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Abstract: Rice is one of the most important staple crops in the world; therefore, the improvement of
rice holds great significance for enhancing agricultural production and addressing food security chal-
lenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms
(SNPs) in rice improvement with the development of next-generation sequencing technologies,
research on the role of presence/absence variations (PAVs) in the improvement of rice is limited.
In particular, there is a scarcity of studies exploring the traits and genes that may be affected by
PAVs in rice. Here, we extracted PAVs utilizing resequencing data from 148 improved rice varieties
distributed in Asia. We detected a total of 33,220 PAVs and found that the number of variations
decreased gradually as the length of the PAVs increased. The number of PAVs was the highest on
chromosome 1. Furthermore, we identified a 6 Mb hotspot region on chromosome 11 containing
1091 PAVs in which there were 29 genes related to defense responses. By conducting a genome-wide
association study (GWAS) using PAV variation data and phenotypic data for five traits (flowering
time, plant height, flag leaf length, flag leaf width, and panicle number) across all materials, we
identified 186 significantly associated PAVs involving 20 cloned genes. A haplotype analysis and
expression analysis of candidate genes revealed that important genes might be affected by PAVs, such
as the flowering time gene OsSFL1 and the flag leaf width gene NAL1. Our work investigated the
pattern in PAVs and explored important PAV key functional genes associated with agronomic traits.
Consequently, these results provide potential and exploitable genetic resources for rice breeding.

Keywords: rice improvement; presence/absence variations; genome-wide association study

1. Introduction

Asian cultivated rice (Oryza sativa L.) is an important crop globally which consists
of two subspecies, indica and japonica. More than half of the world’s population relies
on Asian cultivated rice as a primary food source [1]. As one of the oldest domesticated
cereals, rice has undergone two major processes, domestication and improvement, in its
transformation from wild ancestors to cultivated varieties [2]. The former refers to the
shift from wild rice to landraces, while the latter denotes to the transition from landraces
to modern breeding [3]. Although the improvement of rice has gone been conducted for
only a few decades, strong artificial selection has exerted a substantial influenced on the
agronomic traits of rice [3]. Among these agronomic traits, flowering time plays a crucial
role in rice improvement. Firstly, the flowering time directly affects rice growth, exhibiting
a direct correlation with yield [4,5]. Secondly, an appropriate flowering time can enhance
the adaptability of rice [6,7]. Flag leaf shape, another important trait, has an impact on rice
yield and quality. Some studies have shown that there is a positive correlation between flag
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leaf length and the panicle number, grains, and yield of rice [8–10]. As for flag leaf width, a
wider flag leaf can enhance photosynthesis and nutrient absorption, thus improving the
quality of rice [10,11]. Therefore, it is of importance to focus on agronomic traits such as
flowering time and flag leaf shape when improving rice.

Significant achievements have been made in understanding the genetic basis of var-
ious traits in rice in recent years [12,13], especially with the sequencing of vast of rice
materials. For example, the sequencing of 3010 rice genomes has provided us with abun-
dant genomic resources [14]. Utilizing these data, extensive studies have been performed
on rice domestication and improvement, including population genetic analyses and gene
function exploration [15–17]. So far, research studies have mainly focused on the significant
role of SNPs in rice improvement [18]. Compared to SNPs, structural variations (>50 bp)
generate larger and more diverse types of variations, thus exerting a greater impact on
the genome [19]. Structural variations are mainly classified as insertions, deletions, copy
number variations, inversions, and translocations [20]. Among them, insertions and dele-
tions (presence/absence variations (PAVs)) are easier to detect due to their low complexity,
especially when using short-read sequencing data. Although some studies have analyzed
the role of PAVs in rice improvement [21–27], reports on the functional genes affected by
them are still limited [23,24,26,27]. For instance, Li et al. reported that 1116 bp deletions
in the DTH8 gene affect the rice heading date [28]. Additionally, 520 bp deletions in the
promoter of DNR1 in HJX74 decreased its expression levels and improved nitrogen uptake
rates [29]. Qin et al. found that an insertion at 643 bp upstream of OsGLP2-1 in the japonica
background was related to seed dormancy [23]. These findings indicated that PAVs play
a crucial role in the phenotypic diversity of rice. Therefore, it is particularly important to
investigate the role of PAVs and the potential genes associated with agronomic traits in
rice improvement.

