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Abstract: Large-scale genomic studies have significantly increased our knowledge of genetic vari-
ability across populations. Regional genetic profiling is essential for distinguishing common benign
variants from disease-causing ones. To this end, we conducted a comprehensive characterization
of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data
from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nu-
cleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By
comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain,
IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from
Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in
all other populations. We further corroborated this observation with a second regional cohort of
239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion,
this study highlights the importance of population-specific characterization of genetic variation to
improve allele frequency filtering in sequencing data analysis to identify disease-causing variants.

Keywords: personalized medicine; whole genome sequencing WGS; whole exome sequencing WES;
single nucleotide variant SNV; population frequencies; genetic variability
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1. Introduction

In recent years, the use of NGS in patient healthcare has increased due to technological
advances, cost reduction, and enhanced efficiency [1]. The advancement of NGS spans a
spectrum of applications, encompassing whole exome/genome sequencing (WES/WGS).
These technologies revealed a wealth of genetic variants, necessitating the implementation
of filters to narrow down the list of candidate variants. In this regard, the availability
of population-specific catalogues of common variants enables the identification of rare
variants [2], such as the international initiatives 1000 Genome Project (1KGP) [3] and
Genome Aggregation Database (gnomAD) [4]. Moreover, various countries like the UK [5],
USA [6], and Japan [7] have established their databases. In Spain, for instance, the Medical
Genome Project (MGP) compiles data from unrelated healthy individuals [8,9].

In Navarre, the region of north-eastern Spain populated by 650,000 people, the local
Government supported the “NAGEN scheme” to integrate genomic data analysis into
the regional public healthcare system. In recent times, NAGEN has generated numerous
WES/WGS and associated phenoclinical profiles in seven projects, including NAGEN1000,
focusing on rare diseases and pharmaNAGEN on pharmacogenomics in patients with
inflammatory bowel diseases [10]. The NAGEN strategy’s success hinges on identifying
population-specific common variants to establish a comprehensive Navarrese population
frequency catalogue.

In this study (Figure 1), we aimed to identify and characterize common exonic variants
specific to the Navarrese population. Firstly, we identified common single nucleotide
variants (SNVs) in Navarre that are rare in other populations. Secondly, we validated the
allele frequency of these variants in another Navarrese cohort with exome data. Finally, we
annotated the resulting variants using genomic databases, and their clinical and pharma-
cological effects and pathogenicity were assessed. Additionally, we conducted functional
enrichment analyses to provide further insights. The results will significantly contribute to
advancing personalized medicine in Navarre.
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Figure 1. Workflow of this study. Abbreviations: MGP, Medical Genome Project; 1KGP, 1000 Genomes
Project; 1KGP_noIBS, 1000 Genomes Project without Iberian population; gnomAD, Genome Aggrega-
tion Database; MAF, minor allele frequency; SNV, single nucleotide variant; SNP, single nucleotide
polymorphism; WGS, whole genome sequencing; WES, whole exome sequencing; LoF, Loss-of-
function; HPO, Human Phenotype Ontology; BP, biological process.
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2. Material and Methods
2.1. NAGEN1000 and pharmaNAGEN

In Navarre, the local Government supports the “NAGEN scheme”, integrating ge-
nomic data analysis into regional healthcare across seven projects. In the NAGEN1000
project, 688 participants were recruited to uncover the underlying genetic causes of disease
using WGS data. These individuals belonged to 294 families, predominantly trios, affected
by rare disorders. Likewise, in the pharmaNAGEN project, 274 patients with Crohn’s dis-
ease or ulcerative colitis were recruited to analyse variants related to drug efficacy and
toxicity on WES data [10]. All individuals recruited for these projects are part of the current
population of Navarre and reside in the region.

2.2. Whole Genome Sequencing and Data Analysis

High-quality DNA samples from peripheral blood were used in the NAGEN1000
project to construct short-insert paired-end libraries with an average insert size of 400 bp.
DNA fragmentation was performed with Covaris S2, and capillary electrophoresis was per-
formed with a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). Libraries were sequenced
on a NovaSeq 6000 (Illumina, San Diego, CA, USA) with a read length of 2 × 150 bp.
A 30X coverage per sample was targeted. After quality control assessment using FASTQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 10 October
2017), the sequenced data were aligned to the hs37d5 version of human genome refer-
ence GRCh37/hg19 using GEM3 [11]. Optical and duplicated reads were flagged with
Picard MarkDuplicates (https://broadinstitute.github.io/picard/, accessed on 10 October
2017). Following the established Genome Analysis Toolkit (GATK) best practices pipeline
(v3.8) [12], indel realignments and recalibration were applied to the previous BAM files.
Variant calling on each sample’s BAM file was performed using HaplotypeCaller, with
default parameters, resulting in a gVCF file. WGS was conducted at Centro Nacional
de Análisis Genómico (CNAG, Barcelona, Spain) and stored at Navarra de Servicios y
Tecnología (NASERTIC, Navarre, Spain).

