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Abstract: Atmospheric water vapor is an essential source of information that predicts global climate
change, rainfall, and disaster-natured weather. It is also a vital source of error for Earth observation
systems, such as the global navigation satellite system (GNSS). The Zenith Tropospheric Delay (ZTD)
plays a crucial role in applications, such as atmospheric water vapor inversion and GNSS precision
positioning. ZTD has specific temporal and spatial variation characteristics. Real-time ZTD modeling
is widely used in modern society. The conventional back propagation (BP) neural network model
has issues, such as local, optimal, and long short-term memory (LSTM) model needs, which help by
relying on long historical data. A regional/single station ZTD combination prediction model with
high precision, efficiency, and suitability for online modeling was proposed. The model, called K-RBF,
is based on the machine learning algorithms of radial basis function (RBF) neural network, assisted
by the K-means cluster algorithm (K-RBF) and LSTM of real-time parameter updating (R-LSTM). An
online updating mechanism is adopted to improve the modeling efficiency of the traditional LSTM.
Taking the ZTD data (5 min sampling interval) of 13 international GNSS service stations in southern
California in the United States for 90 consecutive days, K-RBF, R-LSTM, and K-RBF were used for
regions, single stations, and a combination of ZTD prediction models regarding research, respectively.
Real-time/near real-time prediction results show that the root-mean-square error (RMSE), mean
absolute error (MAE), coefficient of determination (R2), and training time consumption (TTC) of the
K-RBF model with 13 station data are 8.35 mm, 6.89 mm, 0.61, and 4.78 s, respectively. The accuracy
and efficiency of the K-RBF model are improved compared with those of the conventional BP model.
The RMSE, MAE, R2, and TTC of the R-LSTM model with WHC1 station data are 6.74 mm, 5.92 mm,
0.98, and 0.18 s, which improved by 67.43%, 66.42%, 63.33%, and 97.70% compared with those of
the LSTM model. The comparison experiments of different historical observation data in 24 groups
show that the real-time update model has strong applicability and accuracy for the time prediction of
small sample data. The RMSE and MAE of K-RBF with 13 station data are 4.37 mm and 3.64 mm,
which improved by 47.70% and 47.20% compared to K-RBF and by 28.48% and 31.29% compared to
R-LSTM, respectively. The changes in the temporospatial features of ZTD are considered, as well, in
the combination model.
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1. Introduction
1.1. Motivations

Climate change and extreme weather are major threats to the sustainability of our
society. As an important greenhouse gas, atmospheric water vapor plays a very important
role in climate change research and weather forecasting, especially in extreme weather
nowcasting [1,2]. The presence of water vapor can lead to tens of meter range measurement
errors. Therefore, it is also an important source of error for earth observation systems,
such as the Global Navigation Satellite System (GNSS) [3]. It also plays a crucial role in
the global water cycle. The water vapor on the Earth mainly comes from the evaporation
of the ocean’s surface. The atmospheric flows transport the evaporated water vapor
over the continent to form precipitation and then return to the ocean through rivers and
underground runoff, thereby forming the atmospheric terrestrial marine water cycle [4–6].
Carbon, nitrogen, and water cycles in terrestrial ecosystems are connected and coupled
with one another, jointly driving the key processes of the balance of carbon revenue
and expenditure in the ecosystem [7]. Global climate change, rising atmospheric CO2
concentration, increased deposition of atmospheric nitrogen, and changes in precipitation
patterns affect the carbon revenue and expenditure balance and carbon exchange capacity
of terrestrial ecosystems at various levels. However, as of now, the key processes of
carbon–nitrogen–water coupling cycles and biological regulation mechanisms in terrestrial
ecosystems must be strengthened to evaluate the carbon exchange function and spatial
pattern of terrestrial ecosystems and their response and feedback to global changes in land
ecosystems accurately. Therefore, exploring carbon–nitrogen–water coupling cycles in
terrestrial ecosystems and their responses and adaptation mechanisms to climate change is
urgent [8]. It can provide a scientific basis for the carbon–nitrogen–water coupling research
in terrestrial ecosystems, increase carbon sinks, and reduce pollution emissions, thereby
helping China achieve its “double carbon” goals.

Zenith tropospheric delay (ZTD) can be divided into zenith hydrostatic delay (ZHD)
and zenith non-hydrostatic delay, which is always called zenith wet delay (ZWD) [9]. ZWD
can be converted into precipitable water vapor, PWV. It is an important factor that affects
GNSS navigation and positioning accuracy. In recent years, with the gradual improvement
of the high spatiotemporal resolution of ZTD products and the more frequent occur-
rences of disastrous weather conditions, such as thunderstorms and typhoons, regional
real-time/near real-time ZTD modeling has gradually become a hot issue in GNSS and
other research fields [10]. This research has important research significance and economic
benefits [11].

According to the different conditions of ZTD model application (mainly referring
to whether meteorological parameters are needed), the ZTD model can be divided into
two categories. The first kind of ZTD model needs measured meteorological parameters
(e.g., atmospheric pressure, water vapor pressure, and temperature), which mainly include
Hopfield, Saastamoinen, and Black models [12]. In the actual navigation and positioning,
meteorological parameters cannot be obtained sometimes, or the obtained meteorological
parameters are unstable, thereby causing inconvenience for navigation and positioning.
Given this problem, many scholars have established a second type of empirical ZTD model
without the use of measured meteorological parameters, which only relies on a large
number of empirical data to establish the mapping among various influencing factors and
ZTD. Considering that the participation of any meteorological parameters is not needed,
the empirical ZTD model, which mainly includes the early UNB series and EGNOS models,
as well as GPT2, GPT2w, and IGGtrop models proposed by some scholars in recent years,
has made great progress [13].

