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Abstract: Short-term fluctuations in air temperature, called the daily temperature range (DTR), or
its daily amplitude, have a strong impact on ecosystems, as well as on the health and well-being of
people. The pronounced effect of DTR on mortality from all causes and especially on cardiovascular
mortality is well documented in the scientific literature, but little is known about spatial, inter-annual,
and inter-seasonal fluctuations of DTR in the Russian Far East (RFE), an area with high annual
dynamics of air temperature. Data from 99 weather stations for the period from 2000 to 2019 was
used to evaluate spatial and temporal DTR patterns at the RFE. A higher DTR, up to 16 ◦C in Toko on
the border with Sakha (Yakutia) as a mean for the entire period, is typical for continental areas further
to the north. Lower values are observed at continental weather stations in the south and in coastal
climates (4.7 ◦C in Mys Alevina, Magadan Region). In general, a distinct seasonal change in DTR
was found for continental locations with a significant difference from month to month throughout
the year. On the annual cycle, the maximum DTR at the continental northern stations is observed in
April and June–July, and at the continental southern areas in February; the minimum DTR is shown
in November and December. The DTR ranges as much as from 6 ◦C in December to 17 ◦C in April
in the continental Korkodon in the far north. Locations with a marine climate are characterized
by a smoothed seasonal change in DTR, with obvious peaks in February–March and October, and
a minimum in July–August. The downward trend in DTR for the period from 2000 to 2019, up
to −0.7 ◦C in coastal Bolsheretsk, is based on a faster increase in the minimum daily temperature
compared to the maximum, which is typical for most weather stations at the RFE and is known
worldwide as a diurnal asymmetry of global warming. At the same time, an increase in the daily
amplitude of air temperature (up to +0.6 ◦C in continental Dolinovka) was found for some localities,
associated with a higher positive trend of maximum temperatures, which contradicts global patterns.

Keywords: air temperature; diurnal temperature range; spatial and temporal dynamics; Russian
Far East

1. Introduction

Climate change includes two main types of fluctuations that negatively affect hu-
man health, as follows: both general progressive warming and increased variability and,
accordingly, unpredictability in weather conditions, provoking excessive mortality and mor-
bidity [1–4]. In recent years, many papers have appeared indicating that sudden changes in
air temperature during the day negatively affect human health in general, and vulnerable
groups in the population in particular [4–7]. Among other types of fluctuations, the daily
dynamics of air temperature play an important role in the formation of and changes in
health and, thus, understanding how quickly and sharply air temperature varies during
the day, and how it affects the shifts in the human body’s organs and systems, primarily
cardiovascular and respiratory [4,6,8–10].

First, not only do the dynamics of minimum, mean, and maximum air temperatures,
but also their amplitude, or difference between maximum and minimum values of one
day, reflects the degree of the climate thermal comfort, and affect ecosystems as a whole,

Atmosphere 2023, 14, 41. https://doi.org/10.3390/atmos14010041 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14010041
https://doi.org/10.3390/atmos14010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-7811-7853
https://doi.org/10.3390/atmos14010041
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14010041?type=check_update&version=1


Atmosphere 2023, 14, 41 2 of 17

including human society [4,11–15]. The change in air temperature over the course of a day
is called the diurnal temperature range (DTR) and, based on findings from epidemiological
studies, is harmful for humans, as the higher DTR, the more often adverse health effects are
detected. It is well known that the impact of DTR on mortality, morbidity, or emergency
department visits depends on many factors. First, there is the value of the temperature
range by itself [16,17], with an effect depending on a geographical location and varying
across climatic zones [6,17–20]. It is shown that an increase in DTR of 10 ◦C leads to a
growth in mortality risk of 3.1%, and up to 6% in countries with warmer climates, which is
very harmful to people [17]. Second, seasonality is found to be important for DTR, which
means the change in the DTR influence on humans from season to season [20,21]. e.g.,
seasonal effect in Virginia, USA, is expressed in both DTR and emergency room admissions,
with their higher correlation during the cold season in comparison with warm [8], which is
consistent with other finding for cardiovascular outcomes for mortality [22] and emergency
visits [23] in China.