2.3. Whole Exome Sequencing and Data Analysis

In the pharmaNAGEN project, germline DNA was extracted from saliva or blood
samples using a DNA Blood Maxi Kit (Qiagen, Hilden, Germany) and sequenced with
a Nextera DNA Exome kit. The raw data were aligned to the GRCh37/hg19 genome,
sourced from UCSC (https://genome.ucsc.edu/, accessed on 4 September 2019), utilizing
BWA [13]. The resulting BAM files were marked using Picard (https://broadinstitute.
github.io/picard/, accessed on 4 September 2019). Utilizing GATK v4.1.0 [12], an updated
version, eliminates the need for the indel realignment step. Recalibration and variant
calling were executed with BQSR and Haplotype tools. This process yielded the final gVCF
file for each sample. WES was conducted at CNAG and stored at NASERTIC.

2.4. Individual Selection

Selection criteria included unrelated individuals with Spanish ancestry. To assess
relatedness among individuals, identity by descent (IBD) was calculated using the method
of moments (MoM) with the R package SNPRelate [14]. For validation of ethnicity, the
CSVS tool [9] was used to determine the degree of alignment of a sample with the genetic
variability of the Spanish population. Individuals with a score equal to or higher than 0.9
were categorized as being of Spanish ancestry.

Applying these selection criteria to the NAGEN1000 project resulted in a cohort of
358 participants denominated NAVARREsel. Within this group, 127 individuals had been
diagnosed with various monogenic diseases, and the most prevalent conditions were
polycystic kidney disease (14/127), breast cancer (10/127), and hereditary ataxia (8/127).

Regarding the validation dataset, named NAVARREval, the same inclusion criteria
were applied to the pharmaNAGEN project, resulting in 239 participants with Crohn’s
disease (153/239) and/or ulcerative colitis (86/239).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://broadinstitute.github.io/picard/
https://genome.ucsc.edu/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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2.5. Variant Quality Control and Filtering in NAVARREsel

A 358 multi-sample gVCF was generated with the NAVARREsel cohort, and biallelic
SNVs located in exonic regions were selected. The targeted exonic interval was extracted
from Nextera (https://support.illumina.com/sequencing/sequencing_kits/nextera-dna-
exome/downloads.html, downloaded on 27 September 2023). Variants with a read depth
of less than 10, a genotype-quality score below 50, or a call rate of less than 100% were
removed. Variants on the X and Y chromosomes were eliminated to avoid sex bias, as well
as the mitochondrial chromosome, given its complexity. The Hardy–Weinberg equilibrium
(HWE) score [15] was calculated using PLINK (-hardy), and SNVs significantly deviated
with p-value < 10−5 were excluded.

2.6. Variant Quality Control and Filtering in NAVARREval

Genotype information for specific SNVs from NAVARREval samples was extracted
using the SelectVariants tool of GATK v4.1.0 [12]. SNVs with a call rate lower than 80%
and those exhibiting a significant deviation from HWE (p-value < 10−5) were excluded
from validation.

2.7. Variant Annotation

Variants were annotated using ANNOVAR (version available on 24 October 2019,
https://annovar.openbioinformatics.org/) [16]. The identification of known variants
was performed using the dbSNP database (version GCF_000001405.25, downloaded from
https://ftp.ncbi.nih.gov/snp/latest_release/VCF/ accessed on 30 September 2023) [17].
SNVs were also annotated: (1) for clinical significance by referring to ClinVar (v.20230930,
https://www.ncbi.nlm.nih.gov/clinvar/, accessed on 2 October 2023) [18], OMIM (down-
loaded on 2 October 2023, https://www.omim.org/) [19], VarSome [20], and Franklin [21],
and (2) for pharmacological relevance using PharmGKB (https://www.pharmgkb.org/,
accessed on 2 October 2023) [22]. Additionally, the pathogenicity of the variants was
evaluated using CADD (v1.6, https://cadd.gs.washington.edu/, accessed on 2 Octo-
ber 2023) [23], REVEL score (v1.3, https://zenodo.org/records/7072866, accessed on
2 October 2023) [24], spliceAI [25], and Polyphen2 (http://genetics.bwh.harvard.edu/
pph2/dokuwiki/downloads downloaded on 4 October 2023) [26]. Variants associated
with Crohn’s disease and/or ulcerative colitis were identified by referencing the In-
flammatory Bowel Disease (IBD) database (accessed on 10 October 2023, from https:
//www.cbrc.kaust.edu.sa/ibd/index.php?p=ibd#) [27].