In recent years, with the rapid development of numerical weather prediction (NWP)
and the encryption of GNSS observation stations in the region, empirical models that are
more suitable for a certain region are established by fusing the multi-source observation
data using spatiotemporal analysis methods. Usually, the long-term linear trend of ZTD
is obtained by least-squares [14] and maximum likelihood estimation. The nonlinear
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characteristics of ZTD (e.g., trend features, short-period disturbances [15], and seasonal
periodicities) are obtained by time series analysis methods, such as wavelet analysis [16],
spectral analysis, and intelligent analysis. The relationship between ZTD and topography,
station elevation, latitude, and longitude is analyzed by spatial structure function, iterative
tropospheric decomposition, seasonal Gaussian function, and least-squares collocation
methods [17]. For the alpine area of Switzerland, Wilgan and Geiger [18] presented high-
resolution models of tropospheric total refractivity and ZTD. Different combinations of
data sources, including NWP and GNSS data, were used in the models. Using least-
squares collocation, the tropospheric parameters were interpolated to arbitrary locations.
Chen et al. [19] analyzed the temporal and spatial characteristics of the ZTD data of GNSS
stations of the Crustal Movement Observation Network of China (CMONOC), which was
measured for six years. They also established the ZTD empirical model (SHAtrop) for
mainland China by using the periodic and grid functions. The accuracy was better than
the common empirical models (such as EGNOS, UNB3 m, and GPT2). Zhao et al. [20]
established the high-precision ZTD model of altitude-related correction with China as the
research area. The ZTD residuals were obtained based on the ZTD initial values determined
by the GPT3 model and the GNSS-derived ZTD values. The annual, semi-annual, and
seasonal cycles of the residual were analyzed. Moreover, the relationship between the
residual and GNSS elevation was analyzed. To some extent, the model overcame the defect,
in which the existing empirical ZTD model failed to consider the influence of height on
ZTD well.

Owing to the spatial inhomogeneity and temporal variability of atmospheric density
and the nonlinear relationship among different meteorological parameters [21], ZTD has
the characteristics of dynamic variability, many influencing factors, and strong randomness.
Studying the physical mechanism of ZTD [22,23] is difficult, especially for ZTD’s high
spatial and temporal resolution modeling in areas with rugged terrain and large meteo-
rological contrast [17]. Without explicitly providing the physical mechanism, data-driven
models that use machine learning (ML) approaches have become a hot research topic.
The main tasks of ML include supervised learning (e.g., classification and regression),
unsupervised learning (e.g., clustering and dimensionality reduction), and reinforcement
learning (e.g., control and decision-making), which can deal with nonlinear problems better
and are widely used in data interpolation, modeling, and forecasting. In recent years, ML
technology has been widely used in several fields and has achieved certain achievements
in ZTD modeling. Such models include multi-layer perceptron, adaptive network-based
fuzzy inference system (ANFIS), artificial neural network (ANN), and least-squares support
vector machine (LSSVM) [24]. The most widely used model is the regional tropospheric
model, based on ANN, which realizes the interpolation, prediction, fusion, or improvement
of tropospheric delay correction parameters by inputting different parameters in global
or local areas. Taking the ZTD data of global positioning system (GPS) stations in the
Southern California GPS network as the research object, Wang et al. [25] investigated the
ZTD prediction model by using the backpropagation (BP) neural network algorithm and
by taking the longitude, latitude, and altitude of the station as inputs. To overcome a
large amount of computing volume, proneness to the “over-fitting” phenomenon, and the
problem of model instability of the traditional BP neural network, Xiao et al. proposed
an improved BP neural network to establish a regional ZTD model. The model takes the
normalized geodetic longitude, latitude, and geodetic height as the model inputs, as well
as ZTD as the output [26]. Based on the ZTD data of North America, Li conducted ZTD
modeling using the BP neural network, LSSVM, and radial basis function (RBF) neural
network and systematically evaluated the modeling accuracy, efficiency, and stability of
different models. The results show that the RFB algorithm has the best effect in small-scale
sample modeling, and the BP algorithm has evident advantages in large-scale sample mod-
eling [27]. Shi et al. proposed a long short-term memory (LSTM) network ZTD prediction
model based on Keras platform and compared it with the prediction effects of the BP neural
network model. The experimental results show that the root mean square error (RMSE) of
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the prediction results of the LSTM model reaches the mm level, and its mean absolute error
(MAE) and mean absolute percentage error (MAPE) are lower than those of the BP model.
The accuracy and stability of the LSTM model are significantly improved compared with
those of the BP model [28]. With the comprehensive consideration of the spatiotemporal
information of the GPS stations in West Antarctica, Zhang et al. conducted ZTD modeling
through two blind source separation algorithms, namely, principal component analysis
(PCA), independent component analysis (ICA), and BP neural network and performed
high-precision ZTD prediction using the LSTM network [29]. Li et al. improved the ZTD
correction performance of the GPT3 model in Antarctica using RBF and LSTM models in
terms of space and time, respectively [30]. Zhang et al. proposed a new ZTD time-series
forecasting method that used transformer-based machine-learning techniques [31]. For the
investigation, analysis, and forecasting of ZTD, the global VMF stations provided by the
global geodetic observing system (GGOS) during 2008–2020 were used. Results showed
that forecasted ZTD results were more accurate than those of LSTM, RNN, convolutional
neural network (CNN), and GPT3 series models. Zhang et al. [22] estimated the ZTD of
seven GNSS monitoring stations in China for two consecutive years by using static precise
point positioning (PPP) technology. The K-nearest neighbor (KNN) algorithm was used
to interpolate the ZTD data gap. The ZTD difference values between KNN and periodic
models were trained and predicted by LSTM. The predicted value, combined with the
periodic model (ZTD), restored the final ZTD prediction result (LSTM-ZTD), which was
better than BP neural network modeling. Static PPP verification experiments with the
LSTM-ZTD showed that PPP convergence time was improved in summer, autumn, and
winter compared with GPT2 ZTD. Shamshiri et al. [17] developed a new method based on
ML Gaussian process (GP) regression approach using the combination of small-baseline
interferograms and GNSS-derived ZTD values to mitigate phase delay caused by the tropo-
sphere in interferometric observations. On average, it reduced RMSE by 83%, compared
to 50%, by using ERA-Interim to correct tropospheric data. Zheng et al. [32] developed a
stacked ML model for mapping ZTD into PWV without meteorological parameters. The
fifth-generation European Center for Medium-range Weather Forecast Reanalysis (ERA5)
and radiosonde information were used to assess and validate the model’s performance.
The proposed model performed better than the physical model that used GPT3-derived
meteorological parameters. Other techniques that can sense ZTD can benefit from this
model for real-time PWV retrieval. Chkeir et al. [21] studied nowcasting extreme rain
and extreme wind speed with 3 ML techniques, namely, ANN, LSTM, and LSTM Encoder
Decoder (LSTM E/D), applied to different input datasets from ground-based weather
sensors, GNSS receivers, C-band radars, and lightning detectors. The analysis showed that
the LSTM E/D approach was suitable for the nowcasting of meteorological variables.

