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Abstract: The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary
thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the
altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity
and the patient’s unique set of favoring factors question the fit-for-all gene biomarkers. Publicly
accessible gene expression profiles of the cancer nodule and the surrounding normal tissue from
a surgically removed PTC tumor were re-analyzed to determine the cancer-induced alterations of
the genomic fabrics responsible for major functional pathways. Tumor data were compared with
those of standard papillary and anaplastic thyroid cancer cell lines. We found that PTC regulated
numerous genes associated with DNA replication, repair, and transcription. Results further indicated
that changes of the gene networking in functional pathways and the homeostatic control of transcript
abundances also had major contributions to the PTC phenotype occurrence. The purpose to proliferate
and invade the entire gland may explain the substantial transcriptomic differences we detected
between the cells of the cancer nodule and those spread in homo-cellular cultures (where they need
only to survive). In conclusion, the PTC etiology should include the complex molecular mechanisms
involved in the remodeling of the genetic information processing pathways.

Keywords: 8505C anaplastic thyroid cancer cell line; BCPAP papillary thyroid cancer cell line; DNA
replication; DNA repair; DNA transcription; evading apoptosis; proliferation; RNA polymerase;
TATA-box binding protein associated factors; UBXN1

1. Introduction

The American Cancer Society estimates that in 2024, the USA will register 44,020
(31,520 women and 12,500 men) new cases of thyroid cancer (TC), out of which 2170
(1180 females + 990 males) might die because of it [1]. The most lethal form is the non-
differentiated (anaplastic) TC, with only 5 months median survival rate [2] and 8% average
5-year Relative Survival Rate (RSR) when all Surveillance, Epidemiology, and End Results
(SEER) stages are considered [1]. The least lethal is the differentiated papillary thyroid
carcinoma (PTC) that covers over 8 out of 10 thyroid malignancies, grows slowly, and has
a favorable (>99%) 5-year survival prognosis [3,4]. Non-lethal and treatable cancers also
include follicular thyroid cancer (RSR = 98%) and medullary thyroid cancer (RSR = 91%).
However, if not treated in time, the differentiated forms can invade adjacent structures and
metastasize in neck lymph nodes [5,6] and develop aggressive variants [7,8].

It is considered that the T1799A point mutation of the BRAF gene is responsible for
45% of the PTC cases [9], albeit mutations of several other genes (e.g.,: RET, NTRK1, and
TP53) were also reported, e.g., [10–14] were present in numerous PTC cases. In total, the
39.0 Release of the National Cancer Institute GDC Data Portal (4 December 2023) lists
5869 mutations affecting 19,313 genes in the registered 1121 cases of thyroid cancer [15]. In
addition to specific DNA mutations, regulation of the expression levels of selected gene
sets were also pointed out as PTC transcriptomic signatures (e.g., [16–18]).
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In order to quantify the power of the expression of a particular gene to regulate the
cancer phenotype, we have introduced the Gene Commanding Height (GCH) score [19].
Nonetheless, our PTC transcriptomic study [20] revealed that 1/3 of the 544 known gene
cancer biomarkers had higher GCH in the malignant region of the tumor and 1/3 in the
benign region, while the rest did not discriminate between the two regions. This result
raised the general question of the gene biomarkers’ utility for cancer diagnosis [21] and
therapy [22], especially because, together with the blamed biomarker(s), the sequence
and/or expression of numerous other protein-coding (e.g., [23]) and non-coding (e.g., [24])
genes are altered in the thyroid cancer [25]. Moreover, all our genomics studies on prostate
(e.g., [19]), thyroid (e.g., [25]), and kidney (e.g., [26]) cancers revealed that biomarkers are far
below the top GCH scorers, meaning that they are minor players in the cell life. Therefore,
manipulation of their sequence or/and expression level might be of little consequences for
the survival and proliferation of the malignancy.

Nonetheless, the blamed genes are only part of a larger category of medical signs that
are considered to be indicative of cancer physiopathology and are used in the management
of thyroid cancers [27]. The U.S. Food and Drug Administration (FDA), National Institutes
of Health (NIH), and the European Medicines Agency (EMA) have defined what should be
included among biomarkers [28,29].

Total thyroidectomy is the primary approach of treating PTC, especially with multi-
focal occurrence, but lobectomy is less risky in papillary thyroid microcarcinomas [30]. The
thyroid surgical approach is frequently combined with 131I radiotherapy (recommended in
2015 by the American Thyroid Association [31]) or with the administration of antiangiogenic
multikinase inhibitors (e.g., lenvatinib, sorafenib, and cabozantinib) for cancers resistant
to radioactive iodine [32]. Novel specific kinase inhibitors (SKI) like trametinib are also
considered efficient for thyroid cancer treatment [33].

Here, we present the PTC-induced changes in the KEGG-constructed functional path-
ways [34] responsible for the genetic information processing in a surgically removed
PTC tumor. The study is an addition to the not-so-rich literature related to the genomic
alterations in DNA replication [35], repair [36–39] and transcription [40,41], chromatin
remodeling [42], translation, and protein processing [43] and trafficking [44].

The analyses were carried out from the Genomic Fabric Paradigm (GFP) perspective
which provides the most theoretically possible characterization of the transcriptome [45]
and is able to identify the most legitimate targets for personalized anti-cancer gene ther-
apy [46]. In addition to the traditional average expression level (AVE), GFP characterizes
each gene with the Relative Expression Variation (REV) across biological replicas and
Expression Coordination (COR), with each other gene in the same condition.

By comparing AVEs in the cancer nodule and the surrounding normal thyroid tissue,
one determines which gene was significantly up-/down-regulated according to certain
cut-off criteria for the absolute fold-change and p-value of the t-test of means equality.
AVE analysis, mandatory in all gene expression studies, is also used to identify the turned
on/off genes with respect to the background-related detection limit of the platform.

REV analysis identifies the genes whose random fluctuations of the expression levels
caused by the stochastic nature of the transcription chemical reactions are the most/least
controlled by the homeostatic mechanisms. Indirectly, REV points out the cell priorities by
keeping, within narrow intervals, the expression levels of critical genes to preserve the cell
phenotype under the pressure of the nonhomogeneous and variable local environmental
factors.