In this study, we conducted a comprehensive PAV analysis using resequencing data
from 148 modern rice varieties in Asia. We analyzed the variation patterns of PAVs in the
genome, including the number, size, and distribution. Combined with five agronomic traits
(days to heading, panicle height, panicle number, flag leaf length, and flag leaf width), we
performed a GWAS and identified some significant candidate genes. Our results explored
the role of PAVs in rice improvement and uncovered important genes related to PAVs.
These findings will provide genetic resources and breeding materials for the improvement
of rice.

2. Materials and Methods
2.1. Materials and Phenotype

We selected 148 improved rice cultivars distributed in Asian countries, including
109 indica and 39 japonica cultivars, from a 3000-rice-genomes project based on the Genesys
website (https://www.genesys-pgr.org/, accessed on 30 October 2023) and reports in
the literature [3] in which information about the improved rice cultivars was easier to
distinguish. Phenotypic data for 148 rice accessions were obtained from RFGB v2.0 (Rice
Functional Genomics & Breeding, https://www.rmbreeding.cn/, accessed on 30 October
2023) [30]. Considering the consistency of the phenotypes, we selected five traits (days to
heading, plant height, flag leaf length, flag leaf width, and panicle number) measured in
Hainan Province, China, in 2018 for further analysis. Each rice cultivar contained at least
three replications.

2.2. Sequence Data

The sequence data for the 148 rice accessions were downloaded from the 3000 Rice
Genomes Project [14]. Adapters and low-quality sequences of raw reads were removed
using Trimmomatic (v0.36) [31]. We used BWA (v0.7.10) and SAMtools (v1.1) to build
an index for the Nipponbare reference genome (IRGSP-1.0) [32,33]. Clean reads were
mapped to the Nipponbare genome using BWA (v0.7.17-r1188) and the MEM algorithm.
Using Genome Analysis Toolkit 4 (GATK4, v4.1, https://gatk.broadinstitute.org/hc/en-us,
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accessed on 2 November 2023), we transformed the format of the alignment file from SAM
to BAM, sorted the aligned reads, masked duplicate reads, and built an index for each BAM
file. The number of mapping reads and sequencing depths were calculated using SAMtools
(v1.1) [33] and GATK3 (v3.8), respectively.

2.3. PAV Calling

PAVs (presence/absence variations) were identified using Delly (v0.8.7) and Manta
(v1.6.0) using mapping results from resequencing data in a BAM format [34,35]. When
using Delly, we ran PAVs, calling on each accession, and then merged the results into one
VCF file as a guiding reference. Next, we ran PAVs again, calling with the guidance of the
combined VCF file. Furthermore, we filtered the PAVs with PASS tag for further analysis.
Finally, PAVs from all accessions were combined using BCFtools (v1.9) [36]. For Manta, we
used the recommended workflow to perform PAV calling for each individual. SURVIVOR
(v1.0.7) [37] was used to merge all PAV calling files. For more comprehensive PAV data,
we merged the PAV calls detected by Delly and Manta using an in-house Perl script. PAVs
from all rice cultivars were filtered using VCFtools (v0.1.16) [38] based on the following
criteria: (1) minor allele frequencies (MAFs ≥ 0.01); (2) missing rate < 40% [27,39].