1.2. Contributions

Most of the aforementioned ML models focus on BP neural network and LSTM. BP
neural network refers to an adaptive nonlinear dynamic system with strong learning and
memory functions. However, it has the disadvantage of slow convergence speed and
easily falls into local optimum. LSTM can remember long and short-term information and
solves the problem of gradient disappearance and explosion during long sequence training;
however, it cannot be parallelized and is time consuming [31]. The shortcomings of the two
models limit their application ability in real-time high-precision regional ZTD modeling.
With the continuous development of real-time precision positioning technologies (e.g.,
real-time kinematic positioning (RTK), regional continuously-operating reference station
(CORS), real-time PPP (RT-PPP), and integer ambiguity resolution-enabled precise point
positioning (PPP-RTK)) and the frequent occurrence of extreme weather, the use of the ZTD
spatiotemporal information of regional GNSS monitoring stations for regional real-time
ZTD high-precision modeling has become a key technology for real-time precision posi-
tioning and short-term strong convective weather forecasting. The model will exhibit high
precision, spatiotemporal resolution, reliability, and timeliness. It can collect the current
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ZTD data of some regional GNSS monitoring stations to carry out ZTD spatiotemporal
modeling, provide regional atmospheric enhancement products for real-time precise posi-
tioning, offer short-term and imminent forecasting services for strong convective disaster
weather for seconds to hours, and support data bases for the study of mutual conversion
processes, such as condensation and evaporation of water vapor [33]. RBF has the char-
acteristics of high stability, fast convergence speed, and global approximation, and LSTM
has been widely used in ZTD modeling and short-term weather forecast. However, its
algorithmic effectiveness and optimization research in regional real-time ZTD modeling
applications are unsatisfactory. This paper attempts to improve them from the aspects of
modeling efficiency and modeling accuracy.

1.3. Organization

Overall, the proposal of a high-precision ZTD model based on ML algorithms suitable
for online modeling is expected, and the model accuracy is not affected by factors, such as
elevation. The remainder of the paper is summarized as follows. Section 2 uses the ZTD
data (5 min sampling interval) of 13 international GNSS service (IGS) stations in southern
California in the United States for 90 consecutive days. Given that the real-time meteoro-
logical parameters do not need to be inputted based on the three-dimensional coordinates
and time of the participating modeling stations as input, the RBF neural network assisted
by the K-means cluster algorithm (K-RBF) is used to construct a regional ZTD prediction
model. In addition, based on the single station ZTD non-full life cycle historical time series
data (few epochs), the single station ZTD prediction model is established by using the
LSTM of real-time parameter updating (R-LSTM). Finally, based on the two ZTD mod-
els, a regional/single-station ZTD prediction model combined with K-RBF and R-LSTM
(KR-RBF-LSTM) is proposed. Section 3 presents the modeling results of the three different
ZTD models. Section 4 discusses the modeling effect in terms of modeling efficiency and
accuracy. Section 5 presents the conclusion and mentions the limitations of this work and
future research direction.

2. Materials and Methods
2.1. Study Region and Datasets

The final ZTD data of 13 IGS monitoring stations in southern California are selected
(ftp://igs.gnsswhu.cn/pub/gps/products/troposphere/new, accessed on 11 December
2022). The plane position of the station and its elevation distribution are shown in
Figures 1 and 2, respectively. The data period is 90 days, that is, from 12 June 2021 to
9 September 2021. The day of the year (DOY) is from 163 to 252. The sampling interval is
5 min. The final ZTD data are used to simulate ZTD real-time or near real-time modeling.
In K-RBF modeling, in t epoch, the data of 12 stations are used for modeling, and the
remaining station data are used for accuracy verification. For R-LSTM modeling, for a
station on the i-th day, when the epoch t = 6, the data of the first five epochs at the day are
used for modeling, and the data of the current epoch t are used for accuracy verification.
When t > 6, the data of epoch t-1 are used for modeling, and the data of the current epoch t
are used for accuracy verification. KR-RBF-LSTM modeling is performed on the basis of
the two aforementioned modeling methods. The modeling results of the first five epochs of
each day are removed to compare the accuracy of different models. For 1 of the 13 stations,
283 epoch predicted data are involved in the statistical analysis of the model accuracy in a
day, and 25,470 epochs are involved in the accuracy statistics for 90 consecutive days.

ftp://igs.gnsswhu.cn/pub/gps/products/troposphere/new
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the needs of the problem. The conversion function of neurons in the hidden layer, namely, 
the RBF, is a non-negative linear function with radial symmetry and attenuation to the 
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Figure 1. IGS monitoring station distribution map. Note: The station names are BILL, CIT1, CMP9,
CRFP, HOLP, JPLM, LBCH, ROCK, SFDM, TAB1, TORP, TRAK, and WHC1, and their corresponding
station numbers are 1, 2, . . . , 13.
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2.2. Methods
2.2.1. K-Means Clustering-Assisted RBF Neural Network Region ZTD Modeling

RBF neural network is a three-layer feedforward network with a single hidden layer.
The first layer corresponds to the input layer, which is composed of signal source nodes.
The second layer is the hidden layer, and the number of nodes in this layer depends on
the needs of the problem. The conversion function of neurons in the hidden layer, namely,
the RBF, is a non-negative linear function with radial symmetry and attenuation to the
center point. The third layer is the output layer, which is the response to the input mode.
The basic idea is to use RBF as the “base” of the hidden unit to form the hidden layer
space. The hidden layer transforms the input vector and transforms the low-dimensional
input data into the high-dimensional space so that the linear indivisible problem in the
low-dimensional space can be linearly separable in the high-dimensional space.