COR analysis is based on the Principle of Transcriptomic Stoichiometry [47] (an exten-
sion of the law of multiple proportions from chemistry), stating that genes whose encoded
products interact should be coordinately expressed to maximize the pathway efficiency.
Thus, COR analysis singles out the most probable, statistically (p < 0.05) significant gene
networking in functional pathways, and allows for the quantification of the gene network
remodeling in disease and its recovery following a treatment.
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2. Materials and Methods
2.1. Gene Expression Data

Transcriptomic raw data obtained through our previous microarray experiments on
thyroid cancer samples were downloaded from the publicly available Gene Expression
Omnibus (GEO) of the National Center for Biotechnology Information (NCBI). As described
in [20], 4 small pieces of malignant (hereafter denoted as T1, T2, T3, and T4) and 4 of non-
malignant (denoted as N1, N2, N3, and N4) regions were collected from a surgically
removed 32.0 mm pathological stage pT3NOMx [48] PTC tumor of a 33 year old Asian
woman. Tumor gene expression data [49] were compared with those from 4 papillary
BCPAP [50] (denoted as: Φ1, Φ2, Φ3, and Φ4) and 4 anaplastic 8505C [51] (denoted as:
Θ1, Θ2, Θ3, and Θ4) thyroid cancer cell line culture dishes [52]. The 8505C cell line was
chosen for comparison to check whether the expression profiles of cell lines derived from
differentiated thyroid tumors (like BCPAP and TPC1 [53]) evolved in vitro into profiles
closer to undifferentiated anaplastic thyroid tumors [54]. All thyroid cancer samples were
profiled by us using an Agilent-026652 Whole Human Genome Microarray 4x44K v2 [55].
The wet protocol and the raw data are fully described in the publicly accessible GEO
deposits [49,52].

2.2. Transcriptomic Analyses

The microarray data were filtered (eliminated all spots with foreground fluorescence
less than twice in the background in one microarray), normalized (to the median of valid
spots), and analyzed using our standard GFP algorithms (presented in [56]). In addition
to the primary characteristics of adequately profiled individual genes in each condition
of AVE, REV, and COR (Appendix A), we also considered the derived characteristics of
Relative Expression Control (REC) and Coordination Degree (COORD) (Appendix B).

The AVE, REV, COR, REC, and COORD alterations in the malignant region of the
tumor were quantified according to the algorithms from Appendix C and averaged for
the genes included in the selected KEGG-constructed functional pathways. The arbitrarily
introduced absolute fold-change cut-off (e.g., 1.5×) to consider a gene as significantly
regulated might be too strict for very stably expressed genes or too lax for the very unstably
expressed ones across biological replicas. Therefore, we computed the absolute fold-change
cut-off for each quantified gene considering the combined contributions of the biological
variability in the compared conditions and the technical noise of the probing microarray
spots [26].

Nevertheless, the transcriptomic distance (i.e., the Euclidian distance in the 3D or-
thogonal space of transcriptomic changes (WIR, ∆REC, and ∆COORD) with respect to the
normal tissue (defined in C6) is the most comprehensive measure of the cancer-induced
transcriptomic alteration of the thyroid.

2.3. Functional Pathways

We analyzed the following KEGG-constructed functional pathways responsible for
the Genetic Information Processing in homo sapiens (hsa).

2.3.1. Transcription

(POL) hsa03020 RNA polymerase [57].
(BTF) hsa03022 Basal transcription factors [58].
(SPL) hsa03040 Spliceosome [59].

2.3.2. Translation

(RIB) hsa03010 Ribosome [60].
(AMI) hsa00970 Aminoacyl-tRNA biosynthesis [61].
(NCT) hsa03013 Nucleocytoplasmic transport [62].
(SUR) hsa03015 mRNA surveillance pathway [63].
(RBE) hsa03008 Ribosome biogenesis in eukaryotes [64].
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2.3.3. Folding, Sorting, and Degradation

(PEX) hsa03060 Protein export [65].
(PPE) hsa04141 Protein processing in endoplasmic reticulum [66].
(SIV) hsa04130 SNARE interactions in vesicular transport [67].
(UMP) hsa04120 Ubiquitin mediated proteolysis [68].
(SRS) hsa04122 Sulfur relay system [69].
(PRO) hsa03050 Proteasome [70].
(RND) hsa03018 RNA degradation [71].

2.3.4. Replication and Repair

(DER) hsa03030 DNA replication [72].
(BER) hsa03410 Base excision repair [73].
(NER) hsa03420 Nucleotide excision repair [74].
(MIR) hsa03430 Mismatch repair [75].
(HOR) hsa03440 Homologous recombination [76].
(NHJ) hsa03450 Non-homologous end-joining [77].
(FAP) 03460 Fanconi anemia pathway [78].

2.3.5. Chromosome

(ACM) hsa03082 ATP-dependent chromatin remodeling [79].
(PRC) hsa03083 Polycomb repressive complex [80].
In addition, we have analyzed, in the surgically removed PTC tumor, the regulation of

the gene modules responsible for the cancer cells’ survival and proliferation included in
KEGG-constructed hsa05200 pathways in cancer (PAC [81]).

3. Results
3.1. Independence of the Three Transcriptomic Characteristics of Individual Genes

Figure 1 shows the independence of the primary characteristics AVE, REV, and COR
of the 30 quantified DER genes in the four types of samples: N, T, Φ, and Θ. Correlations
with PCNA (proliferating cell nuclear antigen) were selected for the encoded protein’s role
in ensuring the rate and accuracy of DNA replication, damage repair, chromatin formation,
and segregation of the sister chromatids [82]. The characteristics were determined, with
the definition algorithms described in Appendix A.

Using the three characteristics (whose independence is visually evident) increases
the amount of workable transcriptomic information that can be derived from any mi-
croarray (or RNA-sequencing) experiment by almost four orders of magnitude. Thus,
by quantifying 14,904 unigenes in this experiment, we obtained for each type of sample
14,904 AVEs + 14,904 REVs + 111,057,156 CORs = 111,086,964 (i.e., 7453.5× more values to
be analyzed than the traditional analysis limited to the 14,904 AVEs).

Interestingly, with respect to N, the cancer increased the average expression of these
genes with 46% in T, 142% in Φ, and 146% in Θ. RNASEH2A (ribonuclease H2, subunit
A), known for its role in protecting the genomic integrity and progression of prostate
cancer [83], had the most remarkable increase in the cultured Φ (39.42×) and Θ (49.10×)
cells. Although, to a much lower extent, expression of RNASEH2A was also significantly
increased in T (1.96×).

On the other hand, the large 91% REV of RNASEH2B (ribonuclease H2, subunit B) in
the Θ cells indicates the high expression adaptability of this gene to ensure the proper DNA
replication in any environmental conditions. Therefore, at least for the studied ATC cells,
RNASEH2B may have little value, as a DNA damage response to targeted treatment [84].

