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Abstract: The human population is increasing. The ongoing urbanization process, in conjunction
with climate change, is causing larger environmental footprints. Consequently, quality of life in
urban systems worldwide is under immense pressure. Here, the seasonal characteristics of Maribor’s
urban thermal environment were studied from the perspectives of surface urban heat island (SUHI)
and urban heat island (UHI) A remote sensing thermal imagery time series and in-situ measurements
(stationary and mobile) were combined with select geospatial predictor variables to model this
atmospheric phenomenon in its most intensive season (summer). Finally, CMIP6 climate change
scenarios and models were considered, to predict future UHI intensity. Results indicate that Maribor’s
UHI intensity maximum shifted from winter to spring and summer. The implemented generalized
additive model (GAM) underestimates UHI intensity in some built-up parts of the study area and
overestimates UHI intensity in green vegetated areas. However, by the end of the century, UHI
magnitude could increase by more than 60% in the southern industrial part of the city. Such studies
are of particular concern, in regards to the increasing frequency of heat waves due to climate change,
which further increases the (already present) heat stress in cities across the globe.

Keywords: GAM; CMIP6; UHI; urbanization; SUHI; summer heat stress

1. Introduction

Nowadays, cities are the dominant habitats of the human species. In 2000, about 47%
of people lived in urban systems [1]. This proportion increased to 55% by 2018 and could
reach 60% by 2030 [1]. By then, it is expected that 44% of the world’s population will live in
cities of at least half a million inhabitants [1]. With urban area expansion, artificial materials
(concrete, asphalt, tiles, metals etc.) replace natural vegetation [2]. Urban construction
thus causes a change in surface albedo, emissivity, and heat capacity [3]. As a result, a net
influx of heat into the urban atmosphere is detectable [4], which is further potentiated by
anthropogenic activities [5] in which heat is released (heating, industry, and transport) [6].
This evident positive air temperature anomaly between urban and rural areas is the urban
heat island (UHI) [7]. UHI is considered one of the most problematic consequences of rapid
urbanization [7]. It can cause health issues [5] and decrease productivity [8], especially
during increasingly frequent, climate change-related heat wave events [9].

To measure and evaluate UHI intensity, two methodological approaches prevail.
Larger metropolitan areas and mid-size cities require thermal remote sensing data and,
thus, cloudless meteorological conditions, in order to study the surface urban heat island
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(SUHI), which is a land surface temperature (LST) derivate [10–13]. In smaller cities,
seasonal- and weather-independent “in-situ” air temperature measurements (stationary or
mobile) can be applied, which is a major advantage [14–16]. However, the annual (seasonal)
UHI intensity regime and the surface urban heat island (SUHI) have been the subjects
of several previous studies. From the SUHI perspective, Bechtel et al. [17] found that, in
some US coastal cities (San Francisco, Los Angeles, and San Diego), the highest SUHI
intensity can be expected in the spring months and the lowest in late summer, while in
cities such as Fresno and Sacramento, SUHI intensity peaks in September and October. In
contrast, cities in semi-arid environments (Phoenix) actually experience, in summer and
fall, lower surface temperatures than the surrounding countryside owing to irrigation (the
urban cold island phenomenon). Pongrácz et al. [18] studied surface thermal properties
of several European cities (Munich, Milan, Warsaw, and Budapest) and concluded that
the most intense SUHIs develop during the day in the summer (June and July). From the
UHI perspective, Zhou et al. [19] reported that London’s UHI intensity peaks around the
summer solstice, while the highest temperatures in the city are usually reached in late July
and early August. The same UHI intensity seasonal pattern was observed in Kumagaya
city (Japan), but with significantly higher temperature differences at night [20].

