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Abstract: The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many
metabolic pathways of plant physiology and development, including flavonoid metabolism and
anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed
genome-wide, and the family members were identified and characterized using the high-quality
walnut reference genome “Chandler 2.0”. All 204 JrR2R3-MYBs were established and categorized
into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chro-
mosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements
exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress
response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental
duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying
selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process
of walnut organ development and differentially expressed in different colored varieties of walnuts.
Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate an-
thocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present
in greater expression levels in ‘Zijing’ leaves than in ‘Lvling’ leaves, as revealed by the results of
qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs
in walnut coloration. Collectively, this work provides a foundation for exploring the functional
characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance
quality of walnuts.

Keywords: Juglans; JrR2R3-MYB; transcriptome anthocyanin biosynthesis

1. Introduction

The common walnut (Juglans regia L.) is one of the most important woody plant
resources in the world [1]. The economic value of walnut plants is reflected in their
nutrient-rich nuts and high-quality timber, each of which are extremely affected by phenolic
compound synthesis pathways [2,3]. There is clinical evidence that walnuts can prevent
coronary heart disease and promote cardiovascular health [4], and these benefits are
closely related to the fact that walnuts are abundant in polyphenols, especially flavonoids.
Common walnuts have green leaves and husks and light yellow to brown seed coats [5],
but the ‘Zijing’ walnut variety currently found in Beijing, China, has purplish-red branches,
leaves, flowers, husks, and seed coats and is rich in anthocyanins [6]. Walnut color is one
of the key attributes that promote walnut sales and cater to consumer preferences [7], and
walnuts with a purplish-red seed coat are favored by consumers for their rich anthocyanin
content. However, the important genes that regulate the color of walnuts are still largely
unknown. Anthocyanins, which are flavonoids, are indespensible components with regard
to plant coloration [8]. The accumulation of anthocyanins can allow plants to resist a
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variety of environmental stresses, attract pollinators, and spread fruit [9,10]. In addition,
anthocyanins are anti-inflammatory, inhibit bacteria, prevent cardiovascular disease, lower
blood sugar levels, improve vision, prevent Alzheimer’s disease and cancer, etc [11]. In
recent years, researchers have also found that anthocyanins can alleviate psychological
disorders such as depression in adolescents [12]. Therefore, the synthesis of anthocyanins
is essential for plant growth and attracting consumers. Anthocyanin metabolism pathways
in plants have been investigated widely [13,14]. MYB, bHLH, and WD40 are essential
transcription factors that regulate these pathways [15], and the MYB gene family plays the
most critical role in fruit coloring among them [16]. MdMYB10 can be combined with its
own promoter to control the red coloration of apples [17], and MdMYB110a has also been
found to synthesize anthocyanins in the cortex of red-fleshed apples in the later stages of
maturity [18]. Grape VvmybA1 and its homologs VlmybA1-1 and VlmybA1-2 can regulate
anthocyanins in purple grapes [19]. It is worth exploring whether the MYB gene family
also plays a critical part in walnut color regulation.

MYB is the largest family that plays critical parts in transcriptional regulation in
plants [20]. All MYB factors are characterized by a conserved DNA-binding domain, which
typically consists of 1–3 incomplete repeats (R1, R2, and R3). Every duplicate contains a
helix–turn–helix motif variation, which creates a hydrophobic core in the 3D HTH architec-
ture [21]. Moreover, each imperfect repeat consists of approximately 51 or 52 amino acids,
containing three conserved tryptophans, segregated by 18 or 19 amino acid remnants [22].
According to the number of MYB domains, they can be organized into multiple subfamilies,
mainly including 1R-MYB, R2R2-MYB, R1R2R3-MYB, and 4R-MYB. As an uncommon
type, 5R-MYB also exists in MYB gene family [23]. R2R3-MYB is the most numerous and
powerful subtribe of the MYB gene family, and the genes in this subfamily all contain two
repetitive domains [8,24]. The R2R3-MYB conserved domains are normally positioned at
the end of a protein’s N-terminus, while the C-terminus of a protein varies considerably and
often functions as a transcriptional activation or repression domain [25]. Recent research
showed that CgsMYB12 is involved in the formation of anthocyanin pigments at the base
of Clarkia gracilis ssp. sonomensis petals [26]. The activator-type R2R3-MYB gene PpMYB18
in Prunus persica entrains balanced anthocyanin and proanthocyanidin accumulation in the
inhibitory-type gene [27]. SsMYB1 can be positively regulated via anthocyanin biosynthesis
by stimulating the SsDFR1 and SsANS and influencing leaf discoloration in Sapium sebiferum
Roxb [28]. It can be gleaned from the above that the R2R3-MYB gene family plays crucial
roles in the anthocyanin synthesis pathway. So far, the R2R3-MYB gene family has been
identified in many species, for example, maize, soybean [29,30], Gossypium raimondii [31],
Medicago truncatula [32], and octoploid Fragaria × ananassa [33]. Phylogenetic trees of 126
AtR2R3-MYB proteins have been constructed in Arabidopsis, and 90 of them are divided into
23 subgroups (S1-S25, without S8 and S17) according to the evolutionary relationship [34].
Nevertheless, there has not been a comprehensive and systematic genome-wide analysis
of the JrR2R3-MYB gene family, and little is known about the key R2R3-MYB genes in
walnut coloration.