As a first step before estimating the effect of short-term temperature changes on
human health and well-being, we need to learn more about them and their temporal
fluctuations and trends, both seasonally and in a long-term perspective, based on past
and future data. Many papers are devoted to regional and global patterns in dynamics of
DTR [13,16,24–32] and their associations with surface temperature variability [25,28,32,33].
Currently, it is well documented that the reflection of changes in mean air temperature
alone is not enough when discussing the impact of temperature variability and variations
on living systems on a global and regional scale. That is why DTR has been given a
significant focus in many regions all around the globe, considered as a vitally important
climatic parameter [34,35]. These findings are based on data from surface [24–26,30,32,33]
and satellite [28,31] observations, providing insights at the extremes and into the ongoing
changes. The highest DTR of 71 ◦C, depending on the season, was observed in the Lut
desert in Iran; the highest record of 81.8 ◦C was shown for a desert environment in China,
which both are considered the hottest places on Earth [28,31].

While both minimum (Tmin) and maximum (Tmax) daily temperatures are shown
to become higher in conjunction with a global warming trend, asymmetry in their pat-
terns is found for most areas worldwide, indicating a more rapid increase in Tmin rather
than Tmax [4,12,13,24–26,32]. In turn, the faster nighttime warming effect leads to overall
decreasing trends in DTR [12,13,24,26,27,32,34].

Despite the huge amount of evidence of the recent dynamics in short-term changes
in air temperature globally, little is known about these variations in Russia as a whole,
and its regional aspects, in particular [36–39]. The Russian Far East (RFE) is a region with
a monsoon influence located in the temperate to sub-arctic climates, and is known for
its abrupt weather changes, especially in the maritime coastal line close to the seas and
ocean. Among them, Khabarovsk and Vladivostok are regional capitals at the RFE, and
are the two largest cities with populations of more than 600 thousand people each. The
purpose of the current research is to study the spatial and temporal patterns of DTR as a
short-term variation in air temperature in the Russian Far East as a case study. The main
research questions are as follows: Are there any differences in DTR between maritime and
coastal climates, located in the south or north of the study area? What are the seasonal
fluctuations in DTR? How and why does DTR change during the study period, taking into
account the trends of Tmin and Tmax? In Section 2, materials and methods are described.
Section 3 provides the results of the calculations, with separate subsections, as follows:
Section 3.1 is devoted to the spatial patterns of DTR; Section 3.2 goes deeply into the
intra-annual variations of DTR; temporal changes in Tmin, Tmax, and DTR through the
study period are shown in Section 3.3. Section 4, Discussion, highlights the progress
of the results, looks closely on the reasons for temporary changes in DTR (Section 4.1),
underlines regional patterns of DTR at the RFE and possible causes of asymmetrical
changes in DTR, emphasizes the importance of comparing DTR with day-to-day short-term
fluctuations in air temperature (Section 4.3), and discusses the limitations of the current
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study and plans for future research. Concluding comments with main findings are given in
Section 5, Conclusions.

2. Materials and Methods
2.1. Study Area and Data

The Russian Far East (RFE) is a vast area at the far-eastern edge of Russia bordering at
the south with China, which is climatically influenced by both the Asian continent and the
Pacific Ocean and the adjacent seas. It is washed by the Arctic Ocean at the north. Due to
this location, the RFE has a monsoon climate with obvious seasonal changes in prevailing
winds and precipitation extremes, according to Alisov climatic classification [40–42]. Dur-
ing winter monsoons, the prevailing dry and cold winds blow from north-west; reversely,
during summer, very wet and moist winds are directed mainly from the south-east, drop-
ping up to 80% of yearly precipitation [38,39]. The study region is situated in temperate
to subarctic and arctic latitudes and has warm summer continental to subarctic and arctic
climates according to the Köppen–Geiger climatic classification [43,44].

The study area at the RFE includes eight regions of the Far Eastern Federal District
(FEFD) of Russia, shown in Figure 1. The regions are as follows: Amur, Jewish Autonomous,
Magadan and Sakhalin Regions; Primorsky, Khabarovsky, and Kamchatsky Krai; and
Chukotsky Autonomous Okrug (Chukotka). The Republic Sakha (Yakutia), Republic of
Buryatia, and Zabaikalsky Krai, which are three more regions of the FEFD further west,
have a different climate and are excluded from our research. As a whole, this sparsely
populated area has nearly 3.2 million people. The main cities and towns are located at the
southern outskirts near the border with China, as well as at the shorelines and at the banks
of the large rivers. Khabarovsk and Vladivostok are the largest cities in the southern part of
the RFE (Figure 1) and capital cities of the FEFD. Khabarovsk is the capital of Khabarovsky
Krai, with a population of 613,000 people (1 January 2022). Vladivostok is the capital of
Primorsky Krai, with a population of nearly 600,000 people (1 January 2022).

