indicating that the frequency of the former transition event escalates much
faster than that of the latter. In autumn-winter, the reverse pattern is noticed, whereby the
frequency of the transition from dryness to wetness grows at a faster rate. Meanwhile, Hurst
exponents greater than 0.5 predict that ascending trends in the frequent dryness–wetness
combinations are expected to be persistent in the near future. Therefore, trend detection of
joint return periods assists in deducing that the intra-annual evolution of the most frequent
dryness–wetness combinations at the middle and lower reaches will be likely to follow an
explicit pathway of the continued dryness (in spring–summer), the transition from wetness
to dryness (in summer–autumn), the transition from wetness to dryness (in autumn–winter)
and the continuous dryness/wetness (in winter–spring) in the future.

Observable ascending or descending trends in joint return periods of other less frequent
combinations of interest can be identified as well. The efforts above may lead to a knowledge
gain in the dynamic evolution of dryness–wetness combinations in a changing climate.

4.4. Linkages of Climate Indices with Dry and Wet Conditions in the HRB

In order to reveal the possible driving forces of water variability in the HRB, its
correlations with signals of climate variability are investigated using the cross-wavelet
transform in this subsection. The cross-wavelet analysis was conducted based on the
annual MSDI series as well as the sunspot number, Nino 3.4 SST, PDO and AO indices
during 1952–2010.

The following exclusively exemplifies the results of the cross-wavelet transform at
the upper reach of the HRB. It is observed in Figure 7a that the 1964–1968 and 1982–1988
dry and wet conditions are in a significant anti-phase and in-phase relationship with
the Nino 3.4 index in the 3–4 years band, respectively. The PDO index is found to be
negatively correlated with the 1954–1960 dry and wet conditions on the scale of 7–8 years.
Meanwhile, on two scales of 2–5 years and 7–9 years, the AO index shows significantly
positive correlations with the regional dryness and wetness. Hence, the intra-decadal
oscillation in dry and wet conditions is associated with the PDO, AO and ENSO events.
Figure 7a also exhibits the marked linkage between the sunspot number and the 1960–2002
dry and wet conditions in the 8–13 years band. The sunspot number has been widely known
to vary with an 11-year solar cycle and exerts influence upon diverse hydro-meteorological
processes. As a result, it is reasonable to deduce that sunspot activities have a significant
correlation with the near decadal variation in dry and wet conditions at the upper reach of
the HRB.
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Figure 7. Cross-wavelet transforms between climate indices and the MSDI series at (a) the upper
reach of the HRB, (b) the Yishusi River basin, (c) the middle reach of the HRB and (d) the lower
reach of the HRB. Thick contours enclose the power spectra of the cross-wavelet transform which are
significant against the red noise at the 5% significance level. The lighter shade indicates the cone of
the influence where the boundary effect cannot be neglected.

Similar results are also presented in other sub-regions, further providing a reminder
that the intra-decadal variation in dry and wet conditions across the HRB is correlated with
the PDO, AO and ENSO events. Amongst four types of climate indices investigated here,
sunspot activities exert the strongest influences on dry and wet conditions and are likely to
be significant forces driving the near decadal oscillation in dry and wet conditions. The
findings above may benefit the early warning of dryness–wetness combinations by offering
some predictive signals. Merely a preliminary attribution analysis is provided from the
perspective of large-scale circulation influence. The physical mechanism underlying the
identified linkage, in conjunction with additional factors that may affect water variability
in an interactive way, deserves our further investigation.

5. Conclusions

Abrupt transitions from dryness (wetness) to wetness (dryness), though catching less
attention, prevail in regions transitioning between humid and arid climates. In compari-
son with independent water deficits/surplus, the occurrence of abrupt transition events
with high severity tends to cost more relief efforts. In order to supplement the current
hazard atlas of the water-related hazards, this study, more generally, assesses inter-seasonal
combinations of dry and wet conditions (including mutual transitions between dryness
and wetness and the prolonged dryness and the prolonged wetness) in the HRB, which is
a typical climate transition zone in China. Hazard assessment was performed based on the
MSDI over the period 1952–2010. The MSDI joins atmospheric water (i.e., precipitation)
and an important source of surface water (namely, runoff), the use of which affords an
opportunity to reliably monitor water availability from a multivariate perspective. First,
trends in MSDI series were detected by means of the MK test to investigate intra-annual
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water variability over the past half-century. Afterward, a copula-based method was pro-
posed to estimate the bivariate return periods of dryness–wetness combinations between
adjacent seasons under three severity (i.e., moderate, severe and extreme) scenarios. Given
that climate warming has resulted in notable tempo-spatial changes in water availability
across the globe, the trends and persistence of derived return periods were investigated
using a 25-year time window, in order to gain knowledge about the changing pattern of
dryness–wetness combinations under a changing climate during 1952–2010. In addition, the
cross-wavelet transform was employed to identify the linkage of climate indices with dry
and wet conditions in the HRB, which can provide predictive signals for dryness–wetness
combinations from the perspective of teleconnection.

Results indicate that the majority of spring and the entirety of autumn have had
insignificant trends toward dryness over the past half-century, whilst there is an unremark-
ably wetting trend in the flood season (June–August). Such changes can possibly intensify
flood volume and impose adverse influence on agricultural activities in spring when water
is essential to seed sprouts and crop growth. The hazard assessment of dryness–wetness
combination under three severity scenarios reveals that, within a year, the HRB is subject
to the continued dryness with the highest frequency, which is followed by the abrupt tran-
sition from dryness to wetness. Spatially, the southern and central parts of the HRB (also
the middle and lower reaches) are more likely to suffer from abrupt transition events than
northern and western proportions (also the upper and Yishusi River basin), probably due
to the more persistent influence of the Meiyu front on the former parts during the summer
monsoon active period. Meanwhile, trend analysis of return periods of dryness–wetness
combinations reminds one that under a changing climate, the occurrence of diverse combi-
nation events dominantly presents an upward trend across the whole HRB over the past
half-century. In particular, the frequency of the continued dryness (wetness) is noted to
escalate at a higher rate than that of transition events. Furthermore, preliminary attribution
analysis indicates that intra-decadal variations in dry and wet conditions across the HRB are
linked to the PDO, AO and ENSO events, and decadal oscillations have a close association
with sunspot activities. Hazard assessment in the study improves our understanding of
the spatial and temporal preference of dryness–wetness combinations between adjacent
seasons, in favor of the enhanced preparedness for water-related hazards.

The increased frequency of dryness–wetness combinations has been widely noted
under three severity scenarios in the context of climate change. As the expansion of the
current work, our future study will be directed toward the evaluation of their possible
implications for agricultural production and water supply, and the development of the
relevant adaptation strategies.
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