Accordingly, we conducted a genome-wide analysis of walnut; identified and named
MYB members, determined chromosome locations, performed collinearity analysis, de-
termined phylogenetic relationships and physicochemical properties, made subcellular
location predictions, and ascertained the promoter characteristics, conservative motifs, gene
structures, and expression profiles of JrR2R3-MYB members. Furthermore, 9 JrR2R3-MYB
genes that might be involved in anthocyanin synthesis in the ‘Zijing’ walnut vairety were
discovered. This study provides a foudation for an intensive study of novel R2R3-MYB
genes in anthocyanin synthesis and will help to further uncover the functional characteris-
tics of JrR2R3-MYBs in walnuts. Meanwhile, it provides important clues for improving the
nutritional value and appearance quality of walnuts to attract consumers.
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2. Materials and Methods
2.1. Genome-Wide Identification of JrR2R3-MYBs

To obtain JrMYB candidate members, 132 AtMYB sequences were obtained from
TAIR [35] and employed as the query. The walnut reference genome was obtained from
NCBI (Chandler 2.0) [36]. Local BlastP was used to find JrMYB candidate members with
E-values < 1 × 10−5; then, the candidate members without SANT domain were removed by
searching in SMART [37]; finally, all members of the JrMYB gene family were determined.
To divide JrMYB genes into subfamilies, the conserved domains of all members were
visualized using TBtools software [38] based on the SMART results.

2.2. Chromosome Location and Collinearity Analysis of JrR2R3-MYBs

The locations of all JrMYBs on the chromosome were displayed using TBtools soft-
ware [38]. Based on the distribution information, all members of the JrMYB family were
named. MCScanX software [39] was employed to determine the gene collinearity rela-
tionships among JrR2R3-MYBs, and Circos software [40] was employed for visualization.
Analysis of the collinearity of the JrR2R3-MYBs between walnut and three other selected
species (Arabidopsis, J. mandshurica, and J. nigra) was carried out using MCScanX soft-
ware [39]. Genomic data on Arabidopsis were obtained from TAIR [35]. The genomes of
J. nigra [41] and J. mandshurica [42] were obtained in our previous study.

2.3. Phylogenetic Analysis of JrR2R3-MYBs

We constructed a maximum likelihood (ML) phylogenetic tree based on the pro-
tein sequences of JrR2R3-MYBs, AtR2R3-MYBs, and OsR2R3-MYBs [43] using IQ-tree
software [44] (Bootstarp:1000; Best BIC score model: JTT + R10) and beautifiedit using
iTOL [45].

2.4. Characteristic Information regarding JrR2R3-MYB Proteins

The physicochemical properties of JrR2R3-MYBs were determined using ExPASy [46].
The prediction of subcellular location was performed using WoLFPSORT [47].

2.5. Conserved Motif, Gene Structure, and Cis-Element Analysis of JrR2R3-MYBs

Conserved motifs in JrR2R3-MYBs were detected with the MEME Suite [48], and the
maximum number of motifs was determined to be 20. All JrR2R3-MYBs structures were
analyzed using the GSDs [49] and visualized via TBtools software [38]. Cis-elements were
determined by searching the sequences of the promoter region (2000 bp upstream of the
translational start sites of genes) using PlantCARE [50].