For ZTD region modeling, the problems to be solved are presented as follows. Giving a
dataset D = {xi, zi}l

i=1 and assuming that the dataset is generated by an unknown function
z = f (x), a function as close to z = f (x) as possible is learned by the dataset D. For any
feasible kernel functions K(xi, xj), the function of the required solution can be expressed as:

f (x) =
l

∑
i=1

aiK(xi, xj) + b, (1)

where a is the parameter to be solved, and b is a constant.
From the sparse point of view, the RBF neural network adopts pruning ideas to achieve

sparsity. First, an unsupervised learning process is performed on the input in the training



Atmosphere 2023, 14, 303 7 of 22

data. A set of center vectors is selected in advance, and the number is less than the number
of the original data. Subsequently, all the training data are used to learn the weights in
Equation (1). The methods for selecting the RBF neural network center vector include
orthogonal least-squares method [34], clustering method [35], and K-SVD method [36]. In
the clustering method, not only the center vector can be determined, but also the sample
covariances that belong to a certain type of data can be used as the covariance of RBF. In this
paper, the K-means clustering method is used to obtain the center vector and covariance
matrix [37]. The following anisotropic covariance matrix is defined as the kernel function:

RBFj(x) = exp[−(x− ξ j)
TPj
−1(x− ξ j)], (2)

where ξ j and Pj represent the center vector and covariance matrix of the j-th RBF, which are
obtained by K-means clustering, respectively:

(1) Randomly select k objects, which indicate the initial centers of the k clusters to be
divided. The number of k can be preferred by the k-fold cross-check or bootstrap
method. In this paper, the value of k is selected as 1.

(2) Calculate the distance between each point and the center point and find the center
with the shortest distance as the new center point of each cluster.

(3) Calculate the average value (centroid) of all objects in each cluster as the new center
point of each cluster.

(4) Calculate the distance between all objects and the new k centers again and redistribute
all objects to each cluster according to the nearest distance principle.

(5) Repeat the above steps until all cluster centers remain unchanged (the distance be-
tween the newly generated cluster and the previous cluster is less than a set threshold).
This is the end of clustering.

After determining ξ j and Pj, the function model to be established becomes:

z =
k

∑
j=1

β jRBFj(x) =
k

∑
j=1

β j exp[−(x− ξ j)
TPj
−1(x− ξ j)], (3)

where β j represents the weight vector.
It can be written in the form of the following observation equation:

z + e = Bβ, (4)

where z represents the true value of ZTD, e denotes other unmodeled noises, and the l × m
matrix B is expressed as follows:

[B]i,j = exp[−(xi − ξ j)
TPj
−1(xi − ξ j)]. (5)

The m × 1 weight vector β in Equation (5) is estimated by using the least-squares
method [14]:

β = (BTB)
−1

BTz. (6)

The form of the observation equation can be seen as a trained estimator, that is, the
regional ZTD model. In practical applications, the estimator is trained by using the ZTD
data of the modeling station, and the corresponding ZTD can be estimated by inputting the
coordinates and time of the prediction station inside or outside the area.

The ZTD region modeling flow chart is shown in Figure 3:
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2.2.2. Real-Time Parameters Updating LSTM Single-Station ZTD Modeling

LSTM neural network is a variant of recursive neural network (RNN), and LSTM
expands its memory ability [38]. This feature enables LSTM to make ZTD prediction in an
environment where meteorological information with evident advantages, stronger feasi-
bility, and higher stability than the traditional ZTD acquisition method, such as Hopfield
model, cannot be obtained [21].

However, the traditional LSTM cannot reasonably use the online ZTD value derived
from GNSS techniques, such as PPP-RTK and RT-PPP. From the perspective of real-time
ZTD modeling, a single-station ZTD modeling method with R-LSTM is given. The LSTM
network refers to an online update mechanism for LSTM learning that minimizes the
cost function. It can establish a practical model with only a small number of non-full life
cycle samples (seconds to hours). The modeling idea is that: first, the reasonable use of
known historical data is necessary to establish the LSTM prediction model. Second, when
the actual online data are obtained, the corresponding prediction value can be achieved
using the selected prediction. The new data at the next epoch can be used as the actual
value of the prediction value. The error between the predicted value and the true value is
added to the overall error of the sample. Finally, the error minimization method is used
to update the model parameters iteratively. With the increasing use of online data, the
model’s accuracy increases over time by updating the loop parameters. This modeling idea
is more conducive to ZTD online modeling and prediction. The implementation steps of
the R-LSTM prediction algorithm are presented as follows:

Assuming that the actual time series is X(x1, x2, x3 . . . . . . xn), the improved LSTM
calculation steps are presented as follows:

(1) The actual time series X(x1, x2, . . . , xn) is extended to X


x1 x2 · · · xn−k+1
x2 x3 · · · xn−k+2
x3 x4 · · · xn−k+3

...
xk xk+1 · · · xn

,

where n is the time series length, k is the sample dimension, n – k + 1 is the number of
samples, and y = (xk, xk+1, · · · xn) is the training data label. X is normalized:

X =
xi√

xi
2 + xi+1

2 + · · ·+ xk+1
2
(i = 1, 2 · · · , n− k + 1), (7)
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(2) Initialize network parameters and set super parameters:

W f = rand(L, N)
b f = rand(1, N)

...
Error_Cost = M1
Max_iter = M2

, (8)

where W f and b f represent the initial weight and bias of the forgetting gate, respec-
tively. The symbol rand ( ) represents a random function; and L and N represent the
number of LSTM cell units and the number of neuron layers, respectively. Similarly,
the initial weights and biases of the input gate, the output gate, the cell state, Wi, bi,
Wc, bc, Wo, bo, and other parameters also need to be initialized. Error_Cost and Max
_ iter represent the error threshold and the maximum number of hyperparameter
iterations, respectively.

(3) Calculate what information needs to be forgotten from the cell state at time t – 1.{
ft = σ(W f · [ht−1, xt] + b f )

f̂t = ft ⊗ Ct−1
, (9)

where ft is the output of the forget gate. The symbol σ( ) represents a sigmoid
activation function. ht−1 is the output value of the LSTM at the previous moment. xt
is the input value of the network at the current moment. Ct−1 is the cell state at the
previous moment. The symbol ⊗ represents the point multiplication operation of the
two vectors.

(4) Calculate which input information can be left in the cell state at time t.
it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

ît = it ⊗ C̃t

, (10)

where it is the output of the input gate and determines what values will be updated.
The symbol tanh ( ) represents a hyperbolic tangent activation function. C̃t is a vector
of new candidate values created by the tanh function.

(5) Calculate the cell state Ct at time t.

Ct = f̂t + ît, (11)

where Ct is the result of the combined actions of the forget gate and the input gate on
the cell states in Equations (9) and (10).