Daily weather data are minimum (Tmin), mean (Tmean), and maximum (Tmax) air
temperature for 99 weather stations at the RFE for the 20 year period from 1 January 2000
to 31 December 2019 from the website of the World Data Center in Obninsk [45] were used.
This temporal period was taken as coinciding with the period of available health data, as
a future research step. Mean daily temperature for each weather station is calculated as
average of eight 3 h observations in a day; the minimum and maximum temperatures are
defined at weather stations using special thermometers.

2.2. Methods

The DTR, or the amplitude of daily air temperature as the difference between max-
imum and minimum temperatures at each day (DTR = Tmax − Tmin), and their spatial
and temporal intra- and inter-annual aspects and dynamics were studied. The data are
processed statistically to derive period means, standard deviations, extremes, and trends.
Monthly values were calculated by averaging daily data for each month, and annual means
were obtained through yearly average of monthly values. To test the significance of corre-
lations and trends, the Mann–Kendall nonparametric method was used with a threshold
probability (P) for statistical significance equal to 0.05 [46,47].
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Figure 1. The Far Eastern Federal District (FEFD) of Russia, showing all regions of the study area, 
as follows: 1—Chukotsky Autonomous Okrug (Chukotka); 2—Magadan Region; 3—Khabarovsky 
Krai; 4—Amur Region; 5—Jewish Autonomous Region; 6—Primorsky Krai; 7—Kamchatsky Krai; 
8—Sakhalin Region. The capital cities of the FEFD are as follows: Khabarovsk (2002–2018) and 
Vladivostok (2018–present). Black dots show the location of weather stations. 
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Figure 1. The Far Eastern Federal District (FEFD) of Russia, showing all regions of the study area,
as follows: 1—Chukotsky Autonomous Okrug (Chukotka); 2—Magadan Region; 3—Khabarovsky
Krai; 4—Amur Region; 5—Jewish Autonomous Region; 6—Primorsky Krai; 7—Kamchatsky Krai;
8—Sakhalin Region. The capital cities of the FEFD are as follows: Khabarovsk (2002–2018) and
Vladivostok (2018–present). Black dots show the location of weather stations.

3. Results
3.1. Tmin, Tmean, Tmax and Diurnal Temperature Range: Spatial Differences

While mean annual air temperature ranges from −10.4 ◦C at the north in Omolon,
the lowest mean annual value at the study area is +6.8 ◦C in the southernmost Posyet;
the highest mean annual air temperature counts as +2.8 ◦C in Khabarovsk and +5.2 ◦C in
Vladivostok. In January temperatures are much more diverse, as follows: −37.1 ◦C,−8.5 ◦C,
−19.2 ◦C and −11.9 ◦C in Omolon, Posyet, Khabarovsk, and Vladivostok, respectively.
The summer temperature regime is more homogenous, with monthly values of +15.2 ◦C
in Omolon, +22.4 ◦C in Posyet, +21.4 ◦C in Khabarovsk, and +20.0 ◦C in Vladivostok,
but shifting the highest temperature from July in continental Omolon and Khabarovsk to
August in the maritime climates of Posyet and Vladivostok. The yearly statistics based
on data for a period from 2000 to 2019, with daily minimum, mean, and maximum air
temperature and DTR, are shown in Table 1.
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Table 1. Yearly statistics of minimum (Tmin), mean (Tmean), and maximum (Tmax) air temperature,
and diurnal temperature range (DTR), ◦C, for the locales at the Russian Far East, 2000–2019.

Tmin Tmean Tmax DTR

Omolon (65◦14′ N, 160◦33′ E)

Mean 1 −16.0 −10.4 −5.0 11.0

Min −61.1 −57.5 −53.2 0.8

Max 17.5 25.1 34.0 40.6

SD 17.50 17.68 17.92 4.57

Posyet (42◦40′ N, 130◦48′ E)

Mean 3.5 6.8 11.7 8.2

Min −23.9 −21.2 −18.1 0.6

Max 25.0 28.7 35.3 26.7

SD 9.78 9.54 9.66 2.66

Khabarovsk (48◦31′ N, 135◦10′ E)

Mean −1.2 +2.8 +7.7 9.3

Min −40.0 −34.4 −27.5 1.0

Max +25.9 +30.6 +36.4 23.9

SD 12.98 13.39 14.10 2.80

Vladivostok (43◦80′ N, 131◦90′ E)

Mean +2.4 +5.2 +9.3 6.9

Min −27.2 −24.5 −21.8 0.7

Max +23.4 +26.8 +32.8 19.3

SD 10.13 10.01 10.12 2.23
1 Mean, Min, and Max indicate mean, minimum, and maximum daily values for the whole period, respectively;
SD is standard deviation.