2.6. JrR2R3-MYB Transcriptome Pattern Analysis and qRT-PCR Experiments

To perform transcriptome analysis, multi-organ gene expression data were obtained
from the publicly available Sequence Read Archive database [51]. Gene expression data for
red and green walnut were retrieved from NCBI (GSE162007, and PRJNA688391) [7], where
leaves and peels were obtained from red (RW-1) and green (Zhonglin-1) walnuts. Then, to
identify the JrR2R3-MYBs associated with the regulation of walnut color development, we
selected the leaves of walnut varieties ‘Zijing’ and ‘Lvling’ for transcriptome sequencing.
The ‘Zijing’ walnut is an entirely purplish-red tree, including branches, stems, leaves,
female flowers, husks, and seed coats. ‘Zijing’ walnut is rich in anthocyanins, resulting
in a purplish-red color all over its body, while ‘Lvling’ walnut is a common green variety
that has green leaves, green male flowers, green husks, pale-yellow female flowers, yellow
kernels, and pale-yellow inner seedcoats. This variety is characterized by large fruits, high
kernel yields, and high fat and protein content. In addition, because of its good resistance,
it is loved by fruit growers and widely cultivated throughout China (Figure S1) [52]. All
samples were collected in May from six-year-old saplings at the Xi’an Botanical Garden
in Shannxi, China. The raw data were initially filtered to extract high-quality clean data.
Fitness sequences and low-quality reads were eliminated from the raw reads. Reads were
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mapped to the Chandler v2.0 genome using HISAT2 software [53], and then the mapped
reads were arranged using StringTie [54] with default parameters. The gene expression
levels of FPKM values were used to measure a gene or transcript through StringTie [55].
Differential expression analyses were processed using DESeq2 [56]. JrR2R3-MYBs were
screened from the differentially expressed genes (DEGs) of the transcriptome, and we
investigated whether they were associated with the regulation of anthocyanin synthesis
based on FPKM values. To screen for genes involved in walnut coloration, we constructed
a phylogenetic tree (ML; Bootstarp:1000) showing the different JrR2R3-MYBs and other
R2R3-MYBs known to participate in anthocyanin synthesis, such as ZmC1, AtMYB123,
MdMYB10, FaMYB10, and ROSEA1.

To inquire into the expression patterns of anthocyanin synthesis associated with
JrR2R3-MYBs in walnuts, we collected the leaves of the ‘Lvling’ and ‘Zijing’ walnut varieties
at the same developmental stage (ripening stage). The ‘Zijing’ leaves were provided
by Beijing international walnut manor in Qingshui town, Mentougou district, Beijing.
The total RNA was collected using the PLANT RNA kit (50) developed by OMEGA,
Norcross, GA, USA. The eligibility of RNA samples was measured with Nano drop 2000
spectrophotometer. Subsequent qRT-PCR experiments were conducted to validate the
significant differences expressed by JrR2R3-MYBs. The walnut β-actin gene was employed
as an endogenous gene [57]. Primers were devised through Primer3Plus (Table S1) [58].
qRT-PCR results were calculated using the 2-∆∆CT method [59].

2.7. Protein–Protein Interactions and MicroRNA Targeting Analysis

The nine JrR2R3-MYB sequences associated with walnut color regulation were input
into STRING [60] to predict the interactions of these proteins. The nucleotide sequences
of these 9 JrR2R3-MYBs were submitted to analysis using psRNATarget [61] to predict the
targeted miRNAs. Visualization was conducted using Cytoscape software [62].

3. Results
3.1. Genome-Wide Identification and Chromosomal Distribution of JrR2R3-MYBs

We identified 224 JrMYBs according to the walnut reference genome Chandler v2.0. All
identified JrMYB proteins contain the MYB domain repeat SANT, and four subfamilies were
identified, including 11 1R-JrMYBs, 204 JrR2R3-MYBs, 8 R1JrR2R3-MYBs, and 1 5R-JrMYB
(Figure S2). Among them, JrR2R3-MYB was the largest MYB subfamily, comprising 91.1%
of the JrMYB gene family. To aid the subsequent study, we renamed all the JrR2R3-MYBs
according to chromosomal position.