All these findings prove that urban system thermal environments are complex, dy-
namic, and unique. However, there is still a lack of studies considering future climate
change conditions on the UHI phenomenon. We sought to bridge this gap and, thus,
linked the two methodological procedures (UHI and SUHI) with the currently available
CMIP6 climate change scenarios and global climate models, to predict UHI intensity in
the second largest city in Slovenia (Maribor). More precisely, we addressed the following
research questions: (a) how dynamic is the UHI phenomenon in Maribor from the seasonal
perspective, and did it change? (b) Can geospatial predictors explain Maribor’s summer
UHI intensity pattern? Finally, (c) will climate change affect UHI intensity in small urban
systems with dispersed green areas and water bodies?

2. Materials and Methods
2.1. Study Area

Maribor lies at the conjunction of the pre-Alpine and Pannonian areas of northeastern
Slovenia (Figure 1a), along the river Drava. The city, with 95.767 inhabitants today [21],
flourished in the middle of the 19th century, when the first industrial plants were built in
connection with the construction of the railway network program between Vienna (AUT)
and Trieste (ITA). Soon, other industries began to develop, but experienced a decline after
the breakup of Yugoslavia in 1991. Today, Maribor is attempting to create its identity in
the service economic sector and as a university center for northeastern Slovenia. The city
has experienced accelerated population growth and spatial development since the 1960s,
mainly owing to intensive rural immigration. The built-up part spread to the south, west,
and east, occupying former farmland. Today, several parks (Mestni park, Trg Borisa Kidriča,
Slomškov trg, Magdalenski park) and two forest areas (Stražun and Betnavski gozd) are
still preserved (Figure 1b). Moreover, the river Drava divides Maribor into two parts, with
a riverbed up to 160 m wide; it is thus an important local climate modifier [22].

2.2. Seasonal SUHI Characteristics

Surface thermal properties are among the main contributors to the UHI phenomenon.
In order to capture seasonal Land Surface Temperature (LST) variability in the study area,
22 LANDSAT 8 cloud free satellite images (5 in winter (December, January, February),
spring (March, April, May), and summer (June, July, August), and 7 in autumn (September,
October, November)) between 2013 and 2020 were obtained from the EarthExplorer web
platform [23] (path = 190, row = 28; scene center time between 10 and 10:25 am GTM).
Both thermal channels (band 10 and 11) were initially converted to at-satellite brightness
temperature (in ◦C) by applying TerrSet2020’s Landsat algorithm [24] and were later
averaged. Seasonal mean values of the resulting LST variable were calculated in the next
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step. Finally, we were able to estimate SUHI intensity according to the land use/land
cover categories of the Urban Atlas (UA) 2018 database, provided by the Copernicus web
platform [25]. The category Pastures (code 23000) served as the reference.

Atmosphere 2021, 12, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. The geographic position of the study area (a); stationary measurements (blue dots, 1 = the 
medieval city center (Industrial, commercial, public, military, and private units); 2 = the Melje in-
dustrial zone (Industrial, commercial, public, military, and private units); 3 = green urban area 
Mestni park (Green urban areas); 4 = the Tezno industrial zone (Industrial, commercial, public, mil-
itary, and private units); 5 = Stražun forest (Forests); 6 = rural background (Arable land)), and the 
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Figure 1. The geographic position of the study area (a); stationary measurements (blue dots, 1 = the
medieval city center (Industrial, commercial, public, military, and private units); 2 = the Melje
industrial zone (Industrial, commercial, public, military, and private units); 3 = green urban area
Mestni park (Green urban areas); 4 = the Tezno industrial zone (Industrial, commercial, public,
military, and private units); 5 = Stražun forest (Forests); 6 = rural background (Arable land)), and the
mobile measurement route (red lines) (b).