2.8. Population Projects

The MGP project was a Spanish initiative, primarily featuring WES data from 267 healthy
and unrelated participants, mainly from Andalusia and Galicia (Spanish regions) [8].

The population data from 1KGP phase 3 encompassed 2504 genome samples represent-
ing 26 populations [28]. European populations within this dataset included 503 samples
from Europe (EUR), such as British in England and Scotland (GBR), Finnish in Finland
(FIN), Iberian population in Spain (IBS), Toscani in Italy (TSI), and Utah residents with
Northern and Western European ancestry (CEU). Additionally, there were 504 samples
from East Asia (EAS), 489 from South Asia (SAS), 661 from Africa (AFR), and 347 from
America (AMR), covering various populations.

The gnomAD genomes project v2.1.1 comprises 15,691 genomes and represents di-
verse populations worldwide, including Africans, Americans, Asians, and Europeans.
Within European populations, the majority originated from north-western Europe, Estonia,
Finland, and a smaller representation from southern Europe [4].

2.9. Population Frequencies

Based on the population projects described in the previous section, three populations
were generated for this study as reference: (1) gnomAD, with the original frequency from
the gnomAD genome project; (2) 1KGP_noIBS, with the mean of all 1KGP population’s

https://support.illumina.com/sequencing/sequencing_kits/nextera-dna-exome/downloads.html
https://support.illumina.com/sequencing/sequencing_kits/nextera-dna-exome/downloads.html
https://annovar.openbioinformatics.org/
https://ftp.ncbi.nih.gov/snp/latest_release/VCF/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.omim.org/
https://www.pharmgkb.org/
https://cadd.gs.washington.edu/
https://zenodo.org/records/7072866
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
https://www.cbrc.kaust.edu.sa/ibd/index.php?p=ibd#
https://www.cbrc.kaust.edu.sa/ibd/index.php?p=ibd#
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frequencies, excluding the IBS cohort of 107 individuals; and (3) spain, combining the
frequencies of the IBS and MGP cohorts. The integration process for the spain population
consisted of adding the number of total alternate alleles divided by the sum of the total
number of alleles across the two cohorts.

2.10. Principal Components Analysis, Admixture, and FST Analysis

The original VCF files for each chromosome from the 1KGP phase 3 were downloaded
on 27 September 2023, from https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/2013
0502/. Subsequently, these files were merged using the Picard MergeVCFs tool. Access
to the raw data from MGP was granted upon request, and the multi-sample VCF was
retrieved for the EGA repository at https://ega-archive.org/datasets/EGAD00001003101,
accessed on 27 September 2023. Then, the VCF files from 1KGP, MGP, and NAVARREsel
were combined using the GATK tool’s CombineGVCFs function. The resulting combined
file was used to perform Principal Component Analysis (PCA) with R libraries SNPRelate
and SNPassoc, conduct ADMIXTURE (v1.3.0) [29] from 3 to 7 genetic components (K), and
calculate the mean pairwise FST values between populations using vcftools (v0.1.17) [30].

2.11. Enrichment Analysis

Functional enrichment, including pathway (KEGG), biological process (GO), disease
(OMIM), and human phenotype ontology (HPO), was performed using WebGestalt (https:
//www.webgestalt.org/, accessed on 2 October 2023) [31].

3. Results
3.1. Navarrese Discovery Cohort

The NAGEN1000 WGS Navarrese project was composed of 688 individuals from
294 families (mainly trios) with a rare disease. The WGS was conducted with a mean
coverage of 30X, providing comprehensive genomic data across the entire genome. For
our study, a subset of this cohort was selected satisfying two criteria: unrelatedness and
Spanish ancestry. This result yielded 358 individuals, referred to as NAVARREsel.