The chromosomal locations showed that all the JrMYBs mapped to walnut chromo-
somes 1 to 16, for which 204 genes were R2R3-MYB. Although all 16 walnut chromosomes
included some JrR2R3-MYBs, the allocation seemed to be non-uniform. The greatest
quantity of JrR2R3-MYBs were found on chromosome 1, with 32 genes, while the lowest
quantities were found on chromosomes 5, 11, 14, and 16, with 8 genes. The 224 JrMYBs were
named JrMYB1-JrMYB224 according to their locations on the 16 chromosomes (Figure 1).
The density of JrR2R3-MYBs was relatively high in certain chromosomal regions, for ex-
ample, the ends of chromosomes 1, 9, and 10 and the central section of chromosome 4.
In contrast, several large chromosomal central regions lacked JrR2R3-MYBs, for instance,
chromosomes 7, 11, 12, 13, 15, and 16.
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3.2. Phylogenetic Analysis of JrR2R3-MYBs

An ML tree containing 204 JrR2R3-MYBs, 90 AtR2R3-MYBs, and 99 OsR2R3-MYBs
was constructed to analyze the phylogenetic relationships (Figure 2). All the members
of the JrR2R3-MYB family can be divided into 30 subgroups (W1-W32 without W8 and
W17) based on the results of the phylogenetic analysis, among which groups W1-W25
correspond to S1-S25 in AtMYB of Arabidopsis. Most of them contain R2R3-MYBs from
three species at the same time, indicating a close phylogenetic relationship between them.
Notably, there were seven subgroups (W26-W32) that were clustered only with JrR2R3-
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MYBs and OsR2R3-MYBs, suggesting that these genes may have evolved independently of
each other after the divergence of walnuts or rice. In addition, the results based on branch-
length variations showed that individual gene pairs had longer evolutionary branches
between them (Figure S3), suggesting that these genes may have undergone large mutations
during evolution (Os05g37730 and Os01g04930; and JrMYB156, JrMYB211, and JrMYB193).
Previous studies have shown that four branches, S4, S5, S6, and S7, are involved in the
plant flavonoid metabolic pathway and anthocyanin synthesis. The S4 subgroup encodes
transcription repressors, the S5 subgroup regulates the synthesis of proanthocyanidins in
Arabidopsis, the S6 subgroup closely participates in anthocyanin synthesis in plant nutrient
tissues, and the S7 subgroup can regulate the synthesis of flavonols. The phylogenetic
relationships showed that there were 39 JrR2R3-MYB genes closely related to the evolution
of the S4-S7 subgroups of R2R3-AtMYB.
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3.3. Collinearity Analysis of JrR2R3-MYBs

This study investigated gene duplication events, including whole-genome duplication
(WGD) or segmental duplication, proximal duplication (PD), and tandem duplication
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(TD), and aims to elucidate the expansion mechanism of JrR2R3-MYBs developed during
evolution. We found that WGD duplication accounted for 158 of the 204 JrR2R3-MYBs
(77.45%). There were 21 JrR2R3-MYBs that underwent TD (10.30%), while 17 JrR2R3-
MYBs experienced DSD (8.33%), and 8 JrR2R3-MYBs experienced PD (3.92%, Figure S4;
Table S2). Walnut contains subgenomes, which were divided into two groups of homol-
ogous subgenomes, namely, a dominant subgenome (DS) and a submissive subgenome
(SS), and the 16 chromosomes of walnut were divided into eight pairs of chromosomes
based on their homologous relationships [63]. Among them, Chr1 and Chr10, Chr2 and
Chr9, Chr3 and Chr4, Chr6 and Chr15, Chr7 and Chr12, Chr11 and Chr8, Chr13 and Chr16,
and Chr14 and Chr5 are homologous chromosomes with respect to each other. There were
98 JrR2R3-MYBs (48.04%) that have homologous counterparts in the syntenic region of
related chromosomes (Table S3). In addition, 148 homologous JrR2R3-MYB gene pairs were
identified (Figure 3). Based on synonymous (Ks) and non-synonymous (Ka) values, it was
determined that 148 homologous gene pairs had Ka/Ks ratios less than 1, demonstrating
that these genes are under negative selection (Table S3).
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Furthermore, to inspect the potential evolution of R2R3-MYBs of the common walnut,
we performed a collinearity analysis between three Juglans species (J. regia, J. mandshurica,
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and J. nigra) and Arabidopsis. Walnut and Arabidopsis have 208 JrR2R3-MYB homologous
gene pairs (Figure 4A). JrR2R3-MYBs have 434 homologous gene pairs with respect to
J. mandshurica (Figure 4B) and 492 homologous gene pairs with respect to J. nigra (Figure 4C).
These results indicate that the three Juglans species are more tightly involved with each
other than Arabidopsis. In comparison, walnut was more closely related to J. nigra than to
J. mandshurica.
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3.4. Physicochemical Properties and Prediction of Subcellular Locations