Correlation analysis revealed that within the DER pathway, PCNA has 5 statistically
significant synergistically expressed partners in N, but 11 in T, 21 in Φ, and 16 in Θ. These
results indicate a substantial increase in synchronous expressions of DNA-replication genes
in thyroid cancer. The numbers of antagonistically expressed partners are: zero in N, two
in T, three in Φ, and zero in Θ.
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Figure 1. Independence of the three transcriptomic characteristics of the 30 quantified DNA-
replication genes in the normal thyroid tissue (N), papillary thyroid cancer tissue (T), papillary
thyroid cancer cell line BCPAP (Φ), and anaplastic thyroid cancer cell line 8505C (Θ). (a) Average
expression level (AVE). (b) Relative Expression Variation (REV). (c) Expression correlation (COR)
with PCNA (proliferating cell nuclear antigen). (d) Statistically (p < 0.05) significant correlations
(|COR| > 0.95) of the DER genes with PCNA.

3.2. Cancer-Induced Regulation of Gene Expression Profile
3.2.1. Measures of Regulation of Expression Level

Figure 2 presents three ways to quantify the cancer-related regulation of the expression
level of 51 randomly selected out of 74 quantified genes encoding polymerases based on
the algorithms described in Appendix C.

The traditional measure of the percentages of significantly up- and down-regulated
genes (according to a more or less arbitrarily introduced criterion) considers only the regu-
lated genes and as uniform +1 or −1 contributors to the transcriptomic alteration. Instead,
the other two measures from Figure 2 are applied to all genes, while also discriminating
their contributions to the overall transcriptomic regulation.

For instance, POLR1C (polymerase (RNA) I polypeptide C, 30 kDa) had the largest
up-regulation in both cell culture lines even as its expression level was not significantly
changed in the malignant part of the surgically removed tumor (x(T) = −1.09; x(Φ) = 198.71;
x(Θ) = 221.73). POLR1C was reported as one of the ten most up-regulated proteins when
infiltrative gastric cancer regions were compared to the adjacent normal tissue [85]. TAF1A
(TATA-box binding protein associated factor, RNA polymerase I subunit A) was also a
highly up-regulated gene in both cell lines, although it was significantly down-regulated in
the tumor (x(T) = −2.12; x(Φ) = 105.70; x(Θ) = 128.88).

From the WIR perspective (Figure 2c), the largest negative contribution to the transcrip-
tomic alteration of the polymerases were given in the two cell lines by PTRF (polymerase
I and transcript release factor), although it appeared as not being significantly regulated
in the tumor. The difference between high fold-change but low WIR for POLR1C and low
absolute fold-change but high absolute WIR for PTRF in both cell lines comes from their
difference in the average expression levels in the normal tissue: AVEPOLR1C = 0.17, AVEPTRF
= 16.80 (AVE is measured in expression levels of the median gene for that condition).
POLR2L (RNA polymerase II, I, and III subunit L) is another polymerase gene with very
large negative contributions to the BCPAP and 8505C transcriptomes owing to its large
expression level (AVEPOLR2L = 18.11) in the normal tissue.
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3.2.2. Regulation of the KEGG-Constructed Functional Pathways Responsible for the
Genetic Information Processing in the Malignant Region of the Thyroid Tumor

The regulated genes listed in Table 1 were identified using the cut-off criteria defined
in Appendix C (A7) and the software “#PATHWAY#” (Version 1) described in Ref. [46].
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Table 1. Statistically significantly up- and down-regulated genes from the KEGG-constructed func-
tional pathways responsible for the Genetic Information Processing in the malignant region of the
thyroid tumor. Symbols of up-regulated genes are in bold letters.

TRANSCRIPTION

RNA polymerase POLR1B, POLR2A, POLR2C, POLR2H, POLR2J, POLR2J2

Basal transcription factors GTF2A1, TAF9B,
GTF2E1

Splicesome CDC40, EFTUD2, HNRNPA1, HNRNPC, LSM5, PHF5A, RBM8A, RBMX, SNRNP70, SNRPD1, SNRPG
BCAS2, HSPA1A, LSM6, PPIL1, PRPF40A, RNU2-1, RNVU1-18, SRSF6

TRANSLATION

Ribosome
MRPL14, MRPL21, MRPS6, RPL14, RPL28, RPL30, RPLP1
RPL10A, RPL17, RPL18A, RPL21, RPL23, RPL26, RPL27, RPL31, RPL34, RPL35A, RPL6, RPS10, RPS12,
RPS14, RPS16, RPS20, RPS25, RPS27, RPS3A, RPS5, RPS6, RPS7, RPS8

Aminoacyl-tRNA biosynthesis IARS2, NARS2

Nucleocytoplasmic transport KPNA6, NUP205, NXF1, NXF3, RBM8A, TNPO2
NUP153, NUP93, XPO4

mRNA surveillance pathway NXF1, NXF3, PAPOLG, PPP2CA, PPP2R2D, PPP2R3B, RBM8A, SMG6
PELO, PPP2R2B

Ribosome biogenesis in eukaryotes DROSHA, FBLL1, HEATR1, NHP2, NXF1, NXF3, POP4, RCL1, RPP40
FBL, SNORD3B

FOLDING, SORTING AND DEGRADATION

Protein export SRP9

Protein processing in endoplasmic
reticulum

BAX, BCAP31, DERL1, DNAJA1, EDEM1, FBXO2, HSP90AA1, HSPH1, MAP2K7, P4HB, RAD23B,
SSR3, TUSC3, UBE2D1, UBE2D2, UBXN1, YOD1
BAG2, BCL2, CALR, CRYAB, HERPUD1, HSPA1A, HYOU1, MAN1A1, MAN1C1, WFS1, XBP1

SNARE interactions in vesicular
transport

STX4, VAMP1, VAMP4, VAMP8
STX11, STX1A, STX2

Ubiquitin-mediated proteolysis
CBL, DDB2, FBXO2, HERC4, KEAP1, MAP3K1, MGRN1, RNF7, UBA1, UBB, UBE2A, UBE2C,
UBE2D1, UBE2D2, UBE2H
PPIL2

Proteasome PSMA7, PSMB1, PSMB2, PSMB3, PSMB4, PSMD14, PSMD4, PSMD6, PSME4

RNA degradation CNOT10, ENO3, EXOSC1, EXOSC3, LSM5, PFKM
LSM6

REPLICATION AND REPAIR

DNA replication MCM4, POLD4, RFC5, RNASEH2A
POLD2

Base excision repair NEIL1, PARP1, PNKP, POLD4, RFC5
POLD2, POLG2

Nucleotide excision repair DDB2, POLD4, POLR2A, POLR2C, POLR2H, POLR2J, POLR2J2, RAD23B, RFC5, XPA
POLD2