The influence of latitude, as well as of both the Asian continent and the large water
bodies, namely the East Siberian and Chukchi Seas of the Arctic Ocean, and the Bering,
Okhotsk, and Japanese Seas of the Pacific Ocean, are obviously expressed in all air temper-
atures; maximum daily temperatures are much hotter, and minimum daily temperatures
are much colder in the continental climates of Omolon and Khabarovsk in comparison to
maritime Vladivostok and Posyet, located further to the south. As expected, mean DTR and
its maximum values are higher in Omolon (11.0 and 40.6 ◦C, respectively) and Khabarovsk
(9.3 and 23.9 ◦C, respectively) in comparison to Vladivostok (6.9 and 19.3 ◦C, respectively).
The highest DTR is calculated for Toko (16.2 ◦C), located at the border with Sakha (Yakutia);
the lowest is found in Mys Alevina (4.7 ◦C), Magadan Region. As a whole, the mean DTR
for continental locations at the RFE is 13.8 ◦C, and for coastal weather stations it is 8.2 ◦C.

Figure 2 provides details of the relationship between DTR and both latitude and
longitude, separately for continental and maritime weather stations. While DTR ranges
from 9 to 16 ◦C at continental weather stations (Figure 2A,B), it has much lower values at
the coastal locations, varying from 4 to 11 ◦C (Figure 2C,D). No obvious dependence of
DTR from latitude and longitude was found, which is confirmed by a low coefficient of
regression and an almost complete absence of the slope of the black solid lines. Figure 3
shows this relationship for the southern part of the RFE, and here the dependence is higher
in comparison to the entire study area, both for continental and maritime zones; thus, the
further north, or deeper into the continent and further from the coastline, the stronger
the relationship of DTR with latitude (Figure 3A,C) and longitude (Figure 3B,D). The
highest dependence is shown for the relationship between DTR and longitude at locations
with maritime climates (Figure 3D); since in this part of the RFE the coastline runs from
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southwest to northeast, an increase in longitude along the seashore means rapid DTR
growth from south to north.
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Figure 2. Scatterplots of diurnal temperature range (DTR) vs. latitude (A,C) and longitude (B,D) for
locations in the Russian Far East for the period 2000–2019; (A,B) continental weather stations, (C,D)
maritime weather stations. Black solid line is plotted as the least-square linear regression.
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Figure 3. Scatterplots of diurnal temperature range (DTR) vs. latitude (A,C) and longitude (B,D)
for locations at the southern part of the Russian Far East for the period 2000–2019; (A,B) continental
weather stations, (C,D) maritime weather stations. Black solid line is plotted as the least-square
linear regression.
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3.2. Intra-Annual Temporal Dynamics of DTR

The intra-annual changes in DTR have a large variety, with differences between maxi-
mum and minimum monthly DTR during the year ranging from 0.6 ◦C in Bering Island to
10.4 ◦C in Korkodon, both located further to the north in maritime and continental climates,
respectively. As a whole, the difference is higher for continental locales in comparison
to those near the shoreline. In the course of the year, the maximum DTR is detected in
February–March for many continental weather stations, switching to April–May for some
locations in the north, and with the second peak in September–October. Minimum values
are found in both January, for almost all locations, and in July–August at southern weather
stations. The coastal area in the south shows an obvious annual course with the minimum
in July and two peaks in February and October. Figure 4 gives a thorough picture for several
locations at the RFE, showing monthly changes in DTR at continental weather stations
vs. coastal, and northern locations vs. southern. The DTR peak in April for continental
locations in the north (Figure 4A) is probably due to the rapid spring increase in daytime
temperature (Tmax) compared to nighttime temperature (Tmin), which is very obvious at
the continent, and cannot be detected near the sea line (Figure 4C). The DTR drop in May
(Figure 4A) may be caused by the continued seasonal warming and an increase in both
Tmax and Tmin.
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Figure 4. Intra-annual fluctuations of DTR from January to December in several locations in the RFE;
continental (A,B), coastal (C,D); northern (A,C), southern (B,D).