The 204 JrR2R3-MYB proteins ranged in length from 118 aa (JrMYB107) to 1009 aa
(JrMYB156); the average length was 328 aa. The molecular weight of all JrR2R3-MYBs
ranged from 13.5 kDa (JrMYB107) to 113.0 kDa (JrMYB156); the average molecular weight
was 36.9 kDa. There were 126 acidic proteins (with an isoelectric point < 7) and 78 basic
proteins (with an isoelectric point > 7), with an average isoelectric point of 6.91. Among
these proteins, there were 13 with instability index values less than 40, while the others had
values greater than 40, indicating that there were only 13 stable proteins. In addition, the
GRAVY (grand average of hydropathicity) of all the JrR2R3-MYBs in J. regia was negative,
showing that JrR2R3-MYBs are hydrophilic. As expected, all the JrR2R3-MYBs were found
to be situated in the nucleus (Table S4).

3.5. Characteristics of JrR2R3-MYBs

The prediction of cis-acting elements revealed four major functional categories: plant
growth and development, light response, metabolic response, and stress response
(Figures 5 and S5). The highest number of light-responsive elements was 1068, followed by
621 gibberellic acid-responsive elements and 524 MeJA-responsive elements. Furthermore,
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elements related to flavonoid regulation were predicted, indicating that JrR2R3-MYB might
be closely associated with the flavonoid metabolic pathway.
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We detected 20 conservative motifs from among all the JrR2R3-MYB members. The
number of amino acids per conserved motif varies from 8 to 50. All JrR2R3-MYBs contained
motif 2 and motif 3, whereas motif 9, motif 11, motif 14, and motif 18 only existed in a few
members. Generally, the same subpopulation has not only comparable features but also
similar motifs (Figure S6).

Gene architecture analysis revealed that the exon numbers of JrR2R3-MYBs varied
from 1 to 12, with an average of 3. The range of exon numbers varied greatly, but the
majority of the structures of the JrR2R3-MYB genes still consisted of three exons. The results
suggest that genes on the identical branches might have comparable exon–intron structures
(Figure S7).

3.6. Expression Profiles of JrR2R3-MYBs

To explore the expression patterns of JrR2R3-MYBs, we visualized all the R2R3-MYB
genes identified based on transcriptomic data present in vegetative buds, embryos, somatic
embryos, young leaves, leaves, roots, callus exterior, pistillate flowers, catkins, hull peels,
hull cortexes, immature hulls, hulls, and immature fruit expressed in 14 selected organs
(Figure 6, Table S5). The transcriptome results showed that all 196 JrR2R3-MYB genes except
JrMYB17, JrMYB19, JrMYB53, JrMYB64, JrMYB65, JrMYB124, JrMYB190, and JrMYB191
were expressed in the selected tissues. The eight unexpressed genes may be expressed in
other developing organs or during other developmental periods. Most of the JrR2R3-MYBs
were highly expressed in the roots, leaves, catkins, pistillate flowers, and callus exterior.
The different expression patterns in different organs suggested that JrR2R3-MYB genes
play different roles in the growth and development of walnuts.

Subsequently, to investigate the regulation of walnut color by JrR2R3-MYB genes, the
expression profiles of all the identified R2R3-MYBs were analyzed in the leaves and peels of
red and green walnuts at various stations of development (Figure 7, Table S6). These genes
were classified into 11 groups according to their expression patterns. The JrR2R3-MYBs in
Group 1 had higher expression in red walnut leaves at the fruit-swelling stage (red-leaf_3).
The JrR2R3-MYBs in Group 2 were highly expressed in early peels and expressed at much
higher levels in red peels than in green peels. The JrR2R3-MYBs in Groups 4, 5, 9, and 11
were highly expressed only in green walnut leaves or peels, demonstrating that these genes
may participate in the regulation of walnut color regulation. The JrR2R3-MYBs in Group 3
showed similar expression profiles in peels at various stages of development in red and
green walnut varieties.
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3.7. Identification of Differentially Expressed R2R3-MYBs Related to Coloration in the
‘Zijing’ Walnut