2.4. Distribution of PAVs Relative to Gene Position

According to the PAV breakpoints and gene locations in the genome, we classified
the PAVs into five categories as follows: overlapping with (1) ±3 kb of gene regions (3 kb
upstream of the start codon and 3 kb downstream of the stop codon), (2) coding and
UTR regions, (3) introns, (4) and intergenic regions. The percentage of each category
was calculated.

2.5. Identification of PAV Hotspot Regions

We calculated the distribution of PAV breakpoints for each 1000 kb window with a
500 kb step size along each chromosome. Then, according to the number of PAVs within the
window, all 1000 kb windows were ranked in descending order. The top 10% of windows
with the highest frequency of PAV breakpoints were defined as PAV hotspots. Furthermore,
all continuous hotspot windows were merged into a hotspot region [23].

2.6. GWAS and Genetic Correlation Analysis of PAVs

A genome-wide association analysis (GWAS) of PAVs and five phenotypic types of
data (days to heading, plant height, flag leaf length, flag leaf width, and panicle number)
were performed using BLINK-R implemented in GAPIT [40,41]. The first three principal
components from GAPIT were used as covariates to control the population structure.
The proportion of variance explained by each component was computed by dividing the
variance in each component (eigenvalue) by the total variance in the dataset. To determine
the significance threshold for each trait, we applied a conditional permutation method,
as described in Zhao et al. [42]. Considering that BLINK-C is about 20 times faster than
BLINK-R [41], we performed 1000 conditional permutation tests with BLINK-C to improve
computational efficiency. And 95th quantile of -log (p) was selected as the threshold for
each trait, respectively. As for the statistical analysis of different haplotypes, comparisons
were conducted using Student’s t-test in R [43].

3. Results
3.1. PAV Identification

To explore the role of structural variations in the improvement of cultivated rice
distributed in Asia, we downloaded the whole-genome sequencing data of 148 rice varieties
from the 3K database, including 109 indica and 39 japonica varieties (Table S1). Reads from
all rice varieties were aligned to the Nipponbare (IRGSP1.0) genome. Due to the short reads
of the sequencing data and the complexity of the structural variations found, we selected
two software, Manta (v1.6.0) and Delly (v0.8.7), to call structural variations, focusing only
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on deletions and insertions (presence/absence variations (PAVs)). We assessed the coverage
and sequencing depth of the resequencing data for rice varieties, revealing an average
sequencing depth of 14× (5.22–32.64×) and an average coverage of 91.51% (83.2–98.7%)
(Table S2). A total of 33,220 PAVs were called, including 32,237 deletions and 983 insertions.
Furthermore, an analysis of the PAVs’ distribution in terms of size revealed that the number
of variations decreased gradually as the length of the PAVs increased (Figure 1). Short PAVs
(50–1000 bp) accounted for 74.6%, indicating that short PAVs may play a predominant role
in the improvement of rice cultivars.
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3.2. Distribution of PAVs

To study the distribution pattern of the PAVs, we first analyzed the number of PAVs on
chromosomes and found an average of 2768 PAVs per chromosome (Figure 2a). The number
of PAVs was the highest on chromosome 1, with 3887, while on chromosome 5, the number
was the lowest, with only 1996 (Figure 2a). Furthermore, we found uneven distributions of
PAVs along chromosomes and identified 27 PAV hotspots region, suggesting the occurrence
of multiple independent PAVs in these regions (Figure 2b). Interestingly, we identified
a 6 Mb hotspot region on chromosome 11 containing 1091 PAVs. It revealed that there
were 29 genes related to defense responses within this region. Consistent with previous
studies [23], these findings indicated that variations located in PAV hotspots are more likely
to play a role in the environmental adaptation of cultivated rice compared to other genomic
regions. Subsequently, we examined the distribution of PAVs across the genome, and the
results showed that 67.4% of PAVs were in genic regions (3 kb upstream and downstream
of genes, UTR regions, coding regions, and introns), while 46.1% of PAVs were distributed
in intergenic regions (Figure 2c). Within the genic regions, 72.6% of PAVs were found in
the 3 kb upstream and downstream regions of genes, suggesting that PAVs in regulatory
regions are more likely kept and may play important roles in the improvement of rice.