Mismatch repair MSH2, MSH6, POLD4, RFC5
POLD2

Homologous recombination POLD4, RAD50, XRCC3
POLD2

Non-homologous end-joining RAD50

Fanconi anemia pathway FANCE, FANCI, POLH, RMI2
FAN1

CHROMOSOME

ATP-dependent chromatin remodeling
ARID1A, BAZ1A, BAZ2A, BCL7A, BCL7B, BCL7C, HDAC1, KAT5, MEAF6, PBRM1, RSF1S, MARCA4,
SMARCD3, SMARCE1, YEATS4
CECR2 ING3 MBD2

Polycomb-repressive complex AEBP2, CBX2, CBX4, EZH1, HDAC1, PHF19, SCMH1, TEX10, UBE2D1, UBE2D2, YAF2
ASXL3, USP16
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3.2.3. Regulation of the Protein Processing in Endoplasmic Reticulum Pathway

Figure 3 presents the localization of the regulated genes from the hsa04141 KEGG-
constructed PPE pathway Protein Processing in Endoplasmic Reticulum [66] in the surgi-
cally removed PTC tumor. Within this gene subset, CRYAB (crystallin, alpha B), whose
silencing might occur at the end of a stepwise dedifferentiation process in the thyroid
gland [86], had the largest negative contribution in both PTC types of samples (x(T) = −7.16,
WIR(T) = −105; x(Φ) = −36.62, WIR(Φ) = −610).
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Figure 3. Modified from [66]: Regulation of the KEGG-constructed pathway Protein Processing in
Endoplasmic Reticulum [66] in the surgically removed PTC tumor. BiP = Immunoglobulin Binding
protein, SRP = signal recognition particle. Up-regulated genes: BAX (BCL2-associated X protein),
BCAP31 (B-cell receptor-associated protein 31), DERL1 (derlin 1), DNAJA1 (DnaJ heat shock protein
family (Hsp40) member A1), EDEM1 (ER degradation enhancing α-mannosidase like protein 1),
FBXO2 (F-box protein 2), HSP90AA1 (heat shock protein 90 α family class A member 1), HSPH1
(heat shock protein family H (Hsp110) member 1), MAP2K7 (mitogen-activated protein kinase
kinase 7), P4HB (prolyl 4-hydroxylase subunit β), RAD23B (RAD23 homolog B, nucleotide excision
repair protein), SSR3 (signal sequence receptor subunit 3), TUSC3 (tumor suppressor candidate 3),
UBE2D1/2 (ubiquitin conjugating enzyme E2 D1/D2), UBXN1 (UBX domain protein 1), and YOD1
(YOD1 deubiquitinase). Down-regulated genes: BAG2 (BCL2-associated athanogene 2), BCL2 (B-cell
CLL/lymphoma 2), CALR (calreticulin), CRYAB, HERPUD1 (homocysteine inducible ER protein
with ubiquitin like domain 1), HSPA1A (heat shock protein family A (Hsp70) member 1A), HYOU1
(hypoxia up-regulated 1), MAN1A1/C1 (mannosidase α class 1A/1C member 1), WFS1 (wolframin
ER transmembrane glycoprotein), and XBP1 (X-box binding protein 1).
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3.2.4. Regulation of the Cancer Cells’ Survival and Proliferation Genes

Figure 4 presents the localization of the regulated genes responsible for the cancer
cells survival and proliferation within the KEGG-constructed cancer functional pathways.
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Figure 4. Modified frm [81]: Localization of the regulated genes responsible for the cancer cells sur-
vival and proliferation within the KEGG-constructed functional pathways in cancer for the surgically
removed PTC tumor. Regulated genes: BAX, BCL2, BIRC5 (baculoviral IAP repeat containing 5),
CCND1 (cyclin D1), CDK6 (cyclin-dependent kinase 6), CDKN2A (cyclin-dependent kinase inhibitor
1A), CEBPA (CCAAT/enhancer binding protein (C/EBP), α), CKS2 (CDC28 protein kinase regulatory
subunit 2), CSF1R (colony stimulating factor 1 receptor), DDB2 (damage-specific DNA binding
protein 2), ESR1 (estrogen receptor 1), ETS1 (v-crk avian sarcoma virus CT10 oncogene homolog-like),
FOS (FBJ murine osteosarcoma viral oncogene homolog), GTSK1/M1/M3/M5/o1/O2P1/T2 (glutathione
S-transferase kappa 1/mu 1/mu 3/mu 5/omega 1/omega 2/pi 1/theta 2), HDAC1 (histone deacety-
lase 1), HEYL (hes-related family bHLH transcription factor with YRPW motif-like), HMOX1 (heme
oxygenase (decycling) 1), JUN (jun proto-oncogene), MMP2 (matrix metallopeptidase 2 (gelatinase A,
72kDa gelatinase, 72kDa type IV collagenase)), MSH6 (mutS homolog 3), PAX8 (paired box 8), PDGF
(platelet-derived growth factor β polypeptide), PGF (placental growth factor), PIM1 (pim-1 oncogene),
PPARG (peroxisome proliferator-activated receptor γ), RUNX1T1 (runt-related transcription factor 1;
translocated to, 1 (cyclin D-related)), RPS6KA5 (ribosomal protein S6 kinase, 90kDa, polypeptide 5),
SLC2A1 (solute carrier family 2 (facilitated glucose transporter), member 1), SMAD3 (SMAD family
member 3), SP1 (Sp1 transcription facto), STAT1/2/6 (signal transducer and activator of transcription
1), TCF7 (transcription factor 7 (T-cell specific, HMG-box)), TCF7L1 (transcription factor 7-like 1 (T-cell
specific, HMG-box)), TGFB1 (transforming growth factor, β 1), WNT11/3/3A/4/5A (wingless-type
MMTV integration site family, member 11/3/3A/4/5A), and ZBTB16 (zinc finger and BTB domain
containing 17).
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Genes in Figure 4 were identified by KEGG Pathways in Cancer [81] as responsible for
blocking the differentiation, evading apoptosis, ensuring immortality and insensitivity to anti-
growth signals, resistance to chemotherapy, as well proliferation and sustained angiogenesis.
There is some degree of similarity between results in Figure 4 and those comparing gene
expression profiles in the primary cancer nodule and the surrounding normal tissue from
a surgically removed prostate tumor ([87], Figure S1a). For instance, GSTO2 and PGF were
down-regulated while CSF1R, DDB2, HMOX1 and PGFB were up-regulated in both cancers.
However, GSTP1 and PPARG were down-regulated in PTC but up-regulated in the profiled
prostate tumor.