The leaves of ‘Zijing’ and ‘Lvling’ walnut plants with different colors at the same
developmental stage were used as materials for transcriptome sequencing. After removing
low-quality reads, a complete set of 42.20 Gb of clean data was obtained for the six speci-
mens, with an average of 6.27 Gb per sample. The clean data were mapped to the J. reiga
reference genome Chandler v2.0, with alignment ratios ranging from 94.06% to 94.84%.
It was found that 17 JrR2R3-MYBs were discrepancy-expressed in ‘Zijing’ and ‘Lvling’
leaves, among which 13 DEGs were expressed to a greater degree in ‘Zijing’ than in ‘Lvling’
(Figure 8A).

An ML tree was constructed using the 13 JrR2R3-MYB DEGs and additional reported
R2R3-MYBs associated with anthocyanin synthesis in various species (Figure 8B). We
found nine genes, namely, JrMYB22, JrMYB23, JrMYB24, JrMYB27, JrMYB115, JrMYB129,
JrMYB194, JrMYB198, and JrMYB217, that might regulate the anthocyanin synthesis of
walnut’s purplish-red leaves. As shown in Figure 6, JrMYB22, JrMYB23, JrMYB24, and
JrMYB27 were close homologs with respect to ZmC1, demonstrating that they might
positively regulate anthocyanin synthesis [64], and JrMYB194 was observed to be a close
homolog with respect to AtMYB123, demonstrating that it possibly induces the activity of
the late-biosynthesis genes (LBGs) for anthocyanins and proanthocyanins [34]. AtMYB4
and ZmMYB31 share similar evolutionary relationships with JrMYB115, JrMYB217, and
JrMYB198, which were determined to be able to modulate the accumulation of the UV-
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protectant compound sinapoylmalate via transcriptional inhibition of the gene coding for
the phenylpropanoid enzyme cinnamate 4-hydroxylase or directly repress maize lignin
genes and alteration in the direction of phenylpropanoid metabolic fluxes [65,66]. JrMYB129
was clustered in the same clade with the well-known transcription factors MdMYB10,
MdMYB1, and FaMYB1 that induce anthocyanin synthesis, suggesting that it possibly
participates in controlling anthocyanin synthesis [67–69].
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Figure 8. The DEGs in ‘Zijing’ and ‘Lvling’ walnut varieties. (A) A heat map of 17 differentially
expressed JrR2R3-MYBs in differently colored leaves of two walnut varieties ‘Zijing’ and ‘Lvling’
obtained using RNA-seq. (B) Phylogenetic analysis of the discrepancy-expressed JrR2R3-MYBs in
‘Zijing’ walnut and anthocyanin-related R2R3-MYBs. Red fronts represent JrR2R3-MYBs, and circles
represent JrR2R3-MYBs in ‘Zijing’ walnut.

To probe the relative expression levels of the nine JrR2R3-MYBs above in the two
walnut varieties, we performed qRT-PCR experiments. The results revealed that the
expression of these nine JrR2R3-MYBs in purplish-red walnuts was higher than that in
green walnuts (Figure 9). These results further indicated that these nine JrR2R3-MYBs
might be involved in controlling anthocyanins in the purplish-red leaves of ‘Zijing’ walnut.
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Figure 9. Relative expression of 9 JrR2R3-MYBs in ‘Zijing’ and ‘Lvling’ leaves. LL represents ‘Lvling’,
ZJ represents ‘Zijing’. The yellow bars represent qRT-PCR results, while the bule lines represent
FPKM value. ns = no significant different, * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.