3.3. The Impact of PAVs on Phenotypes

To investigate the impact of PAVs on phenotypes in rice improvement, we downloaded
the data of 148 rice materials with respect to five phenotypes, the days to heading, plant
height, panicle number, flag leaf length, and flag leaf width, from the RFGB database
(Table S3). We analyzed the distribution of these trait among the 148 materials. The
average flowering time was 96.8 days, with the shortest being 68 days and the longest
being 128.5 days. The average plant height was 91.3 cm, with the shortest being 55.5 cm
and the tallest being 148.3 cm. The average number of panicles was 9.2, with the lowest
being 3.7 and the highest being 14.5. The average flag leaf length was 26.9 cm, with the
shortest being 16.5 cm and the longest being 40.6 cm. The average width of the flag leaf
was 1.4 cm, with the narrowest being 0.96 cm and the widest being 2.1 cm. Then, based on
the phenotypic statistics of each individual, we found that the 148 materials exhibited a
continuous and approximately normal distribution for the five traits (Figure S1), suggesting
that each trait is a quantitative trait controlled by multiple genes. These results indicated
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that the selected samples were representative with large variations and abundant genetic
information resources. To explore the role of PAVs in these traits of rice improvement,
we used 33,220 PAVs as genotypes and conducted a genome-wide association analysis
for the five traits. Considering the potential impact of population structure (Figure S2),
we ultimately selected the BLINK model in the GAPIT (Version 3) software package
for subsequent analyses. In addition, to accurately identify outlier loci, we performed
1000 permutation tests for each trait, employing a significance threshold of α 0.05. As
shown in the figures, we found a total of 29 significantly associated PAVs for flowering
time, 9 for plant height, 37 for panicle number, 82 for flag leaf length, and 29 for flag leaf
width (Figures 3a, 4a, S3a and S4a,c). These results indicate that PAVs play an important
role in the improvement of agronomic traits in rice.
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PAV and heading date association in 148 rice varieties. Red dots indicate a significant correlation with
phenotype, and red dashed lines show threshold (a). (c) A 55 bp deletion occurred within OsSFL1,
exhibiting two haplotypes. (d) Comparison of heading date in Hap1 and Hap2. Statistical significance
was calculated using Student’s t-test; * p < 0.05.
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3.4. Important Genes Associated with PAVs

To explore the genes affected by PAVs in rice improvement, we further analyzed the
genes corresponding to significant PAVs according to the annotation information (Table S4).
We selected genes based on the following criteria: (1) significant PAVs located in the gene
region, including the 3 kb upstream and downstream regions, UTR region, coding region,
and intron region, and (2) genes with functions reported in the literature. By integrating
the positions of significant PAVs and gene functions, we focused on genes that regulate
flowering time and flag leaf width. For flowering time, three cloned genes, OsNIP1;1,
OsLsi2, and OsSFL1 contained significant PAVs [44–47]. Previous studies have shown that
the OsSFL1 gene positively regulates flowering time in rice. The flowering time of the
ossfl1 mutant was delayed by nearly two weeks compared to the wild-type Nipponbare,
and the ossfl1-T mutant was delayed by approximately 17 days compared to the wild-type
DJ [45]. In this study, we found that some materials had a 55 bp deletion at 615 bp upstream
of OsSFL1 compared to the reference genome (Figure 3c). Furthermore, we divided the
materials into two haplotypes based on this deletion. A statistical analysis revealed that
materials with the 55 bp deletion variant exhibited significantly delayed flowering times
compared to materials without the deletion (Figure 3d). Therefore, we inferred that the
55 bp deletion might delay flowering time by reducing the expression level of OsSFL1.
For the flag leaf width, significant PAVs involved three cloned genes, OsLsi2, NAL1, and
Os4CL5 [44,47,48]. Previous research showed that NAL1 positively regulates leaf width, and
the null mutant exhibits reduced numbers of longitudinal veins and narrow leaves [48,49].
In our study, we found that some materials had a 5918 bp deletion in the first intron
of NAL1 compared to the reference genome (Figure 4c). Furthermore, we divided the
materials into two haplotypes according to the deletion. A statistical analysis indicated
that materials with the 5918 bp deletion variant exhibited significantly smaller flag leaf
widths compared to materials without the deletion (Figure 4d). Subsequently, we obtained
expression data of NAL1 in two materials, Nip (Hap1) and MH63 (Hap2), from previous
research [50]. We found that the expression level of NAL1 in the mature leaves of MH63 was
significantly lower than that in Nip, suggesting that the 5918 bp deletion in the first intron
of NAL1 might reduce the expression of NAL1 in leaves, thereby decreasing the flag leaf
width (Figure S5). The above results provide substantial evidence that PAVs contributed to
phenotypic variation in agronomic traits in modern rice and played a crucial role in the
breeding improvement of rice.