3.3. Additional Measures of Transcriptomic Alterations

Figure 5 presents our original novel measures of the cancer-induced transcriptomic alter-
ations in expression control (∆REC) and coordination degree (∆COORD), as well as the most
comprehensive measure, the Transcriptomic Distance (TD). The measures, determined using
the algorithms from Appendix C, were applied to the quantified 51 RNA polymerase II genes
and their binding partners in N, T, Φ, and Θ.

Within this gene subset, the expression control (Figure 5a) had the largest increase for
TAF7 (TATA-box binding protein associated factor 7) in T (∆REC = 126), TAF6 (TATA-box
binding protein associated factor 6) in Φ (∆REC = 218), and POLR2B (RNA polymerase II
subunit B) in Θ (∆REC = 485). By contrast, the expression controls of POLR2L in T (∆REC
= −144) and Θ (∆REC = -198), and GTF2E1 (general transcription factor IIE subunit 1) in Φ
(∆REC = −166), were substantially diminished. Interestingly, while the expression control
of TAF6 increased in Φ, it stayed practically the same in T (∆REC = 5), but decreased in Θ
(∆REC = −46), indicating significant changes in cancer cells’ priorities for controlling the
expression fluctuations of this gene. The increased expression control of TAF7 is justified
by its essential role for transcription, proliferation, and differentiation [88].

The coordination degree (Figure 5b) was also largely affected by cancer. The largest
increase was exhibited by ERCC3 (excision repair 3 TFIIH core complex helicase subunit)
in T (∆COORD = 34) and Θ (∆COORD = 64), and TAF1L (TATA-box binding protein
associated factor 1 like) in Φ (∆COORD = 60). Expression coordination of ERCC3, also
known as xeroderma-pigmentosum B (XPB) [89], also increased in Φ (∆COORD = 32). In
contrast, GTF2I (general transcription factor IIi) in T (∆COORD = −44), GTF2H4 (general
transcription factor IIH subunit 4) in Φ (∆COORD = −46), and TAF6 (TATA-box binding
protein associated factor 6) in Θ (∆COORD = −44) exhibited the largest decrease.

By the most comprehensive measure (Transcriptomic Distance, TD (Figure 5c)), POLR2L
had the largest contribution to the overall cancer-induced transcriptomic alteration within
this gene subset in T (TD(T) = 145, TD(Φ) = 497, TD(Θ) = 495) and GTF2I in both cell
lines (TD(T) = 45, TD(Φ) = 964 TD(Θ) = 872). The least affected genes were: POLR2H (RNA
polymerase II subunit H) in T (TD(T) = 3, TD(Φ) = 106, TD(Θ) = 157), TBP (TATA-box binding
protein) in Φ (TD(T) = 15, TD(Φ) = 26, TD(Θ) = 18), and POLR2D (general transcription
factor IIH subunit 1) in Θ (TD(T) = 15, TD(Φ) = 106, TD(Θ) = 157). The average TD of
this gene subset was 40 for the T samples, 99 for the BCPAP cells, and 94 for the 8505C
cells. It is important to note the substantially different contribution levels to the overall
transcriptomic change of this gene subset in the three types of samples.
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3.4. Cancer-Induced Remodeling of DNA Replication (DER) Pathway

Figure 6 presents the statistically (p < 0.05) significant synergism (COR > 0.950),
antagonsim (COR < −0.950), and independence (|COR| < 0.050) of the expressions of
genes involved in the sequentially connected multistep leading and lagging strands of the
DNA replication [72].
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Figure 6. Statistically (p < 0.05) significant transcriptomic network of the KEGG-constructed DNA
Replication Pathway in the: (a) normal thyroid tissue, (b) papillary thyroid cancer tissue, (c) papillary
thyroid cancer cell line BCPAP, and (d) anaplastic thyroid cancer cell line 8505C. Continuous red
lines indicate significant expression synergism (e.g., RFC1–RPA1 in (a)). Continuous blue lines (e.
RPA1–POLE4 in (c)) indicate significant expression antagonism. Dashed black lines (e.g., RPA2–
RFC4 in (b)) indicate the significant independence of the two genes. A missing line means that the
expression correlation was not (p < 0.05) statistically significant. The red/green/yellow background
of the gene symbols indicates whether that gene was significantly up-/down-/not-regulated. Gene
blocks: DPE = DNA polymerase ε complex; RPA = Replication proteins A; Helicase = MCM complex;
DPA = DNA polymerase α-primase complex; DPD = DNA polymerase δ complex, Final = the end
stage (RNaseHI–RNaseHII–Fen1–DNA ligase).
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3.5. Remodeling of the Coupling of Polymerase II Genes with Basal Transcription Factors

Figure 7 presents the statistically (p < 0.05) significant synergism and antagonism of the
expressions of the polymerase II genes with their binding partners in the four types of the profiled
samples. Figure 7 also indicates the genes within this selection that were found to be statistically
(p < 0.05) significantly regulated in the cancer samples with respect to the normal tissue.
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(b), papillary thyroid cancer cell line BCPAP (c), and anaplastic thyroid cancer cell line 8505C (d).
Note the differences in the significant coupling and the regulation of the composing genes among the
four conditions.

4. Discussion

A cancer patient is not a statistic entity, but a unique individual. Although cancer cells
proliferate uncontrollably in every diseased person, the detailed molecular mechanisms
come in unlimited flavors regulated by favoring factors whose dynamic combination is
unique to each human. Moreover, the response to the favoring factors is not determin-
istic, but stochastic in nature. Therefore, meta-analyses of large populations disregard
the personal specificity, being able to show only whether the distributions of outcomes
is biased among races, sexes, age groups, and other general common factors, including
some most frequently mutated genes like BRAF [90]. What happens to a particular gene
is not important, since its regulation is not only different from person to person, but even
among histo-pathologically distinct regions of the same tissue, as shown in many publi-
cations (e.g., [91,92]). We have also proved the transcriptomic heterogeneity by profiling
prostate [87,93] and kidney [26,56] tumors. Regardless of what happens to individual
genes, what is important is the alteration of the functional pathway as a whole and the
consequences for the proliferation of the cancer cells and invasion of other tissues. Such
alteration can occur not only through regulating the expression level of the composing
genes, but also through the remodeling of their networking and changing the differential
homeostatic control of their allowed fluctuations.

As argued in a recent Editorial [94], there is no real cancer gene biomarker, since
almost all genes were reported as mutated or/and regulated in all types of cancer cases.
There is also no fit-for-all cancer gene therapy, since not only each person, but even each
clone in the same tumor has a distinct response to the manipulation of a particular gene.
Therefore, a personalized approach is needed. Meta-analyses of large populations can
only validate the procedure to characterize the remodeling of functional pathways, nor
the statistical relevance of a particular mutation or regulation of a given gene. On this line,
this study presents the ways that thyroid cancer alters the genetic information processing
pathways in one surgically removed tumor and two standard cell lines. Previously, we have
reported significant alteration of the cell cycle, thyroid hormone synthesis, and oxidative
phosphorylation pathways in a PTC tumor [25].