We predicted the interactions of nine JrR2R3-MYB proteins related to ‘Zijing’ walnut
color regulation according to the interactions of MYB proteins in Arabidopsis thaliana using
homology profiling (Figure 10A). The interactions between the nine JrR2R3-MYB proteins
investigated and the proteins bHLH2, TTG1, GL3, F3H, and FLS1 suggest that the men-
tioned genes co-regulate the anthocyanin synthesis pathway. A total of 1274 microRNAs
were predicted to target 201 JrR2R3-MYB genes (Table S6), of which 74 microRNAs tar-
geted 9 JrR2R3-MYB genes associated with ‘Zijing’ walnut color regulation (Figure 10B).
Furthermore, 16 miRNAs of these 74 miRNAs regulated gene expression through cleavage,
and 14 miRNAs regulated gene expression through translation, suggesting that cleavage is
the main way miRNAs regulate JrR2R3-MYB genes.
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indicates JrR2R3-MYB proteins. (B) MiRNA targeting of the nine JrR2R3-MYB genes related to ‘Zijing’
walnut color regulation. The blue circle and orange circle represent miRNAs and JrR2R3-MYBs,
respectively. Blue lines represent cleavage, and orange lines represent translation.

4. Discussion
4.1. Characterization of the JrR2R3-MYBs

The MYB gene family is among the greatest gene families in plants, and a wealth of
evidence shows that it could be implicated in a wide range of plant metabolic pathways [70].
As the greatest subfamily of the MYB family, the R2R3-MYB subfamily is responsible for
most of the functions of the MYB family, including regulating plant flavonoid metabolism
and anthocyanin synthesis [71,72]. Walnut is a significant resource species worldwide; their
fruit ranks first among the world’s four largest nuts [73], and other parts such as branches,
pollen, and husk also have potential value. These gene family members derive from
the same ancestral gene, have comparable structures and functions, and encode similar
proteins, but most of them have different expression regulation patterns and different
functions [74]. The study of gene families can not only delineate the evolutionary history
of genes but also quickly identify members related to target traits in target species and
make the study of gene molecular biological functions more convenient. As Chandler v2.0
was published with a new chromosome-level assembly, we have obtained more precise
reference genome data to explore many still-unanswered questions regarding walnuts [75].
To date, JrR2R3-MYBs have yet to be comprehensively analyzed, and the majority of the
functions of R2R3-MYB genes remain unknown. In this study, we detected 204 JrR2R3-MYB
genes from the Chandler v2.0 genome (Figure 1), and the major nuclear localization of
these genes is compatible with their roles as transcription factors (Table S3). R2R3-MYB is a
large family, with 55 members that can be divided into 11 subgroups in Cucumis sativus [76],
184 members that can be divided into 34 subgroups in pear [77], and 100 members that can
be divided into 29 subgroups in Citrus sinensis [78]. In comparison, R2R3-MYB members
are more numerous in walnut. The phylogenetic analysis determined that JrR2R3-MYB
was clustered into 30 subgroups (Figure 2, S3). Notably, no homolog genes of JrMYB
were found in group S12 according to the Arabidopsis subgroup classification. Comparable
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results were found in octoploid strawberry [79], which lacks members in subgroup S12
that were possibly lost during evolution. This study provides novel inspirations for future
investigators seeking to determine functional distinctions in JrR2R3-MYBs.

4.2. Gene Duplication and Evolution of JrR2R3-MYBs

Gene family expansion and the creation of new genes arise from gene duplication
events [80,81]. JrR2R3-MYBs were found on every chromosome, but they were unequally
spread out (Figure 3). There were a lot of gene duplication events in the JrR2R3-MYBs.
According to our statistics, 98 JrR2R3-MYBs (48.04%) have homologous counterparts in
the syntenic region of related chromosomes (Table S3). In a comparative analysis of R2R3-
MYBs in land plants, more than 20% of R2R3-MYBs in each species were found to have
homologous counterparts in the syntenic region of related chromosomes [82], with 49% in
SlR2R3-MYBs, 48% in AtR2R3-MYBs, 38% in PtR2R3-MYBs, and 38% in VvR2R3-MYBs. This
finding is similar to the results for JrR2R3-MYBs. These results suggest that WGD events
are the main reason for the expansion of the JrR2R3-MYB gene family (Figure S3; Table S2).
In contrast, WGD and TD events promote R2R3-MYB extension in M. truncatula [83], and all
duplication events observed in sweet orange were segmental duplications [80]. Compared
with the high level of collinearity of R2R3-MYB genes in walnuts, the duplication events
in genes of these species appear to be quite limited, which may be part of the reason why
there were fewer members than in walnuts. There were high degrees of collinearity in the
R2R3-MYBs in the three Juglans species, and walnut is more closely related to J. nigra than
to J. mandshurica (Figure 4).