2.3. Seasonal UHI Characteristics

These two datasets (SUHI intensity and UA) were the basis for placing 6 HOBO
MX2302A temperature and moisture loggers (accuracy = +/− 0.2 ◦C and +/− 2.5% RH),
in Davis radiation shields, in different local climate zones [26] of the city. We covered 4 UA
categories (arable land (1), forests (1), green urban areas (1) and industrial, commercial,
public, military, and private units (3, considering the build-up area gradient)) (Figure 1b).
All sensors were installed at 3 m height on an azimuth of 180◦ after preliminary testing
of possible differences concerning the standard meteorological measurement height (2 m).
A key reason for choosing a non-standard height was protection against vandalism. Air
temperature and relative humidity data were recorded at half-hour intervals. The measure-
ments began on 10 September, 2019. Thus, this study considers 659 measurement days and
all four seasons (spring, summer, autumn, and winter). Fixed loggers provided at-point
thermal boundary layer atmospheric conditions in different parts (local climate zones)
of the city, but we were still lacking spatial information about the UHI phenomenon. To
bridge this gap, mobile air temperature measurements were performed in summer 2020
and 2021, with an IoT MF-300 temperature datalogger (GPS position accuracy = +/− 2 m;
GPS velocity accuracy = 0.1 m/s; GPS center frequency = 1575 +/− 3 MHz; temperature ac-
curacy = +/− 0.3 ◦C; temperature resolution = 0.1 ◦C; acquired at www.pileus.si, accessed
on 1 September, 2019). Its –165 dBm tracking sensitivity extends positioning coverage into
places such as urban canyons and dense foliage environments, where GPS usage was not
previously possible. The datalogger’s air temperature sensor was installed on a vehicle
radio antenna (50 cm high) and was additionally protected with a small Davis radiation
shield. Data were recorded each second (Figure 1b). Because of the road network structure,
at certain points, such as road traffic lights, air temperature measurements were repeated.
To filter out this noise (repeated air temperature records), a Python-based software was
developed, which considered the exact time of the measurement and its direct spatial
vicinity. Thus, other data errors were removed as well. Moreover, we measured air tem-
perature differences, based on our stationary measurements approximately at the time
when they reached the maximum value above urban structure (16:00 local time; started at
15:30, and finished at 17:00). Consequently, the mobile measurement time interval did not

www.pileus.si
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disrupt the results since differences in temperature records between the start and end of the
measurement were statistically insignificant and, thus, ignored in further analysis. Because
only temperature differences were analyzed, the ventilation effect (and traffic load) due to
car movement (average speed = 40 km/h) was also disregarded. Altogether, 22 summer
measurement days (90.444 air temperature records) were analyzed in different weather
conditions/types (anti-cyclonic, cyclonic, and advective).

2.4. UHI Modeling

These mobile air temperature difference measurements enabled the development
of the dependent variable summer UHI intensity (UHIi) in Maribor. To do so, a 300 m
grid was designed in the ArcGIS environment [27] and laid over the entire study area.
Next, the average air temperature for each quadrate/polygon covering the measuring
route was calculated. Quadrates/polygons with less than 30 air temperature records were
ignored. The Zonal statistics algorithm then enabled air temperature data extrapolation
to UA categories. UHIi was calculated by subtracting the mean temperature value of the
Pastures category (code 23000) from all other categories (as in the case of SUHI intensity).
Finally, 10 random points per UA category (190 in total) were generated to operate with the
point data, properly fit predictive models, and evaluate potential climate change impacts
on Maribor UHI intensity.