4. Discussion
4.1. The Distribution Pattern of PAVs on the Genome

In recent years, with the application of sequencing technology, there have been increas-
ing reports on PAVs in plants. However, less attention has been paid to the distribution
patterns of PAVs on the genome. Previous research has identified a widespread distribution
of PAVs on the genome without further analyzing their distribution patterns [51–54]. Only
a few studies have found that PAVs exhibited a clustered distribution on the genome. In
Mytilus galloprovincialis, PAVs showed an uneven distribution on chromosomes [55]. Here,
we also found similar results, with the presence of multiple hotspot regions. Studies on
PAVs in plants have discovered that certain gene families, such as defense response-related
genes [51,56], contain more PAVs suggesting that the distribution of these genes on chro-
mosomes might relate to the formation of PAV hotspots. Furthermore, we found that most
PAVs are distributed in intergenic regions or regulatory regions. Consistent with our find-
ings, Göktay et al. reported that the number of PAVs in intergenic regions is much greater
than in genic regions in Arabidopsis [57]. Genic regions are more conserved compared to
intergenic regions, and newly generated PAVs are more likely deleterious. Therefore, PAVs
in regulatory regions might affect phenotypes by changing gene expression levels in a more
subtle manner, thus avoiding direct effects on gene function and making it easier to retain
during the improvement of rice.
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4.2. PAVs Influenced Multiple Agronomic Traits

PAVs played an important role in the breeding and improvement of crops including
rice, maize, and wheat [51,53,58]. In rice, several studies have shown that PAVs affected
phenotypes by altering the functions of genes at the expression or protein level. For
example, Shang et al. (2022) showed that a 127 bp insertion in the upstream of HGW
was associated with the expression level of the gene and decreased the thousand-grain
weight compared to materials without the insertion [24]. Qin et al. reported a 66.6 kb
or 43.3 kb deletion in rice which includes a known negatively regulated disease-resistant
gene, WAK112d, suggesting that the large fragment deletion may enhance the disease
resistance of these materials [23,59]. In this study, we revealed significant association
signals for five traits using a genome-wide association analysis involving multiple cloned
genes. In addition to the previously mentioned flowering time and flag leaf width, we
also analyzed the flag leaf length and found that significant PAVs involved seven cloned
genes: OsMFT2, OsPP1a, OsPHT1, OsPP2A-1, OsLLB, OsCAB1R, and OsDEP1 [60–66]
(Figure S3a). Previous studies showed that OsDEP1 regulates panicle shape, plant height,
yield, and nitrogen response in rice [62,67]. Our study discovered that some materials had a
637 bp deletion in the fifth exon of OsDEP1 compared to the reference genome (Figure S3c).
Furthermore, based on this deletion, the materials were divided into two haplotypes. A
genetic correlation analysis showed that the flag leaf length of materials with the 637 bp
deletion was significantly shorter than that of non-deletion materials, suggesting that the
637 bp deletion might reduce flag leaf length by altering the structure of the OsDEP1 protein
(Figure S3d). Interestingly, we found a significant locus that is shared between the flowering
time and flag leaf width, corresponding to the cloned gene OsLsi2 [44] (Figures 3a and 4a).
Compared to the reference genome, some materials had a 303 bp deletion in the upstream
of the gene. Previous studies had reported that the growth of lsi2 mutants is inhibited
under field conditions, with a slightly reduced plant height and changed glume color, and
its yield was only 40% of that of the wild type [44], suggesting that OsLsi2 might be a
pleiotropic gene and the 303 bp deletion possibly affects both flowering time and flag leaf
width by changing the expression level of OsLsi2.