(6) Calculate the network output at time t.{
ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊗ tanh(Ct)
, (12)

where ot is the output of the output gate. ht is the predicted value at the current
moment. Repeat Steps 3 to 6 to calculate the predicted values h of all training samples.

(7) Calculate the errors between the predicted values and the true values of all samples.

J(θ)(y, h; W, b) =
1
2
||y− h||2, (13)

where J ( ) represents the cost function. The minimum value of the function in
Equation (13), namely, the optimal solution error<Error_Cost, or the current number
of iterations iter > Max_iter, are considered. Thus, the training ends. Otherwise, the
BPTT algorithm is used to update the network parameters, and one is added to the
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number of iterations, and then the processing returns to Step 3 for circulation. It exits
the loop until the error threshold or maximum number of iterations is reached. The
following trained network parameters are saved:

θ0 = (W f , Wi, WC, Wo, C, h, b f , bi, bC, bo), (14)

(8) Update parameters in real time according to online observation data. The new sam-
ples, Xn+1(xn−k+2, · · · xn+1) and θ0, perform the forward operation of the LSTM
shown in Steps 3–6 to obtain the predicted value hn+1. When the data
Xn+2(xn−k+3, · · · xn+2) are collected, they can be used as the true value label of the
predicted value hn+1 to calculate the overall error:

error = error +
1
2
(hn+1 − xn+2)

2. (15)

Then, the BPTT algorithm is used to update the model parameters to θ1:

θ1 = (W f − λ× ∆W f , · · · , b f − λ× ∆b f ), (16)

where λ is the learning rate; and ∆W f and ∆b f are the gradient matrices and vectors
of the weights and biases of each layer of neurons, respectively. The parameter
initialization corresponds to the global optimal solution of the historical sample.
Hence, when the new sample is added, the global optimal solution can be achieved
again with only a few simple steps of updating.

The improved LSTM flow chart is shown in Figure 4:
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In addition, the model can be applied to the early warning of severe convective
weather. In Steps 6–8, when the predicted value of ZTD at the next sampling time reaches
the warning value of severe convective weather, the warning information is issued to
make emergency response in time. As a result, the economic losses to industrial and
agricultural production will be reduced, and the utilization rate of water resources will be
improved [39].
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2.2.3. Regional/Single Station ZTD Combination Model

Based on the regional and single station ZTD model above, the regional/single station
ZTD combination model is obtained by weighting:

Weighti
R = a, Weighti

S = b, (i = 1)

Weighti
R =

RMSE[1,i−1]
S

RMSE[1,i−1]
R +RMSE[1,i−1]

S

, (i = 2, 3, . . . , N)

Weighti
S =

RMSE[1,i−1]
R

RMSE[1,i−1]
R +RMSE[1,i−1]

S

, (i = 2, 3, . . . , N)

, (17)

where N is the total number of epochs. Weighti
R and Weghti

S represent the weights applied
to the ZTD predicted by the regional and single station ZTD models in the i-th epoch, respec-
tively. a and b represent the corresponding empirical weights, and a + b = 1. RMSE[1,i−1]

R

and RMSE[1,i−1]
S represent the RMSE of the i− 1 predicted values of the regional and single

station ZTD models before the i-th epoch, respectively.
The weights are gradually updated by comprehensively considering the new predicted

value weights of the two models in the prediction process and the error level of the predicted
values of the previous stage. According to the weighting scheme in Equation (18), the ZTD
that corresponds to the combined model in the i-th epoch is presented as:

ZTDi
C = ZTDi

R ×Weighti
R + ZTDi

S ×Weighti
S, (18)

where ZTDi
C, ZTDi

RandZTDi
S represent the ZTD prediction values of the combined model,

the regional model, and the single station model in the i-th epoch, respectively. ZTDi
C is

obtained by weighting the two other models.

2.2.4. Accuracy Evaluation Criteria

The RMSE, MAE, coefficient of determination (R2), and training time consumption
(TTC) are used as the evaluation indexes of prediction model accuracy and efficiency.
The computation is executed on a personal laptop with an Intel Core i7-10750H CPU at
2.60 GHz and with 16 GB of RAM. RMSE is used to measure the deviation between the
predicted value and the true value of the model. MAE corresponds to the average of
absolute error. No positive and negative offsets are observed because the deviation is
absolute. Hence, the actual situation of the predicted value error can be reflected better. R2,
also known as the goodness of fit in statistics, can measure the degree to which a variable
is explained by another variable. Its value is between 0 and 1, which determines the degree
of fitting among variables. The larger the value, the higher the correlation. TTC is used to
measure the modeling efficiency of the model, which is particularly important for real-time
modeling. The calculation formula of accuracy indicators, such as RMSE, MAE, and R2, are
presented as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi −Mi)
2, (19)

MAE =
1
N

N

∑
i=1
|Pi −Mi|, (20)

R2 =


N
∑

i=1
(Mi −M)(Pi − P)√

N
∑

i=1
(Mi −M)

2
(Pi − P)2


2

, (21)

where Mi and Pi are the true and predicted values on the test set, respectively. M and P are
the corresponding average values; and N is the number of predicted samples.
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3. Results
3.1. Regional Modeling Results

To verify the modeling accuracy and efficiency in the regional modeling, the modeling
effects of different amounts of modeling data are compared and analyzed. Two sets of
experiments were carried out. The first set of experiments (K-RBF-0) did not use historical
data in the modeling process. The second set of experiments (K-RBF-5) used the five nearest
consecutive epoch historical data in the modeling process. Figure 5 shows the accuracy
and efficiency statistics results of 13 stations of K-RBF model for 90 days.
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Figure 5. K-RBF model accuracy and efficiency statistics results of K-RBF-0, K-RBF-5 experiments.

3.2. Single Station Modeling Results

The relationship between the amount of historical data and the accuracy and efficiency
of modeling is analyzed using the conventional LSTM model as a reference to verify the
modeling accuracy and modeling efficiency for the single station modeling. Taking the
WHC1 station as an example, the ZTD data of the first 5, 12 × i (i = 1,2, . . . , 23) epochs of
each day are selected for modeling, and the ZTD of the current epoch is used for accuracy
verification. A total of 24 sets of experiments are recorded as Group1, Group2, . . . , Group24.
Figure 6 shows the accuracy statistics results of R-LSTM and LSTM models for the 24 groups
of experiments for 90 consecutive days. Figure 7 shows the true values, predicted values,
and the differences of both changes in the two models in the Group1 experiment.