To explain and model the detected UHIi geospatial pattern, the predictor variables per
UA category were then produced: summer SUHI intensity (SUHIi), southness (= sinAspect)
(sness), summer NDVI (NDVI), distance to water bodies (d2wb), building volume (bv), high
vegetation volume (hvegv), and summer daily mean air temperature (June, July, August)
(tas_summer). The predictor SUHIi was designed in the initial step as the product of
LADSAT-based LST in reference to the Pastures category of the UA. The explanatory vari-
able sness (a linearized form of the aspect variable where azimuth values are transformed
into an index reaching values between −1 (northern slopes) and 1 (southern slopes)) was
calculated in the ArcGIS environment from a LIDAR-based digital terrain model with
a 1 m horizontal resolution, provided by the Slovenian Environmental Agency, which
operates under the Ministry of the Environment and Spatial Planning [28]. Mean NDVI
values per UA category were obtained by processing (Band 8—Band 4/Band8 + Band4)
a Sentinel 2A satellite image (8 August, 2020) gathered from the Copernicus Open Ac-
cess Hub [29]. Water bodies were extracted from the national land use database, which
is freely available on the web platform owned by the Ministry of Agriculture, Forestry,
and Food [30]. To transform this categorical variable, the Euclidean distance algorithm
was applied in the ArcGIS environment [27]. Two databases were used to prepare the bv
predictor. The above-mentioned LIDAR point cloud and the National register of build-
ings (a digital vector database), provided by the Ministry of Infrastructure and Spatial
Planning [31]. A normalized digital surface model (nDSM) was calculated by considering
the difference between first and ground returns. The National register of buildings was
then used to calculate building volume per UA category. A similar approach was used
to calculate high vegetation (tree) volume (hvegv). Vegetation cover was determined with
NDVI and additionally validated with LIDAR cloud data classification (low, medium, or
high vegetation). The tas summer predictor was developed for four time windows (current
(1981–2011), 2011–2040, 2041–2070 and 2071–2100), two climate change scenarios (ssp370
(level of forcing = 7.0 W/m2 in 2100) and ssp585 (level of forcing = 8.5 W/m2 in 2100))
and five global climate models (GCMs) (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR,
MRI-ESM2-0, UKESM1-0-LL), as provided by the CHELSA V2—CMIP6 database (spatial
resolution = 30 arc seconds) [32]. To simplify modeling procedures, we used the tas_summer
ensemble mean value from five models per future time window.

These predictors were finally checked for possible multicollinearity (Pearson’s correla-
tion coefficient > 0.5 or < −0.5) and later used to model Maribor’s summer UHI intensity
in current and future climate conditions. A generalized additive model (GAM) [33–36]
was calibrated in the R statistical environment [37] by applying the mgcv package [38].



Atmosphere 2021, 12, 1159 5 of 14

GAMs provide a structure for generalizing a general linear model by allowing additiv-
ity of non-linear functions of the variables [39]. The advantage of GAM is to limit the
error in prediction of a dependent variable from various distributions by assessing un-
specific functions, which are connected by means of a link function with the dependent
variable [40]. Thus, our GAM model adequacy was tested with a generalized linear model
(GLM) algorithm with the same predictors and designed with the Rcmdr package [41].
However, to additionally assure GAM model quality, its standardized residuals (over-
and under-predictions) were tested for normal distribution and spatial autocorrelation
(Moran’s I) in the ArcGIS environment [27]. After properly specifying the GAM model, the
predict function within the mgcv package enabled future UHIi estimation by considering
GCMs-based tas_summer values in time windows 2011–2040, 2041–2070, and 2071–2100,
and emission scenarios ssp370 and ssp585.

2.5. Modeling Limitations

Since we sought to evaluate how future thermal conditions could influence the ex-
isting summer UHI pattern in Maribor, only the tas_summer variable was changed in the
future climate change scenarios being considered. Of course, other UHI predictors will sub-
stantially change in the future and could alter the existing spatial pattern either positively
or negatively. Higher air temperatures could potentially even decrease UHI intensity, espe-
cially in colder conditions (winter, spring, autumn). However, land use [42–44] and surface
spectral change studies [45], as well as demographic trends [44,46] provided evidence that
Maribor’s urban structure will not be particularly dynamic in the future. This fact excuses
our consideration of all remaining UHI intensity predictors (bv, d2wb, NDVI, sness, SUHIi,
hvegv) as temporarily stable. Moreover, we decided to use such an approach to illustrate
possible outcomes in the current city structure if no climate change adaptation and mitiga-
tion actions are implemented. In order to improve the climate change-related UHI pattern
change estimation, city development plans should be integrated. This information could
be used to prepare future estimates for several of these UHI predictors (i.e., bv, d2wb, NDVI,
and hvegv) and, thus, produce even more accurate results.