Figure 5 shows the details for Khabarovsk vs. Vladivostok, as follows: in continental
Khabarovsk, DTR ranges from 7.0 to 11.7 ◦C, in comparison to coastal Vladivostok, where
DTR seasonally changes from 5.5 to 8.0 ◦C. At both weather stations, maximums are found
in spring, specifically in May, but with a much higher value in Khabarovsk; minimum DTR
are recorded in December–January for Khabarovsk and in summer for Vladivostok. The
second peak in DTR in a yearly course is observed in autumn, in September for Khabarovsk
(10.2 ◦C) and in October for Vladivostok (7.1 ◦C). These patterns can be explained by the
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different effects of monsoons throughout the year in continental and coastal areas [38,39].
The cold and relatively stable weather caused by winter monsoons changes in spring. The
higher variations in DTR are found in May, due to the transfer of the monsoon from the
winter stage to the summer. The summer monsoon behaves differently in two locations;
during all summer months, DTR is relatively low in coastal Vladivostok in comparison to
continental Khabarovsk. In Vladivostok, cool and changeable weather in June is replaced
by very stable warm and hot temperatures in the period from July to August (Figure 5).
In autumn, the monsoon moves again from the summer stage to the winter, but with a
delay in Vladivostok due to the influence of the Pacific Ocean; the October peak for DTR
in Vladivostok is comparable to September in Khabarovsk [40]. Figure 5 shows details
of intra-annual DTR changes for the capital cities of Khabarovsk and Vladivostok. Not
only the monthly DTR, but also its day-to-day variations are the highest in spring–early
summer; the values of the standard deviation reach a maximum in the period from April to
June in Khabarovsk, and in June in Vladivostok.
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3.3. Tmin, Tmax and DTR: Results for Inter-Annual Temporal Dynamics

Temporal dynamics of all daily temperatures, including minimum, mean, and maxi-
mum, as well as DTR, for the weather stations at the RFE during the study period from
2000 to 2019 demonstrate different trends. Mean daily temperatures, Tmean, show a de-
creasing trend where slope changes from near zero at the south up to 1.25 ◦C per 10 years
in the northern coastal Anadyr in Chukotka (Figure 6). A high positive trend is shown for
Tmin for Anadyr, with a slope of 1.35 ◦C per 10 years, and in continental northern Nelkan
(1.13 ◦C per 10 years). The Tmax trend can be as high as 1.14 ◦C per 10 years for Anadyr
and 0.97 ◦C per 10 years for continental Markovo in Chukotka (Figure 6). As a whole,
higher dynamics are demonstrated for the northern areas.

While all temperatures are rising with spatial and temporal variations, DTR trends are
found as being positive, negative, or near zero. The DTR decrease is found for those weather
stations, where minimum temperature increase goes quicker than for maximum, and vice
versa; a positive trend for DTR dynamics is shown at weather stations where the maximum
daily temperature warms faster than the minimum. The highest rate is found for continental
Nelkan with a slope of −0.47 ◦C per 10 years (Figure 6) and coastal Bolshoy Shantar
(–0.30 ◦C per 10 years) in Khabarovsky Krai, and coastal Bolsheretsk (–0.36 ◦C per 10 years)
in Kamchatka. Continentally located Dolinovka in Kamchatka demonstrates the DTR with
the highest positive trend of 0.30 ◦C per 10 years (Figure 6).
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Figure 6. Temporal dynamics of minimum, mean, maximum air temperatures, and DTR, for several
weather stations at the RFE during the study period from 2000 to 2019. Black solid lines show the
linear trend of the correspondent series.

Table 2 provides details for dynamics at some weather stations, where trends are
significant according to the Mann–Kendall test at the 0.05 level [46,47]. One exception is
shown in Table 1, with a non-significant trend for the southern coastal weather station of
Rudnaya Pristan in Primorsky Krai, where Tmax shows a decreasing trend with a slope of
−0.12 ◦C per 10 years. The reasons behind should be addressed additionally, emphasizing
the fact that all temperature changes have their regionally specific spatial patterns, which
can differ from the global trends.
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Table 2. Temporal trends (◦C per 10 years) of daily temperatures for some continental and coastal
locations at the Russian Far East, where trends are significant according to the Mann–Kendall test at
the 0.05 level, 2000–2019.