4.3. Functional Prediction of JrR2R3-MYBs in ‘Zijing’ Walnut

Most of the identified JrR2R3-MYBs were expressed in the 14 selected organs, suggest-
ing that R2R3-MYBs extensively participate in the growth and development of walnuts
(Figure 6). Special cultivars such as ‘Hongrang’, ‘Hongren’, ‘Ziyue’ (Juglans sigillata), and
‘Zijing’ increased the ornamental and economical value of walnut. Some of the JrR2R3-MYBs
were highly expressed only in red or green walnuts, suggesting this family’s involvement
in the process of walnut color regulation (Figure 7).

The ‘Zijing’ walnut, which originated in Beijing, China, can be used in landscaping
or landscape agriculture because of its majestic crown, luxuriant branches, and bright
leaves [6]. Compared with the common green-fruit walnuts, all the organs of the ‘Zijing’
walnut are purplish red, provoking people to pay more attention to walnut anthocyanin
metabolism. However, not much is known about the genes implicated in walnut coloration.
We identified putative JrR2R3-MYBs via RNA-seq using different leaf colors of the two
walnut cultivars. In this study, 17 JrR2R3-MYBs were found, and 13 of them were highly
expressed in ‘Zijing’, while 4 were highly expressed in ‘Lvling’ (Figure 8). We constructed
an ML tree including 13 JrR2R3-MYBs and 34 genes from other species that were known
to regulate anthocyanins to explore whether JrR2R3-MYBs can affect the synthesis of
anthocyanins in walnut leaves; finally, 9 genes were screened. AcMYB123 and ZmC1
share high homology with JrMYB22, JrMYB23, JrMYB24, and JrMYB27, which could
induce anthocyanin biosynthesis in kiwifruit and maize [64,84]. JrMYB115, JrMYB194, and
JrMYB129 share a similar evolutionary relationship with many well-known genes involved
in anthocyanin synthesis, such as AtMYB6, FaMYB10, MdMYB1, and AtMYB123 [34,85,86].
Unexpectedly, MtMYB2 is a transcriptional repressor that regulates anthocyanin and PA
biosynthesis in M. truncatula [87], and it has a very close evolutionary relationship with
JrMYB217 and JrMYB198. We performed qRT-PCR using the purplish-red leaves of the
‘Zijing’ walnut and the green leaves of the ‘Lvling’ walnut as plant materials; it was found
that nine JrR2R3-MYB genes showed high expression in purplish-red leaves (Figure 9).
These results indicate that these nine JrR2R3-MYBs should be regarded as significant
candidate genes participating in anthocyanin biosynthesis regulation. These data revealed
the possibility of influencing anthocyanin biosynthesis in the husk of the ‘Zijing’ walnut,
thereby affecting walnut coloration.
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However, JrR2R3-MYB has not been previously reported to regulate the expression
levels of structural genes in the flavonoid metabolism pathway in walnuts by interacting
with bHLH and WD40. Our final identification of nine JrR2R3-MYBs suggested that they
perform a crucial role in the color formation of ‘Zijing‘ walnut leaves and may interact with
bHLH, TTG, GL, F3H, and FLS (Figure 10), but whether they interact with other structural
genes to play a part in anthocyanin synthesis is unknown for these reasons. The specific
mechanisms need to be studied in a more in-depth manner.

5. Conclusions

This study proceeded as follows: we performed a detailed genome-wide analysis of
JrR2R3-MYBs in walnuts, and 224 JrMYBs were determined and renamed based on their
chromosomal locations. Among the 204 JrR2R3-MYB genes, the protein physicochemical
properties, subcellular location, phylogenetic relationship, cis-elements, gene structure,
conservative motifs, and gene replication events were studied. All JrR2R3-MYB genes are
unevenly distributed on 16 chromosomes. According to their phylogenetic relationships,
they can be divided into 30 subgroups. Collinearity analysis showed that the expansion
of JrR2R3-MYB genes is related to WGD events. Through the screening of differentially
expressed genes in the transcriptome combined with qRT-PCR verification, we identified
nine JrR2R3-MYBs that may participate in the synthesis of anthocyanins in the purplish-red
husks of walnuts. These results offer a rationale for the identification of R2R3-MYBs that
affect anthocyanins in plants and set the stage for the further exploration of the functional
characteristics of JrR2R3-MYBs.
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