3. Results
3.1. The Seasonal SUHI Intensity Footprint

The spatiotemporal analysis of the LST variable revealed that Maribor’s SUHI inten-
sity pattern was most homogeneous and least pronounced in winter (Figure 2). The Tezno
industrial zone in the SE part of the city and the southern-exposed surroundings occu-
pied by vineyards (Mariborske gorice) on the northern built-up edge, stand out from the
reference areas. Temperature differences between other land use categories were smaller
(Figure 3). In spring, the SUHI intensity footprint increases and diversifies. Positive surface
temperature anomalies were evident in the industrial zones of Tezno (SE part) and Melje
(E part), in Studenci (W part), and in the shopping center area with associated parking
lots. Negative deviations were observed along the river Drava and the corresponding
hydroelectric canal, and in all closed forest areas (Stražun (E part), Betnavski gozd (S part),
and Limbuška Dobrava (W part)). All of the smaller hot spots that had been identified in
the spring were amalgamated in the summer. SUHI intensity increased up to 12 ◦C. All
three industrial areas and the medieval center generated high levels of summer heat stress.
Fortunately, the river Drava and other green urban areas create a large surface temperature
contrast and, thus, break down the otherwise uniform SUHI footprint. In autumn, SUHI
intensity decreases and simplifies. The spatial pattern is similar to that formed in spring.
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3.2. SUHI Intensity and Land Use

In the summer, the highest surface temperature differences compared to the reference
UA category (pastures) occurred on continuous urban fabric areas (sealing level (SL) > 80%)
(by 4.0 ◦C), on industrial, commercial, public, and military surfaces (by 3.7 ◦C), on railways,
and associated land (by 3.3 ◦C) (Figure 3). Surface temperatures were lower on water
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surfaces (by 2.6 ◦C), in forest areas (by 1.8 ◦C), and for isolated structures (by 0.2 ◦C). A
similar, but less intensive, pattern was observed in the spring and autumn. In winter, the
highest positive deviations in LST occurred in the category permanent crops (represented
mainly by vineyards) (by 0.5 ◦C). These are located on the steep southern slopes in the hilly
surroundings of the city (Mariborske gorice). In contrast, forest areas, water bodies, arable
land, and green urban areas were significantly cooler than pastures in winter.

3.3. UHI Seasonal Dynamics

Remotely sensed data revealed the seasonal surface thermal pattern of the study area.
Based on these findings, atmospheric thermal conditions were captured in different local
climate zones (four UA categories (arable land, forests, green urban areas and industrial,
commercial, public, military, and private units)). Figure 4 summarizes the seasonal de-
velopment of the UHI phenomenon in Maribor. The two-way ANOVA analysis and the
corresponding Tukey post-hoc test (p < α; α = 0.05) additionally confirmed significant
differences in UHI intensity between seasons and UA categories (local climate zones).
However, the largest differences in daily mean air temperature were evident in summer.
The Stražun forest was clearly cooler than the reference surface (arable land in the city
background), followed by the Mestni park green urban area, which was occasionally even
hotter. Instead, all three built-up surfaces (the Melje industrial zone, the medieval city
center, and the Tezno industrial zone) were significantly hotter than the rural surroundings.
The same pattern was observed throughout the year, in spring and summer, with UHI
intensity extremes occurring mainly in spring.
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Figure 4. UHI intensity by season and UA category (local climate zone). 1 = the medieval city center
(Industrial, commercial, public, military, and private units), 2 = the Melje industrial zone (Industrial,
commercial, public, military, and private units), 3 = green urban area Mestni park (Green urban
areas), 4 = the Tezno industrial zone (Industrial, commercial, public, military, and private units),
5 = Stražun forest (Forests).