Weather Station/Trend Tmin Tmean Tmax DTR

Continental
Korcodon 0.76 0.85 0.80 0.11
Omolon 0.68 0.83 0.82 0.14
Markovo 0.77 0.94 0.97 0.19
Nelkan 1.13 0.86 0.67 −0.47
Norsk 0.66 0.66 0.62 −0.04
Bogorodskoye 0.43 0.38 0.39 −0.06
Nizhnetambovskoe 0.72 0.54 0.33 −0.28
Bomnak 0.20 0.24 0.15 −0.05
Skovorodino 0.66 0.54 0.84 0.15
Dzhalina 0.33 0.38 0.46 0.13
Talon 0.39 0.54 0.67 0.28
Blagoveshchensk 0.18 0.28 0.18 0.00
Arkhara 0.06 0.08 0.26 0.20
Ekaterino-Nickolskoye 0.05 0.25 0.29 0.24
Khabarovsk 0.38 0.34 0.19 −0.20
Lermontovka 0.37 0.34 0.22 −0.17
Esso 0.31 0.43 0.49 0.15
Kluchi 0.57 0.68 0.70 0.11
Dolinovka 0.17 0.37 0.48 0.30
Nachiki 0.44 0.48 0.43 −0.04
Sosnovka 0.26 0.26 0.41 0.13
Pogranichnyi 0.20 0.27 0.17 −0.03
Sviyagino 0.23 0.42 0.30 −0.06
Timiryazevo 0.62 0.53 0.41 −0.21
Tymovskoye 0.67 0.68 0.68 0.01

Coastal
Bering Island 0.38 0.43 0.48 0.11
Ust-Khairusovo 0.40 0.55 0.58 0.17
Bolsheretsk 0.55 0.41 0.20 −0.36
Petrpavlovsk-Kamchatsky 0.70 0.77 0.94 0.24
Petropavlovsky Mayak 0.25 0.32 0.38 0.12
Anadyr 1.35 1.25 1.14 −0.19
Ola 0.64 0.73 0.62 −0.02
Alevino 0.77 0.78 0.70 −0.08
Magadan 0.62 0.71 0.82 0.20
Okhotsk 0.57 0.53 0.51 −0.04
Ayan 0.34 0.35 0.31 −0.04
Bolshoy Shantar 0.36 0.60 0.65 −0.30
Dzhana 0.34 0.31 0.21 −0.12
Nickolaevsk-on-Amur 0.25 0.49 0.46 0.19
Dzhaore 0.65 0.57 0.40 −0.25
Rudnaya Pristan 0.16 0.07 −0.12 −0.28
Vladivostok 0.37 0.31 0.19 −0.17
Moskalvo 0.30 0.45 0.49 0.18
Nogliki 0.41 0.45 0.56 0.16
Aleksandrovsk-Sakhalinskyi 0.55 0.50 0.41 −0.14
Uglegorsk 0.25 0.25 0.26 0.00
Poronaysk 0.27 0.37 0.43 0.16
Ilyinskoe 0.30 0.20 0.19 −0.12
Nevelsk 0.41 0.26 0.21 −0.20
Yuzhno-Sakhalinsk 0.32 0.41 0.37 −0.05
Yuzhno-Kurilsk 0.40 0.36 0.31 −0.08
Kurilsk 0.53 0.39 0.29 −0.22
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Figure 7 shows the dynamics of all temperatures, including DTR, in Khabarovsk and
Vladivostok in the cause of the study period. Despite variations in temperatures due to
climatic differences between the two cities (continental vs. maritime), as shown in Table 1,
their temporal dynamics are very similar, expressing that their locations are under the
same influence of global trends. All temperatures are rising with slightly different speeds.
In Vladivostok, a decrease in DTR by 0.17 ◦C in 10 years is caused by a higher warming
trend (0.37 ◦C in 10 years) of night (minimum) temperatures in comparison to the daytime
(maximum) values (0.19 ◦C in 10 years).
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Figure 7. Temporal dynamics of minimum, mean, maximum air temperatures, and DTR, in capital
cities of the RFE: Khabarovsk (A) and Vladivostok (B), during the study period from 2000 to 2019.
Black solid lines show the linear trend of the correspondent series.

4. Discussion

The short-term fluctuation of air temperature named as diurnal temperature range
(DTR) is an important driver for many natural processes, including the health of humans
and environment as a whole. The current study attempts to investigate the character of
DTR in the Russian Far East, an area known for its large temperature extremes [48], and
recent changes in the DTR on an intra- and inter-annual scale, using data from 99 weather
stations for the period from 2000 to 2019. The DTR ranges from 8.2 ◦C at maritime locations
to 13.1 ◦C at continental climates, with extremely high DTR in Toko (16.2 ◦C) located at the
border with Sakha (Yakutia), and the lowest DTR in Mys Alevina (4.7 ◦C), in the coastal part
of the Magadan Region. Our results are consistent with findings for continental locations
in the USA, where DTR was shown to be near 13.5 ◦C [24], and with those who defined
smaller DTR in coastal locations in comparison to continental locations [32,49,50]. Our
study shows the dependence of DTR from both latitude and longitude, which is expressed
more evidently at the southern part of the RFE; the further from the water bodies inside the
continent, or the further from the south to the east, the higher the DTR.