As standard in our laboratory [93] and also adopted by several other laboratories
(e.g., [95–97]), the surrounding normal tissue in the tumor is the best reference to understand
the genomic changes in the cancer nodule(s). Moreover, the purpose of any anti-cancer
therapy is not to transform the tumor into the abstract average healthy human, but to
restore the normality of the current patient’s tissue. Repeating the investigation on other
patients/cell lines will only show that the genetic information processing is altered, but the
concrete alterations of individual genes would be most likely different.

In this report, we used the GFP algorithms [45] to reveal the novel characteristics
of the transcriptome that are ignored by the traditional analysis limited to the genes’
expression levels (e.g., [16,98]). Adding the independent REV and CORs characteristics
to the AVE of each individual genes increased the information obtained from our gene
expression experiments on thyroid cancer samples by almost 75 hundred times [49,52]. The
independence of the three characteristics, presented here for 30 DNA replication genes in
all four types of samples, was confirmed for several other gene sets profiled on surgically
removed tumors from the kidney [26,56], prostate [87,93], and thyroid [25]. Altogether,
AVEs, REVs, and CORs of all genes characterize the transcriptome as complete, as the
numbers (AVE) of electronic devices of each type, their wiring (COR), and applied limits to
the voltage fluctuations (REV) characterize a supercomputer. By evidence, only knowing
the numbers of electronic devices of each type is not enough to build the supercomputer,
since there are almost infinite possibilities to wire and subject them to voltage oscillations.



Genes 2024, 15, 621 15 of 24

REV (Equation (A3)) and COR (Equation (A4)) were used to define the derived charac-
teristics of individual genes REC (Equation (A5)) and COORD (Equation (A6)). The derived
characteristics were used to define the novel measures of transcriptomic alteration ∆REC
(Equation (A10)) and ∆COORD (Equation (A11)).

It is important to specify that the arbitrarily introduced (1.5× or 2.0×) absolute fold-
change cut-off to consider a gene as significantly regulated was replaced by the flexible
CUT (Equation (A7)). CUT is computed for each transcript by evaluating the biological
variability of the expression level across biological replicas and the technical noise of the
probing spots in the compared conditions. Also important is that the expression levels of
adequately quantified genes were normalized to the median expression of all genes in that
condition, which improves the accuracy of the conditions’ comparisons.

Instead of the traditional percentages of up- and down-regulated genes that is limited
to the significantly regulated, implicitly considering every affected gene as a uniform
+1/−1 contributor to the expression profile alteration, we use the Weighted Individual
(gene) Regulation (WIR; Equation (A8)). WIR takes into account the total change of the
expression level and the statistical confidence of the regulation. Altogether, WIR, ∆REC,
and ∆COORD were incorporated into TD (Equation (A12)), the most theoretically possible
comprehensive measure of the cancer-related transcriptomic change.

In the presented analyses, the transcriptomic regulations in the cancer samples T, Φ,
and Θ were referred to the gene expression profile of the surrounding normal tissue in the
surgically removed PTC tumor. While such comparison is natural for the cancer nodule, it
might be disputable for the cell lines because of the differences in the cellular environment.
In separate studies, we proved the profound remodeling of the transcriptomes of each of
two cell types (mouse cortical astrocytes and immortalized precursor oligodendrocytes)
when co-cultured in insert systems [99,100]. These results suggest that a homo-cellular
culture does not exactly repeat the genomic properties of the main cell type in the tissue.
Moreover, a comparison of the gene expressions in cultured PTC cells and anaplastic
thyroid cancer (ATC) cells indicated that, after several passages, the PTC cells profile
evolves closer to that of the ATC cells [54].

Nevertheless, although the (2–6 mm3) tissue samples were collected from the most
apparently homogeneous regions of the surgically removed thyroid tumor, it is no guaranty
that blood and immune cells were not present. Thus, more than reflecting normal and
cancer thyrocytes, the recorded transcriptomic profiles are actually weighted averages of
the transcriptomes of several types of cells, which is one substantial imitation of our work.

The functional pathways analyzed in Table 1 are not mutually exclusive. For in-
stance, POLD4 (polymerase (DNA-directed), delta 4, accessory subunit) is included in
hsa03030 DNA replication, hsa03410 Base excision repair, hsa03420 Nucleotide excision
repair, hsa03430 Mismatch repair, and hsa03440 Homologous recombination. Interest-
ingly, while we found POLD4 as significantly up-regulated (x = 1.90) in the malignant part
of the tumor compared to the normal region, it was massively down-regulated in both
BCPAP (x = −26.96) and 8505C (x = −39.64) cells. A recent meta-analysis of TCGA (The
Cancer Genome Atlas) data [101] has shown that POLD4 was significantly overexpressed
in 17 types of cancer compared to the adjacent normal tissue. Our results again indicate
the limitations of the standardized cancer cell lines to replicate the characteristics of the
real tumors, owing to the potential in vitro evolution and genomic instability caused by
repeated passages of the cultured cells [54].

Figure 3 shows how the expressions of genes involved in the protein processing in
endoplasmic reticulum were regulated in the cancerous part of the thyroid tumor. Inter-
estingly, the ubiquitination gene UBXN1 (UBX domain protein 1), an important negative
regulator of the unfolded protein response [102], was significantly up-regulated in the
profiled tumor (x(T) = 1.75), but massively down-regulated in both cell lines (x(Φ) = −41.96,
x(Θ) = −106.57). While depletion of UBXN1 might be profitable for cancer cell survival
and proliferation through protecting against endoplasmic reticulum (ER) stress [103,104],
its up-regulation might facilitate migration and invasion of the cancer cells within the
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thyroid tissue, as reported in prostate cancer [105]. Therefore, we speculate that, although
in apparent contradiction, both UBXN1 up-regulation in the tissue (Figure 3) and UBXN1
down-regulation in the homo-cellular BCPAP and 8505C cultures are justified by the
molecular mechanisms controlled by the encoded protein. PTRF and UBE2O (ubiquitin-
conjugating enzyme E2O) are other examples of genes that were not affected in the tumor
but significantly regulated in both BCPAP (xPTRF = −31.50, xUBE2O = 28.86) and 8505C
(xPTRF = -58.42, xUBE2O = 11.70) cell lines. UBE2O was reported to ubiquitinate PTRF and
inhibit the “secretion of exosome-related PTRF/CAVIN1” [106].