3.4. The Summer UHI Model

Both the perspectives on Maribor’s thermal environment (SUHI and UHI) indicated
that citizens were exposed to extreme heat stress, particularly in summer. Thus, the focus
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of the research was turned to the summer season UHI. A GAM predictive model was
designed by considering several explanatory variables known for their impacts (linear or
non-linear) on the UHI phenomenon. Table 1 shows that all the given predictors met the
basic criteria, since correlation coefficients were within the −0.5 and +0.5 margin. However,
low variance inflation factors (VIF < 3) additionally excused further use of these predictors
in the modeling procedure.

Table 1. Predictor variable correlation matrix (Pearson’s correlation coefficients).

Variable bv d2wb NDVI sness SUHIi tas_summer hvegv

bv 1 0.13 −0.26 0.01 0.4 0.09 0.32
d2wb 0.13 1 0.22 0.12 0.3 −0.11 0.12
NDVI −0.26 0.22 1 0.36 −0.3 −0.39 −0.03
sness 0.01 0.12 0.36 1 0.25 −0.08 0.02
SUHIi 0.4 0.3 −0.3 0.25 1 0.42 0.11

tas_summer 0.09 −0.11 −0.39 −0.08 0.42 1 0.08
hvegv 0.32 0.12 −0.03 0.02 0.11 0.08 1

The GAM approach fitted with seven predictor variables yielded 82.4% of explained
deviance (Table 2). All predictors, except tas_summer, had a statistically significant impact
(p < α; α = 0.05) on the summer UHIi pattern. However, we kept the tas_summer predictor
in the model, since it described current (and in predict mode, future) summer daily mean
air temperatures in the study area. Four predictors (SUHIi, sness, NDVI, and d2wb) were
non-linearly related to the dependent variable (edf > 1). The scale estimate (residual
standard error squared = 0.013) indicated good predictive power for the designed UHIi
GAM model.

Table 2. GAM summary table.

Model: UHIi ~ s(SUHIi) + s(sness) + s(NDVI) + s(d2wb) + s(bv) + s(hvegv) +s(tas_summer)
Parametric coefficients:

Estimate Std. Error tvalue Pr (>|t|)
(Intercept) 0.356884 0.008359 42.7 <2 × 10−16 ***

Approximate significance of smooth terms:

edf Ref. df F p-value

s(SUHIi) 5.547 6.736 29.566 <2 × 10−16 ***
s(sness) 7.782 8.545 3.938 <2 × 10−16 ***
s(NDVI) 7.029 7.855 7.058 <2 × 10−16 ***
s(d2wb) 2.506 3.123 5.863 0.000707 ***

s(bv) 1 1 18.101 0.0000356 ***
s(hvegv) 3.301 3.703 20.386 <2 × 10−16 ***

s(tas_summer) 1 1 0.661 0.41751

R-sq. (adj) = 0.793
Deviance explained = 82.4%
V = 0.015682
Scale est. = 0.013275
n = 190

Significance codes: < 0.0001 ‘***’.

Nonetheless, we additionally tested its quality by comparing it against a GLM ap-
proach, which assumes that all explanatory variables are linearly related with the given
dependent variable (Table 3). The analysis of deviance, based on χ2 statistics, revealed that
Maribor’s UHIi can be better modeled by applying a GAM (p < α; α = 0.05). However,
before reaching any conclusions, standardized residuals were tested for possible spatial
autocorrelation. The insignificant Moran’s I index (p > α; α = 0.05) proved that model
over- and under-predictions were normally distributed and free of spatial autocorrelation
(Figure 5). In other words, the model was properly specified without missing predictor
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variables. Moreover, Figure 5 indicates that major over-predictions are linked to the rural
surroundings of the city, whereas under-predictions relate to the urban structure.

Table 3. Analysis of Deviance summary.