The DTR changes significantly from month to month, with a high variability across the
study area; the lowest intra-annual dynamics were found to be 0.6 ◦C in Bering Island, and
the highest change of 10.4 ◦C was found in continental Korkodon. Two regions with more or
less clearly homogeneous patterns are found. At the continental far-north weather stations,
DTR is at its maximum in May, a period of the most expressed changes in the incoming
solar radiation and, consequently, daily variability of air temperature; DTR lowers down to
December with extremely cold temperatures throughout the whole day. At the coastal far-
south locations, temperature range within the day is lowest in summer in July, and peaks
at both ends of winter, namely the beginning of spring in February–March, and in autumn
in October. The minimum summertime DTR was also found at the southern continental
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locations. Low DTR in summer in southern areas of the RFE can lead to problems for people
and their health, minimizing the possibility of night cooling relief during heat waves [38].

The DTR as a range of air temperature during the day is extremely sensible to minor
fluctuations in both Tmin and Tmax. Our study shows the decreasing trend for DTR during
the study period due to the higher increasing rate of minimum daily temperatures in com-
parison with maximum values, which is consistent with the findings of many researchers
for other regions worldwide, where an almost twice higher increasing rate was found for
Tmin vs. Tmax [27,32,51–54]. At the same time, several locations in our study demonstrate
the increase in DTR due to the faster increase in the afternoon (Tmax) daily temperatures
over the night (Tmin) data. Meanwhile, we found some studies conducted on a regional
scale for the tropics and subtropics with the same DTR increasing trends [30,55,56]. Further
research is needed to discover any regularity in these spatial patterns.

Some limitations of our research should be mentioned. We were restricted by the me-
teorological data availability, which was obtained from fixed weather stations to represent
the correct exposure on local level. Unfortunately, the vast area of the Russian Far East is
rarely covered by the meteorological network, and much data needs intensive corrections
and, therefore, cannot be used. Other considerations can also be highlighted with regard to
DTR, as follows: the main drivers of temporal changes in diurnal temperature range, both
intra- and interannual, must be determined, and it must be determined if it is connected
with other short-term fluctuations in air temperature.

4.1. DTR Temporal Dynamics: Reasons behind

Although the intra- and inter-annual changes in diurnal temperature range are easy to
calculate, it is not simple to understand the physical reasons behind this phenomenon. The
DTR variations are found to be influenced by different natural and anthropogenic factors
with geographic and atmospheric natures, such cloud cover, soil moisture, precipitation,
greenhouse gases, duration of sunshine, and solar radiation [51,53]. Some researchers show
that the main reasons or drivers of DTR change can be low clouds and fog, which moderate
the diurnal temperature range through radiative effects [14]. On a seasonal scale, DTR
demonstrates a significant negative correlation with cloudiness and precipitation [29]. A
negative correlation between the DTR and total cloud cover indicates that the decrease in
DTR can be caused by an increase in cloud cover [32].

Cloud cover and precipitation modulate surface energy and hydrological balance,
causing DTR reduction [27,51,53]. Contrariwise, precipitation can reduce Tmax and, hence,
DTR, due to daytime evaporative cooling [57]. Seasonal variation in global radiation could
be attributed to the changes in humidity, air pressure, air temperature, etc. [Ismail 2022];
for example, its decrease in daytime may be caused by a long rainy season with heavy
clouds [58,59]. Indeed, these findings indicate a close relationship between the trends in
DTR and a preset feedback path for specific seasons and/or geographical locations [57,60].

4.2. Asymmetric Changes in Diurnal Temperature Range: Causes and Challenges

It is well documented that the global warming trend expresses itself in both Tmin and
Tmax increases. Asymmetry in their structure is found for most areas around the world,
highlighting a faster increase in Tmin compared to Tmax [4,12,13,24–26,32], which leads to
general trends of DTR decrease [12,13,24,26,27,32,34]. Our research shows the same tenden-
cies for most of the locations, with an up to −0.36 ◦C per 10 year decreasing trend in coastal
Bolsheretsk, located in Kamchatka, as the highest value. Doan and coauthors [61] empha-
sized that the future warmer climate may be responsible for an increase in daytime clouds,
which, in turn leads to a decrease in incoming shortwave radiation and daily ‘underwarm-
ing’ and, finally, to a decrease in DTR by about 0.5 ◦C in mid-latitudes [61]. This asymmetric
warming caused by variations in precipitation [62–64] and solar radiation [61,62] has a dif-
ferent effect on the greenness of vegetation, which has been shown in temperate China [62].
However, our results demonstrate positive DTR trends at many weather stations, both
continental and coastal, with higher maximum daily temperature ranges compared to daily
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minimum temperature change. For example, DTR trend is positive in Talon (+0.28 ◦C),
Ekaterino-Nikolskoe (+0.24 ◦C), which are in the continental north and south, respectively,
in Dolinovka (+0.30 ◦C) in continental Kamchatka, or in coastal Magadan in the north
(+0.20 ◦C). A literature review indicates that the same patterns in Tmin, Tmax, and DTR
increase for Lafia, Nasarawa State, in Nigeria [65]. Further research with more intensive
study is needed to find the reasons for such a diversity in regional trends at the RFE.