Figure 4 justifies the increased proliferation of the cancer cells through up-regulated
CCND1 (x(T) = 3.48; x(Φ) = 4.78; x(Θ) = 8.85), one of the 20 hub genes used as a biomarker
for thyroid cancer [107]. Survival of the cancer cells is optimized through the up-regulation
of several key genes, ensuring evading apoptosis such are BIRC5 (x(T) = 6.04) and DDB2
(x(T) = 2.37). BIRC5 (x(Φ) = 10.70; x(Θ) = 7.35) is known for promoting multidrug resistance to
chemotherapy [108], and the oncogenic roles of DDB2 were reported in a recent review [109].
However, with respect to the normal thyroid tissue, DDB2 was significantly downregulated
in both cell lines (x(Φ) = −3.01; x(Θ) = −22.00). Within a hetero-cellular tissue (composed of
normal and cancer thyrocytes and potential presence of immune cells), over-expression
of genes such is DDB2 accelerates cancer cell proliferation and invasion of the thyroid.
Nevertheless, expression of genes that are no longer necessary is diminished in homo-
cellular cultures [54].

The study proved that regulation of the gene expression profile is only a part of
the global cancer-induced transcriptomic alteration, as shown in Figure 5 for 51 RNA
polymerase II genes and their binding partners. We believe that changes in the control of
genes’ expression fluctuations and their inter-coordination should also be considered and
eventually incorporated into the more general measure like the Transcriptomic Distance.

On average, REC increased in T by 2%, in Φ by 28%, and in Θ by 20%. An increased
control limits the fluctuations of the expression level within a narrow interval, while
a decreased control allows the genes to easily adapt their expression levels to various
environmental conditions. We believe that the Relative Expression Control is an indirect
measure of cell’s priorities to ensure the right expression levels of critical genes for its
survival and proliferation. As such, the regulation of REC gives important information
of how cancerization has changed the cells’ priorities. We found a huge increase in the
expression control of POLR2B in both the anaplastic (∆REC = 485) and the papillary
(∆REC = 206) thyroid cancer cell lines, but not in the tumor (∆REC = 5). The differences
might be explained by the potential effects of the encoded protein on the tumor growth
as recently reported in glioblastoma [110]. On the other hand, the much stricter control of
TAF6 in the BCPAP cells while being looser in the 8505C cells and practically not affected
in the surgically removed cancer specimen may indicate different anti-tumor molecular
mechanisms [111]. It is interesting to note that POLR2B was up-regulated in both cell
lines, but not in the tumor (x(T) = 1.15; x(Φ) = 74.40; x(Θ) = 80.06), while TAF6 was down-
regulated in both cell lines, but not in the tumor (x(T) = −1.02; x(Φ) = −1.91; x(Θ) = −3.24).
Thus, although, for the investigated thyroid tissue, both POLR2B and TAF6 might be
used as housekeeping genes [112], they are not suitable as references for cultured thyroid
cancer cells.

For the gene set in Figure 5b, on average, the coordination degree decreased in T
(∆COORD) = −7.76), but increased in the two cell lines (∆COORD) = 8.96 in Φ and
∆COORD) = 16.80 in Θ). Increased coordination means more synchronization of the genes’
expressions with direct consequences on the pathway efficiency. By contrast, decreased
coordination makes the pathway more flexible through letting genes fluctuate their expres-
sion levels more independently. It seems natural to assume that the transcription pathways
need more flexibility to adapt to the tissue heterogeneity, while in a homo-cellular dish the
pathway efficiency comes first.

The high contributions of POLR2L to the transcriptomic alteration in all three types of
thyroid cancer samples, as measured with the Transcriptomic Distance (Figure 5c), indicate
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that it might be a good target for anti-thyroid cancer gene therapy, as was suggested for
prostate cancer [113]. Interestingly, the main contribution to the TD separating the state
of a gene in a cancer sample with respect to the normal thyroid tissue may come from
any of the three types of individual gene characteristics. Thus, in the case of POLR2L,
TD(T) = 145 comes mainly from the regulation of the expression control (∆REC(T) = −142).
In contrast, in the cell cultures, the large TDs (TD(Φ) = 497; TD(Θ) = 495) came from
their WIRs (WIR(Φ) = −487; WIR(Θ) = −452), because of the substantial down-regulations
(x(Φ) = −27.91; x(Θ) = −25.97). The differences between the tumor and the cell cultures
indicate that, although POLR2L is a major player in the development of several forms of
thyroid cancers, the involved molecular mechanisms are distinct. Therefore, the therapy
targeting this gene should be tailored to the specificity of the cancer form and patient
personal characteristics.

Figures 6 and 7 show how cancer remodels the gene network responsible for the DNA
Replication and the coupling of the Polymerase II complex genes to the basal transcription
factors in the investigated three types of thyroid malignancy. Expression levels of syn-
ergistically expressed genes fluctuate in the phase (simultaneously going up and down)
across the biological replicas, while those of the antagonistically expressed fluctuate in
the anti-phase (when one goes up the other goes down). Thus, COR analysis indirectly
measures the expression synchronization of the coordinated genes. On the other hand, ex-
pression independence tells us that there is most likely no direct interaction of the encoded
products by the two genes. Missing continuous red/blue or dashed black lines between
the two genes does not mean that they do not interact, but that their expression correlation
is not statistically significant in that condition. In addition to the substantial yet different
remodeling of the transcriptomic network, it is also important to note the very different
regulations of the gene expression profiles in the three types of thyroid cancer samples.

There are four main take home findings in Figure 6:

(i) Cancer remodels the DNA replication pathway, as can be seen by comparing the gene
network in the normal tissue (Figure 6a) and the malignant part (Figure 6b) of the
same thyroid. Changes in the DER genes’ interaction might provide a complementary
explanation for cancer development beyond the driving mutations [114].

(ii) Expression correlation is independent of the regulation status of the linked genes. For
instance, in “DPD →Final”, there is a significant synergism between the not-regulated
FEN1 and REC1 in the PTC nodule of the tumor ((COR = 0.978; (Figure 6b)), but
also between the up-regulated FEN1 and the down-regulated REC1 in the BCPAP
cells (COR = 0.951; Figure 6c). The FEN1–REC1 synergism was very near the 0.950
statistically significant cut-off in the normal tissue (COR = 0.944), but less close in the
8505C cells (COR = 0.749). FEN1 was reported to promote cancer cell proliferation,
migration, and invasion [115] in biliary tumors.