Model 1: UHIi ~ SUHIi + sness + NDVI + d2wb + bv + hvegv + tas_summer
Model 2: UHIi ~ s(SUHIi) + s(sness) + s(NDVI) + s(d2wb) + s(bv) + s(hvegv) + s(tas_summer)

Residual Df Residual
Deviance Df Deviance Pr (>Chi)

Model 1 182 5.8691
Model 2 160.83 2.135 21.166 3.734 <2.2 × 10−16 ***

Significance codes: < 0.0001 ‘***’.
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Finally, the developed GAM, the predict function in the mgcv package and the pre-
pared climate scenario tas_summer predictor enabled future UHIi estimation in Maribor.
Figure 6 illustrates the potential difference in UHIi concerning global emission scenarios
ssp370 and ssp585. The four time windows under consideration (current (1981–2010),
2011–2040, 2041–2070, and 2071–2100) indicate a gradual increase in UHIi. Some possible
improvements in summer UHIi are predicted only in the first half of the century (mainly
under ssp370 conditions). The second half could potentially bring up to a 60% (>0.5 ◦C)
UHIi increase, in particular in the southern industrial part of the city. However, differences
between emission scenarios are evident (Figure 6).
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4. Discussion

Ensuring high quality of life in urban systems is becoming increasingly difficult. In
the last half of the century, the share of urban population has risen from 34% to 54%, and it
is expected to reach 66% by 2050 [47]. In addition, cities worldwide are, owing to climate
change, already exposed to higher mean air temperatures, changed precipitation patterns,
and more frequent extreme weather events [48,49]). In NE Slovenia, where Maribor is
located, air temperatures rose between 0.33 and 0.44 ◦C per decade (period 1961–2016)
and in the summer months, between 0.44 and 0.59 ◦C per decade [50,51]). There, heat
wave frequency has more than tripled since the 1960s [22]. Moreover, heat wave events are
lasting longer (8.8 days more since 1990) and reaching higher maximum temperatures (up
to 40.6 in 2013). However, urban warming is a manifestation of the direct (sensible heat)
and indirect (land-cover transformation, climate change) alteration of the energy budget in
the urban boundary layer [4,52,53]. These facts lead to the conclusion that a consequent
intensification in the UHI effect is inevitable, in large agglomerations or small cities/towns,
if no preventive or adaptation actions are implemented. From that perspective, studies
like this, which provide applicative spatial prediction models, and which could roughly
estimate the potential change in UHI intensity owing to direct or indirect urban system
alterations, are of high importance.