3.3. Regional/Single Station Combination Modeling Results

To improve the real-time performance of modeling as much as possible, we select the
K-RBF-0 group experimental method in the K-RBF regional modeling and the Group1 group
experimental method in R-LSTM single station modeling for KR-RBF-STLM combined
modeling. Table 1 and Figure 8 show the accuracy and efficiency statistics results of
13 stations for the three models for 90 days. The distribution of the modeling errors of
various models is also compared and analyzed. Figure 9 shows the true values, predicted
values, and the differences in the changes in the three models at the CIT1, JPLM, LBCH,
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and TORP stations. Figure 10 shows the error distribution of the three models at 13 stations
for 90 days.
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Figure 6. Accuracy and efficiency statistics results of 24 groups of experiments of R−LSTM and
LSTM models.
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Station 

Number 

RMSE/mm 
Increasing 

Rate/% 
MAE/mm 

Increasing 

Rate/% 
R2 

Increasing 

Rate/% 
TTC/s 

Increasing 

Rate/% 

K-RBF/R-

LSTM/KR-RBF-

LSTM 

Imp1/Imp2 

K-RBF/R-

LSTM/KR-RBF-

LSTM 

Imp1/Imp2 

K-RBF/R-

LSTM/KR-RBF-

LSTM 

Imp1/Imp2 

K-RBF/R-

LSTM/KR-RBF-

LSTM 

Imp1/Imp2 

1 10.85/6.74/5.25  51.63/22.09 9.11/5.92/4.38  51.94/26.10 0.46/0.98/0.90  49.05/−8.18 5.31/0.18/5.49  −3.30/−96.70 
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6 7.73/6.28/4.62  40.28/26.52 6.39/5.50/3.79  40.59/31.05 0.60/0.97/0.89  32.81/−8.05 4.56/0.18/4.74  −3.77/−96.23 

7 7.50/5.73/3.85  48.65/32.82 6.25/4.92/3.23  48.28/34.33 0.68/0.98/0.95  27.86/−3.27 4.27/0.18/4.45  −4.05/−95.95 

8 8.48/5.85/4.23  50.04/27.63 6.98/5.05/3.52  49.53/30.26 0.61/0.98/0.93  34.27/−5.03 4.99/0.18/5.18  −3.54/−96.46 

9 11.15/6.11/4.62  58.56/24.37 9.27/5.22/3.86  58.36/26.05 0.50/0.98/0.93  46.79/−4.64 5.20/0.18/5.38  −3.30/−96.70 

10 9.55/6.23/5.15  46.03/17.22 7.90/5.56/4.19  46.98/24.69 0.48/0.97/0.86  44.23/−11.73 4.69/0.18/4.87  −3.68/−96.32 

11 6.08/5.89/3.77  38.02/35.98 4.89/5.13/3.16  35.51/38.48 0.75/0.98/0.94  20.18/−3.37 4.20/0.19/4.38  −4.28/−95.72 
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Figure 7. Variations in the true values, predicted values, and errors of the R-LSTM and LSTM
modeling in the Group1 experiment of WHC1 Station. Note: The data−free period in the figure is
caused by the absence of true value data in this period.
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Table 1. Statistical results of prediction accuracy and efficiency of K-RBF, R-LSTM, and KR-RBF-
STLM models.

Station
Number

RMSE/mm Increasing
Rate/% MAE/mm Increasing

Rate/% R2 Increasing
Rate/% TTC/s Increasing

Rate/%

K-RBF/R-
LSTM/KR-
RBF-LSTM

Imp1/Imp2
K-RBF/R-

LSTM/KR-
RBF-LSTM

Imp1/Imp2
K-RBF/R-

LSTM/KR-
RBF-LSTM

Imp1/Imp2
K-RBF/R-

LSTM/KR-
RBF-LSTM

Imp1/Imp2

1 10.85/6.74/5.25 51.63/22.09 9.11/5.92/4.38 51.94/26.10 0.46/0.98/0.90 49.05/−8.18 5.31/0.18/5.49 −3.30/−96.70
2 6.16/6.18/3.95 35.86/36.10 5.01/5.31/3.36 33.07/36.75 0.76/0.97/0.96 20.97/−1.80 5.26/0.18/5.44 −3.31/−96.69
3 8.07/5.74/4.29 46.83/25.28 6.46/4.98/3.49 45.95/29.85 0.61/0.98/0.92 33.72/−6.23 4.87/0.19/5.06 −3.70/−96.30
4 12.01/6.83/5.26 56.22/22.93 10.04/5.88/4.40 56.16/25.09 0.42/0.98/0.92 54.66/−6.00 4.46/0.18/4.63 −3.84/−96.16
5 7.01/5.96/3.74 46.72/37.35 5.77/5.09/3.13 45.80/38.59 0.75/0.98/0.96 22.02/−2.24 5.17/0.21/5.38 −3.88/−96.12
6 7.73/6.28/4.62 40.28/26.52 6.39/5.50/3.79 40.59/31.05 0.60/0.97/0.89 32.81/−8.05 4.56/0.18/4.74 −3.77/−96.23
7 7.50/5.73/3.85 48.65/32.82 6.25/4.92/3.23 48.28/34.33 0.68/0.98/0.95 27.86/−3.27 4.27/0.18/4.45 −4.05/−95.95
8 8.48/5.85/4.23 50.04/27.63 6.98/5.05/3.52 49.53/30.26 0.61/0.98/0.93 34.27/−5.03 4.99/0.18/5.18 −3.54/−96.46
9 11.15/6.11/4.62 58.56/24.37 9.27/5.22/3.86 58.36/26.05 0.50/0.98/0.93 46.79/−4.64 5.20/0.18/5.38 −3.30/−96.70
10 9.55/6.23/5.15 46.03/17.22 7.90/5.56/4.19 46.98/24.69 0.48/0.97/0.86 44.23/−11.73 4.69/0.18/4.87 −3.68/−96.32
11 6.08/5.89/3.77 38.02/35.98 4.89/5.13/3.16 35.51/38.48 0.75/0.98/0.94 20.18/−3.37 4.20/0.19/4.38 −4.28/−95.72
12 8.31/5.70/4.23 49.07/25.73 6.92/4.93/3.55 48.64/27.86 0.60/0.98/0.90 33.53/−7.74 4.58/0.19/4.76 −3.92/−96.08
13 5.66/6.15/3.81 32.57/37.98 4.55/5.32/3.22 29.19/39.51 0.78/0.97/0.95 18.46/−2.40 4.58/0.19/4.77 −3.90/−96.10

mean 8.35/6.11/4.37 47.70/28.48 6.89/5.29/3.64 47.20/31.29 0.61/0.98/0.92 33.51/−5.43 4.78/0.18/4.96 −3.71/−96.29
min 5.66/5.70/3.74 33.94/34.47 4.55/4.92/3.13 31.20/36.43 0.42/0.97/0.86 51.54/−11.73 4.20/0.18/4.38 −4.28/−95.94
max 12.01/6.83/5.26 56.22/22.93 10.04/5.92/4.40 56.16/25.68 0.78/0.98/0.96 19.10/−2.24 5.31/0.21/5.49 −3.30/−96.20