(iii) The remodeling depends on the form of thyroid cancer (see the differences between
the papillary (Figure 6c) and anaplastic (Figure 6d) cell lines). For instance, the
significant antagonism of the significantly down-regulated genes RPA2 and POLE4 in
the BCPAP cells is switched into a significant synergism in 8505C cells (also present in
the normal tissue). Although miR-519 was identified as a common upstream regulator
of both RPA2 and POLE4 [116], our result might be the first confirmation of their direct
interaction.

(iv) Each affected person has a distinct DER gene network, as shown by the differences
between the network in Figure 6b (PTC tumor collected from the thyroid of a 33y
old Asian woman) and that in Figure 6c (PTC collected from a 76y old Caucasian
woman [117]). For instance, the independently expressed RPA2 and REC4 in T are
synergistically expressed in Φ (and also in Θ). This difference indicates the distinct
molecular mechanisms of the DNA replication in the papillary cancer nodules of the
two PTC donors which requires the personalized approach of anti-cancer therapy
(e.g., [26,87,93]).

The general findings from Figure 6 can be also retrieved in Figure 7:
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(i) Cancer remodels the significant expression coordination of polymerases with their
targeted partners (compare the correlations in the normal tissue (Figure 7a) and the
malignant part (Figure 7b) of the same thyroid.

(ii) Expression correlation is independent of the regulation status of the linked genes. For
instance, POLR2H, a prognosis gene for the lung squamus cell carcinoma [118] and
ERCC3 are synergistically expressed in both T and Φ samples, although POLR2H was
up-regulated in T but down-regulated in Φ.

(iii) The remodeling depends on the form of the thyroid cancer (see differences between
the papillary (Figure 7c) and anaplastic (Figure 7d) cell lines).

(iv) Each affected person has distinct gene networks, as shown by the differences between
the correlations in the two PTC type samples T and Φ. For instance, POLR2H and
CDK7 are synergistically expressed in T, but are antagonistically expressed in Φ.

5. Conclusions

By providing the most theoretically possible comprehensive measure of the tran-
scriptome alteration in cancer, the GFP approach is the alternative of choice to the gene
biomarker paradigm. However, GFP findings should be completed by better equipped
laboratories through proteomics experiments to validate and quantify at the protein level
the remodeling of the genetic information processing pathways identified by us at the
transcript level. This is not an easy task since both the transcriptomic and the proteomic
experiments should be carried on samples collected from the same hetero-cellular regions
of the same tumor. Although investigating tumors from different persons would most
likely identify distinct regulations of individual genes, the overall correlation between the
transcriptomic and the proteomic alterations might remain. Thus, the value of the present
study resides mainly in the methodological avenue towards the personalized approaches
of cancer gene diagnosis and therapy.
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Appendix A. Primary Transcriptomic Characteristics of Individual Genes

1. Normalized expression level of gene “i” in the biological replica “k” of condition “c”:

∀c = N, T, Φ, Θ & k = 1 ÷ 4 α
(c;k)
i ≡

a(c;k)
i〈

a(c;k)
j

〉
j=1÷N

⇒
〈

α
(c;k)
j

〉
j=1÷N

= 1 (A1)
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ai
(c;k) is the sum of net florescences of all microarray spots probing gene “i” in the

biological replica “k” of condition “c”.
2. Average expression level (AVE) of gene “i” in the biological replica “k” of condition “c”:

AVE(c)
i ≡

4

∑
k=1

α
(c;k)
i (A2)

3. Relative expression variation of gene “i” in the biological replica “k” of condition “c”:

REV(c)
i (α) ≡ σ

(c)
i

2AVE(c)
i

(√
ri

χ2(β;r) +
√

ri
χ2(1−β;r)

)
× 100% , where :

σ
(c)
i = sdev

(
α
(c;k)
i

)
k=1÷4

, β (usually β= 0 .05) is the probability,

ri is the number of degrees of freedom, ri = nνi − 1

(A3)

and χ2 is the chi-square score with β probability for r degrees of freedom.
4. Pair-wise correlation (COR) of the expression levels of genes “i” and “j” in condition “c”:

COR(c)
i,j ≡

4
∑

k=1

(
log2 α

(c;k)
i − log2 AVE(c)

i

)(
log2 α
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∑
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i

)2
√

4
∑
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(
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(c;k)
j − log2 AVE(c)

j
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(A4)

Appendix B. Secondary Transcriptomic Characteristics of Individual Genes

1. Relative Expression Control (REC) in condition “c”:

REC(c)
i ≡


〈

REV(c)
j

〉
REV(c)

i

− 1

× 100% (A5)

where
〈

REV(c)
j

〉
is the median of the REVs of all quantified unigenes in the respective

condition. Positive REC values indicate genes with stronger expression control, while
negative values point to genes with lesser expression control.

2. Coordination degree (COORD) of gene “i” in the biological replica “k” of condition “c”:

COORD(c)
i ≡ SYN(c)

i + ANT(c)
i − IND(c)

i (A6)

where: SYN/ANT/IND are the percentages of statistically (p < 0.05) significant syner-
gistically, antagonistically, and independently expressed genes with gene “i” in the
biological replica “k” of condition “c”.

Appendix C. Criteria and Measures of Transcriptomic Alterations of Individual Genes
and Functional Pathways

1. Statistically significant regulation of the expression level:

Abs
(

x(cancer→N)
i

)
≥ CUT(cancer→N)

i = 1 +

√√√√2

((
REV(cancer)

i
100

)2

+

(
REV(N)

i
100

)2
)

& p(cancer→N)
i < 0.05

where : x(cancer→N)
i =


AVE(cancer)

i

AVE(N)
i

i f AVE(cancer)
i ≥ AVE(N)

i

− AVE(N)
i

AVE(cancer)
i

i f AVE(cancer)
i < AVE(N)

i

, cancer = T, Φ, Θ

(A7)

2. Weighted Individual (Gene) Regulation:
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WIR(cancer→N)
i ≡ AVE(N)

i
x(cancer→N)

i

Abs
(

x(cancer→N)
i

)(Abs
(

x(cancer→N)
i

)
− 1
)

︸ ︷︷ ︸
absolute fold−change

(
1 − p(cancer→N)

i

)
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confidence

(A8)

3. Weighted Pathway Regulation:

WPR(cancer→N)
Γ = Abs

(
WIR(cancer→N)

i

)⌋
iϵΓ

(A9)

4. Regulation of the Expression Control:

∆REC(cancer→N)
i ≡ const

REV(cancer)
i

− const

REV(N)
i

, const= calibration constant (A10)

5. Regulation of the Coordination Degree:

∆COORD(cancer→N)
i ≡

(
COORD(cancer)

i − COORD(N)
i

)
(A11)

6. Transcriptomic Distance:

TDI(cancer→N)
i,Γ ≡
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(

WIR(cancer→N)
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expression level
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