4.3. Diurnal Temperature Range vs. Temperature Change between Neighboring Days or Both:
Which Is More Dangerous for Human Health?

We know a lot about the influence of sharp short-term air temperature fluctuations in
air temperature during the day on the health and well-being of humans and the environ-
ment as a whole. At the same time, a crucial effect is shown by many researchers for the re-
lationship between day-to-day dynamics of air temperature and human health [5,7,66–71].
The effect of temperature change between neighboring days (TCN) on human health de-
pends on the sign of the change (temperature rise or drop) and can be modified by seasonal
variations, which was shown, as an example, for emergency room visits associated with
cardiovascular disease in Beijing, China [72]. Furthermore, only a few studies were found
evaluating and comparing the effect of two types of short-term temperature change metrics
on human health, both DTR and TCN, where young, female, and elderly patients are
the most vulnerable groups of the population [73–77]. Wang et al. [23] demonstrated for
China that not only an increased risk of emergency room visits but also their high seasonal
variations are associated with exposure to a higher DTR and TCN. Furthermore, DTR and
TCN were found to have a statistically significant positive correlation with an increased risk
of non-accidental mortality in Shenzhen, with greater susceptibility in cold seasons [78].
Some researchers highlighted the higher effect of DTR, e.g., on asthma-related emergency
department visits in Seoul, Korea [74] or at cardiac arrest in Hokkaido, Japan [76] while
others showed a better correlation of TCN with the health outcomes, e.g., with tuberculosis
incidence in Hefei, China [77]. The exact mechanism underlying these processes remains
unclear. Some evidence suggests that exposure to a higher DTR as difference between
daytime and nighttime air temperature leads to an increase in heart rate, blood pressure,
and oxygen uptake, exacerbating stress on the heart and lower respiratory tract [76]. Con-
founding factors, such as professional and socioeconomic status, may distort the true links
between short-term temperature change and human health [77]. More research is needed to
find out if these two temperature metrics, DTR and TCN, are interconnected, and which of
these two short-term changes in air temperature, or both together with a synergistic effect,
is more dangerous for people and their health. Future studies should focus on factors affect-
ing the individual level and examine specific patterns of the impact of temperature changes
on human health. In particular, the effect of short-term fluctuations of air temperature
on non-accidental and cause-specific mortality can be the next step in our estimations, in
order to identify vulnerable populations that mainly suffer from short-term fluctuations in
air temperature and, ultimately, to provide a theoretical basis for governments to develop
early warning programs with correct and timely protective procedures.

5. Conclusions

The diurnal temperature range (DTR) for different weather stations over the study
area in the Russian Far East differs not just in value but also in rate, both decreasing and
increasing, as well as in intra-annual changes. Continental weather stations show different
patterns depending on northern or southern locations; they all have higher DTR and intra-
and inter-annual dynamics in comparison with coastal areas but differ from month to month.
The highest DTR in northern continental areas is shown for April and June–July, steadily
decreasing to autumn, with the minimum in winter during the period from November until
January, and in May. In all southern locations, both continental and coastal, DTR is high
in February and low in summer, but have a second peak in autumn in maritime climates.
While the time series of maximum and minimum air temperature can help to comprehend
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the trends in DTR, additional analysis is necessary in upcoming research to assess in detail
the various reasons behind the spatial and temporal variations of the DTR trend, as well as
their effect on human health in the periods with high DTR, especially in shoulder seasons
of spring and autumn. A subsequent joined analysis of both daily temperature amplitude
and day-to-day dynamics of weather on the one hand, and the public health indicators,
on the other, is necessary to recognize patterns of such a relationship. Further research is
needed to identify vulnerable populations that mainly suffer from short-term fluctuations
in air temperature to provide a theoretical basis for local governments to develop early
warning programs with proper and timely protective procedures.
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