4.3. PAVs Play an Important Role in Rice Improvement

With the release of large-scale sequencing data in rice in recent years, an increasing
number of PAVs have been discovered, and the impact of PAVs on traits has attracted
attention. For example, a researcher found that PAVs could participate in the combina-
tion of heterosis genotypes for two-line and three-line hybrid rice by influencing gene
expression patterns [53]. Another study on hybrid incompatibility between rice subspecies
showed that negatively interacting genes fix different PAVs in different subspecies, causing
incompatibility during hybridization [68]. Many studies have discovered that PAVs are
related to disease resistance in plants including in sorghum, Brassica napus, Arabidopsis,
and rice [56,57,68,69]. Furthermore, it was discovered by an association analysis that many
PAVs were an important source of phenotypic variation in crops [70]. Therefore, uncov-
ering PAVs related to phenotypic variation will provide more usable genetic information
for breeding. Here, we conducted GWAS using PAVs data and phenotypic data for five
traits (flowering time, plant height, flag leaf length, flag leaf width, and panicle number),
identifying 186 significantly associated PAVs. Considering that the varieties selected in this
study were all improved varieties, it is implied that these PAVs play significant roles in rice
improvement. Additionally, our study revealed new variants for some known functional
genes, including OsSFL1, NAL1, and OsLsi2, which will provide important gene resources
for rice breeding.

5. Conclusions

Our work investigated the pattern of PAVs and explored important PAVs’ key func-
tional genes associated with agronomic traits. Consequently, these results provide poten-
tially exploitable genetic resources for rice breeding.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes15050645/s1, Figure S1: The frequency distribution of
five traits in 148 rice materials; Figure S2: PCA plot for 148 rice accessions; the value within the
parentheses represents the proportion of variance explained by each PC; Figure S3: GWAS analysis for
flag leaf length. (a,b) Manhattan plot and quantile–quantile (QQ) plots of the association of PAVs and
flag leaf length in 148 rice materials. Red dots indicate a significant correlation with phenotype, and
red dashed lines show the threshold (a). (c) A 637 bp deletion occurred within the OsDEP1, exhibiting
two haplotypes. (d) A comparison of heading dates in Hap1 and Hap2. Statistical significance was
calculated using Student’s t-test. * p < 0.05; Figure S4: A GWAS analysis for panicle number and
plant height. (a,b) Manhattan and quantile–quantile (QQ) plots of the association of PAVs and panicle
number in 148 rice materials. (c,d) Manhattan plot and quantile–quantile (QQ) plots of the association
for PAVs and plant height in 148 rice. Red dots indicate significant correlations with phenotype,
and red dashed lines show the threshold (a,c). Figure S5: FPKM of NAL1 without (Hap1) and with
(Hap2) the deletion in different tissues; Table S1: Information on rice varieties used in this study;
Table S2: Sequencing coverage and depth assessments of 148 rice varieties; Table S3: Phenotypic
data of 148 rice varieties for five traits; Table S4: All genes associated with five traits by GWAS using
PAV data.
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