Note: (1) Imp1 and Imp2 refer to the modeling result increasing rate of KR−RBF−LSTM relative to K−RBF and
R−LSTM, respectively; (2) The predicted time consumption of all prediction models is within 0.02 s, with no
significant difference. Hence, it is not listed here.
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4. Discussion
4.1. Regional Modeling

Figures 1 and 5 suggest that:
(1) The mean, minimum (min), and maximum (max) of K-RBF-0 experiment are

slightly higher than those of K-RBF-5. RMSE, MEA, and R2 are improved by 5.43%, 15.66%,
1.04%, 5.26%, 16.57%, 0.61%, 5.67%, 1.92%, and 8.22%. The mean, min, and max of TTC
are greatly improved by 63.84%, 63.64%, and 64.49%, respectively. The main reason is that,
with the increment in sample data, the total calculation time of the distance between each
data and the center point in Equation (2) will increase. At the same time, the number of
K-means clustering is not optimized and adjusted, thereby increasing time and slightly
decreasing accuracy.

(2) The K-RBF-0 model has high accuracy and effectiveness. The means of RMSE,
MAE, and R2 are 8.35 mm, 6.89 mm, and 0.61. Therefore, this model can meet the real-time
forecasting needs for 4.78 s updates because the K-RBF model is simple, fast, robust, and
highly accurate.

(3) For the K-RBF modeling, the accuracy of each station has certain differences. The
distribution and density of the stations have a particular influence on the modeling accuracy.
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The accuracy of the station in the modeling area is higher than that outside the modeling
area. For example, the accuracies of CIT1 (2), CMP9 (3), HOLP (5), and JPLM (6) stations
are better than those of BILL (1), CRFP (4), SFDM (9), and TAB1 (10). The accuracy of the
station in the dense area of the modeling station is higher than that in the sparse areas, such
as TROP (11), TRAK (12) and BILL (1), and CRFP (4). Although they are all outside the
modeling area, the modeling accuracy of the first two stations is better than those of the
two latter stations because of the dense stations around the former. The main reason is that
ZTD has a certain correlation in space. The more uniform the distribution of stations is, the
higher the density is, and the higher the modeling accuracy is [40].

4.2. Single Station Modeling

Figures 6 and 7 illustrate that:
(1) The RMSE and MAE of the R-LSTM model increase first and then stabilize with

the increasing amounts of historical data. No significant increase was observed after the
numbers of historical epochs exceeded 36. The mean values of the RMSE and MAE in
Group3 to Group24 are 2.83 mm and 2.49 mm, respectively. R2 shows a slow downward
trend, that is, from 0.98 to 0.80. TTC shows a gradual upward trend in mean, min, and max,
which are equivalent to 2.02, 0.18, and 3.98 s, respectively.

(2) The RMSE, MAE, and TTC of the LSTM model show a gradual upward trend with
increasing amounts of historical data, and R2 shows a gradual upward trend and a slow
downward trend. When the number of historical epochs is 276, the RMSE and MAE are
optimal at 0.77 mm and 0.66 mm, respectively. However, R2 is slightly lower than that of
the previous group of experiment (Group23), and TTC is 56.44 times that of the R-LSTM
model. When the number of historical epochs is 192, the accuracy of the two models is
close, but the TTC difference is 56.81 times.

(3) When historical data are sufficient, the R-LSTM and LSTM prediction methods are
effective. However, when the historical data are insufficient, the LSTM prediction effect is
poor, and the R-LSTM method is still better. In the Group1 experiment (the experimental
results are shown in Figure 8), the RMSE, MAE, R2, and TTC of the R-LSTM model are
6.74 mm, 5.92 mm, 0.98, and 0.18 s, respectively. Compared with those of the LSTM model,
these values are improved by 67.43%, 66.42%, 63.33%, and 97.70%, respectively. The R-
LSTM model can predict the trend of ZTD, whereas the prediction results of the LSTM
model gradually changed linearly. For the epoch of dramatic changes in ZTD, such as the
3679th, 12,354th, and 21,489th epochs, the prediction results of R-LSTM are significantly
better. The main reason is that the training samples of the LSTM model are insufficient in
this case, and the parameters of the R-LSTM model can be updated in real time.

4.3. Regional/Single Station Combination Modeling

Table 1 and Figures 1, 2 and 8–10 show that:
(1) The mean, min, and max of the RMS, MAE, R2, and KR-RBF-LSTM relative to

K-RBF are improved by 47.70%, 33.94%, 56.22%, 47.72%, 31.20%, 56.16%, 33.51%, 51.54%,
and 19.10%; TTC is increased by 3.71%, 4.28%, and 3.30%. Compared with R-LSTM, the
mean, min, and max of RMS and MAE are improved by 28.48%, 34.47%, and 22.93%, as
well as 31.29%, 36.43%, and 25.68%, respectively. R2 is reduced by 5.43%, 11.73%, and
2.24%, and TTC is increased by 96.29%, 95.94%, and 96.20%. In general, the accuracy of
the KR-RBF-LSTM model is the best mainly because the combination model relates the
advantages of the two models. That is, K-RBF can consider the spatial correlation of the
stations, and R-LSTM can consider the temporal correlation of the stations. When the two
are combined, the spatial and temporal correlations can be considered. Specifically, this
advantage is more obvious in the epoch where the ZTD changes greatly. The R-LSTM model
has the best real-time performance. The main reason is that the parameters of the model
can be updated in real time and can quickly reach the global optimal state. Its training
samples are only five historical data of a certain station, whereas the training data of other
models are 2.40 or 3.40 times greater than that. Compared with the BP neural network
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model, the K-RBF model can avoid the problem of the unstable model and time-consuming
training due to the lack of training samples. It exhibits a certain improvement in terms of
accuracy and efficiency [24,41,42].