However, the annual or seasonal dynamics of the UHI phenomenon in small cities/towns
under climate change scenarios is, in general, poorly studied. We sought to bridge this
gap and, thus, broke down Maribor’s thermal environment into individual entities that
cause the current spatial UHI pattern, and will potentially co-create its thermal footprint in
the second half of the 21st century. A time series of multispectral satellite imagery, along
with stationary and mobile air temperature measurements, provided the first important
discovery: the UHI intensity maximum in Maribor shifted, owing to climate change, from
winter to spring and summer. Several urban climate scientists across the globe [4]) agreed
that the UHI phenomenon in mid-latitude cities/towns is usually more pronounced in
winter, moments before sunrise (longer nights provide more time for cooling and intensive
house heating causes higher maximum air temperatures). The applied GAM summer UHI
intensity model based on seven spatial predictor variables yielded good results. It should
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be emphasized that we tried to model Maribor’s summer UHI intensity with a multiscale
geographically weighted regression (MGWR) [54], alongside the above-mentioned GLM. It
yielded slightly better results (adjusted R2 = 0.84 and smaller over- and under- predictions),
but we decided to calibrate a GAM because local regression models are still case-specific
and cannot easily be transferred elsewhere in the geographical space [15,55]. Thus, our
second important finding is that major over-predictions are linked to the rural surroundings
of the city, whereas under-predictions exist in relation to the urban structure. In other words,
the GAM model underestimates UHI intensity in some built-up parts of the study area and
overestimates UHI intensity in green vegetated areas. Future UHI intensity scenarios could
thus potentially be even worse. However, it should be emphasized that our predictions
are made under the assumption that the city structure (predictor variables bv, d2wb, NDVI,
sness, SUHIi, hvegv) remains temporarily stable. In other words, the uncertainty level of our
predictions increases as soon as land use changes are applied. Other important summer
UHI intensity modifiers that are not under consideration could decrease the proposed GAM
model predictive power as well. For instance, a changed summer rainfall pattern could
affect water bodies, vegetation (NDVI), and wind speed. As already mentioned, rising
air temperatures alone could also decrease UHI intensity, especially in colder conditions
(winter, spring, autumn). Studies about future bioclimatic conditions in the NE part
of Slovenia (where Maribor is located) indicated that this region could potentially face
hotter and dryer future climate conditions [56,57]. From that perspective, our results remain
highly applicable despite the outlined weaknesses. Nonetheless, the third finding is that our
methodology can be transferred to other cities across the globe, since it exploits statistical
relations over all the data in the region of interest, and can therefore be applied even beyond
the geographical limits of the measurements in cases where the physical settings remain
similar. Finally, the new CMIP6 high-resolution climate change scenarios [32] indicate that
Maribor could soon face a reasonable increase in summer UHI intensity, in particular in the
southern industrial zone. By the end of the century, summer UHI magnitude in this area
could increase by more than 60%. From that perspective, the last important message of this
study is as follows: climate change preventive actions in urban systems are urgently needed
to mitigate high levels of heat stress and assure a quality living environment for all social
groups of citizens. Predictions for Maribor, which has several green urban areas and a
large water body (the river Drava), are not optimistic. This is even more alarming for other
Slovenian urban settlements, which are for historical reasons [58], much more concentrated.

Climate change and the UHI phenomenon are linked through a two-way interaction.
First, global warming will increase UHI intensity in urban systems. Second, cooling strate-
gies to reduce UHI intensity can help communities adapt to the impact of climate change,
while also lowering the greenhouse gas emissions that cause climate change [59]. Most
efforts to cool UHIs produce many benefits, including lower temperatures, greenhouse
gases, air pollution, harmful health impacts, and electricity demand [60–62]. Efforts to
reduce elevated temperatures in urban systems thus also help to address climate change
and improve air quality. Moreover, such measures can help citizens become more resilient
to some of the damaging impacts of modern climate change. Properly located green areas
and water bodies represent good examples for urban cooling [63–66]. In this way, the
need for fossil fuel-based transport (which is still dominant) to cooler parts of the city is
reduced. In order to decrease the record-breaking CO2 emissions (417 ppm, accessed on
17 June, 2021) [67] and somehow mitigate the impact of climate change at the global level,
several multifaceted mitigation and adaptation measures must be taken as soon as possible.
Starting with UHI mitigation strategies in densely populated areas is certainly a prime
target, since countermeasures would, thus, be implemented precisely at the source of the
greenhouse gas emissions.
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Horvat, U., Konečnik Kotnik, E., Eds.; Univerzitetna Založba Univerze v Mariboru: Maribor, Slovenia, 2017; pp. 23–45.
52. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat

island. Int. J. Climatol. 2003, 23, 1–26. [CrossRef]
53. Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures

to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [CrossRef]
54. Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. “mgwr: A python implementation of multiscale geographically

weighted regression for investigating process spatial heterogeneity and scale” ISPRS international. J. Geo-Inf. 2019, 8, 269.
[CrossRef]

55. Nakaya, T.; Charlton, M.; Yao, J.; Fotheringham, A.S. GWR4.09 User Manual: Windows Application for Geographically Weighted
Regression Modelling. 2016. Available online: http://manualslist.info/pdf/gwr409-user-manual-geodacenterorg.html (accessed
on 14 June 2021).
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