(2) The distribution of modeling stations will affect the K-RBF modeling effect to a
certain extent, and the influence on the KR-RBF-LSTM model weakens. No significant
difference is observed in the accuracy indicators of each R-LSTM station. The main reason
is that the ZTD has spatial and temporal correlations. The strength of spatial correlation
varies for the distribution of different stations. The regional model considers the spatial
correlation of stations, and the combined model further considers the time correlation of
stations. However, the influence of other stations is ignored in the single station model,
which is only related to the small amount of historical data of the station and the physical
change degree of the ZTD itself.

(3) The errors of the three models are subject to normal distribution, indicating that
the models established in this paper are reasonable. At the same time, the error distribution
of the KR-RBF-LSTM model is better than those of K-RBF and R-LSTM, and its standard
deviation (STD) is improved by 50.98% and 28.43%, respectively.

(4) Although ZTD and station elevation are correlated [20] and the elevation of some
stations in the study area fluctuates greatly, the prediction accuracy of the three models
does not show a strong correlation with the station elevation. The main reason is that the
K-RBF and KR-RBF-LSTM models consider the influence of elevation. The R-LSTM model
can gradually optimize and update the established model parameters according to the ZTD
data obtained at each epoch.

(5) The real-time/near real-time application of the three models can be selected accord-
ing to the user’s needs. Under the condition that no historical data are in the prediction
station, the real-time ZTD data of the regional monitoring station exist around it, and the
K-RBF model can be selected to provide high-precision ZTD enhancement products for
RTK, PPP-RTK, and other positioning modes. Under the condition that the prediction
station has a small amount of historical data (which can be obtained by empirical model),
but no ZTD data of regional monitoring stations are around it, the R-LSTM model can be
selected to improve the prediction accuracy of real-time PPP-based ZTD and serve the
extreme weather forecast. KR-RBF-LSTM model can be used to meet the needs of RTK,
real-time PPP, PPP-RTK, and other high-precision real-time positioning modes under the
condition that the prediction station has a small amount of historical data and real-time
ZTD data of regional monitoring station around it. Specifically, in a short time (such as
within 2 min), the demand for mm-level positioning accuracy in the elevation direction,
such as mining subsidence monitoring, is urgent.

5. Conclusions

A regional/single station ZTD combination prediction model is proposed, aiming at
the problem that the traditional BP neural network modeling is inefficient and has local
optimum and that the traditional LSTM modeling cannot effectively use the data of a
non-full life cycle to establish an excellent ZTD prediction model and cannot reasonably
use the online data. The model considers the ZTD spatiotemporal information and applies
algorithms of the RBF neural network based on K-means clustering and LSTM with real-
time parameter updating. The model mainly solves the problem of online modeling and
model correction of small sample data in regional real-time/near real-time ZTD modeling.
Taking the ZTD data of 13 IGS stations in Southern California for 90 consecutive days as an
example (5 min sampling interval), the prediction performance of the proposed combined
model in regional real-time ZTD modeling is verified. Compared with K-RBF, the RMSE,
MAE, and STD of KR-RBF-LSTM are improved by 47.70%, 47.20%, and 50.98%, respectively.
Compared with R-LSTM, the RMSE, MAE, and STD are improved by 24.48%, 31.29%, and
28.43%, respectively. Compared with the traditional BP model, the accuracy and efficiency
of K-RBF exhibited a certain improvement. Compared with LSTM, the RMSE and MAE of
R-LSTM are improved by 66.43% and 66.42%, respectively.
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The research results of this paper have high reference values for PPP-RTK, RT-PPP,
RTK, and extreme weather forecasting based on regional atmospheric enhancement prod-
ucts. Based on the current work, we can perform further research in the future. First, the
ZTD prediction value of the model with better historical RMSE performance is weighted
higher, and the ZTD prediction value of the combined model may not necessarily take the
optimal value. If the weight in the combined model is adaptively adjusted by using the
relevant optimization algorithm, then the prediction accuracy and stability of the model
can be improved further. Second, the accuracy and efficiency of the regional and single
station models are further improved by optimizing the K-means algorithm and by seeking
more effective R-LSTM parameter optimization methods. Third, due to the lack of clear
physical mechanism of artificial intelligence algorithms, such as that in this paper, the
research on the dynamic change and formation mechanism of atmospheric water vapor
is strengthened. From the perspective of meteorology, hydrology, geography, and other
disciplines, the prediction model is established on the basis of strict physical causes. It is the
focus of extreme weather forecast and climate change research to serve the response and
feedback of carbon, nitrogen, and water cycle to climate change and other multidisciplinary
scientific research.
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Abbreviations

GNSS Global navigation satellite system
GPS Global positioning system
ZTD Zenith tropospheric delay
ZHD Zenith hydrostatic delay
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ZWD Zenith wet delay
BP Back propagation
LSTM Long short-term memory
LSTM E/D Long short-term memory encoder decoder
RBF Radial basis function
K-RBF RBF neural network assisted by the K-means cluster algorithm
R-LSTM LSTM of real-time parameter updating
KR-RBF-LSTM K-RBF and R-LSTM
RMSE Root-mean-square error
STD Standard deviation
MAE Mean absolute error
MAPE Mean absolute percentage error
R2 Coefficient of determination
TTC Training time consumption
PWV Precipitable water vapor
NWP Numerical weather prediction
ML Machine learning
ANFIS Adaptive network-based fuzzy inference system
ANN Artificial neural network
LSSVM Least-squares support vector machine
PCA Principal component analysis
ICA Independent component analysis
GGOS Global geodetic observing system
CNN Convolutional neural network
KNN K-nearest neighbor
GP Gaussian processes
ERA5 Fifth-generation European Center for Medium-range Weather Forecast reanalysis
PPP Precision point positioning
RT-PPP Real-time precision point positioning
RTK Real-time kinematic positioning
CORS Continuously-operating reference station
PPP-RTK Integer ambiguity resolution-enabled precise point positioning
IGS International GNSS Service
DOY Day of the year
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