Then, biallelic SNVs on chromosomes 1 to 22, from the exonic region covered by
the Nextera Exome Enrichment kit, were extracted. Subsequently, variants with read
depth < 10, genotype quality < 50, or missing genotype in at least one sample were filtered
out. Additionally, sites significantly deviated from Hardy–Weinberg equilibrium (HWE,
p-value < 10−5) were removed [32]. Finally, 61,410 SNVs remained, of which 21,174 were
identified as common variants (MAF > 1%). We observed that including additional indi-
viduals did not reveal new common variants, and 21,174 were achieved when considering
over 100 individuals (Figure S1a).

3.2. Genetic Variation between Navarre, Spanish, and Global Populations

We performed a principal component analysis (PCA) on the shared variants between
NAVARREsel, 1KGP, and MGP to depict its relationship. We observed a clear distinction
between Navarre and Asian/African populations, reflecting established genetic differences
(Figure 2a). Conversely, an overlap is observed between Navarre and European populations,
emphasizing their genetic affinity. Thus, focusing on European populations (Figure 2b), we
observed that Navarrese individuals are close to the Spanish populations (IBS and MGP)
and exhibit proximity to Italian individuals (TSI). Supplementary Figure S2a,b illustrate
plots PCA1 against PCA3, and PCA2 against PCA3. This observation is supported when
estimating the ancestries of the European populations using ADMIXTURE [29]. The average
number of ancestries in each population was calculated with the optimal component K = 3,
which yielded the lowest cross-validation error (Figure 2c and Figure S3 admixture result
at individual level). The Navarrese population showed the highest ancestral proportion
on component 1 (61%). In the IBS and MGP populations, component 1 decreased to 30%
and 20%, respectively, and was nearly absent (0.1%) in the FIN population. In contrast,

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ega-archive.org/datasets/EGAD00001003101
https://www.webgestalt.org/
https://www.webgestalt.org/
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component 2 was predominant in the FIN population (99%), while being the lowest in the
Navarrese cohort (7%).
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Figure 2. (a) Principal component analysis of overlapped variants between NAVARREsel, MGP, and
1KGP (including all populations), and coloured by superpopulations. (b) Principal component analy-
sis of overlapped variants between NAVARREsel, MGP, and 1KGP (including exclusively European
populations). (c) Genetic admixture analysis of 1128 individuals from 7 European populations for the
optimal K value = 3. Abbreviations: PCA, principal component analysis; AFR, African populations;
AMR, American populations; EAS, east-Asian populations; SAS, south-Asian populations; EUR,
European populations; IBS, Iberian populations in Spain; MGP, Medical Genome Project; TSI, Toscani
in Italy; CEU, Utah residents with Northern and Western European ancestry; GBR, British in England
and Scotland; FIN, Finnish in Finland.

To further analyse the genetic differentiation, we calculated the mean pairwise FST values.
The lower FST value indicates greater similarity between populations. This occurred when
comparing Navarre with the Spanish (FST(Navarre-IBS) = 0.0001 and FST(Navarre-MGP) = 0.0007)
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and Italian (FST(Navarre-TSI) = 0.0014) populations. In contrast, the highest differentia-
tion was observed against East Asian and African populations (FST(Navarre-EAS) = 0.0328,
FST(Navarre-AFR) = 0.0434, Table S1).

These findings, aligning with biological expectations, underscore the regional and
continental genetic affinities, providing insights into historical populations and evolution-
ary dynamics.

3.3. Exclusive Common Variants in Navarre

To identify exclusive Navarrese common variants, we examined allele frequency
among the Navarre population and the three referenced populations: 1KGP_noIBS, gno-
mAD, and spain. A comparison of the MAF revealed that most variants (17,532 SNVs) were
classified as common (MAF > 1%) across the four populations. However, 835 variants exhib-
ited higher prevalence solely in Spanish cohorts (Navarre and spain). Specifically, 1069 SNVs
were identified as common in Navarre, and rare (MAF ≤ 1%) in the rest (Figure 3a).

To validate these 1069 variants, we used the NAVARREval cohort, a subset of 239 WES
samples from the pharmaNAGEN project. The validation cohort consists of unrelated
individuals of Spanish descent from the current Navarrese population diagnosed with
Crohn’s disease (159/239) or ulcerative colitis (86/239). Before validation, we assessed the
association of these SNVs with these conditions by cross-referencing them with reported
variants in the Inflammatory Bowel Disease database, which catalogues variants highly
linked to the mentioned diseases [27]. The absence of the 1069 SNVs in this database
ensured an unbiased and robust validation process.
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Among the 1069 variants initially identified, 998 were detected in NAVARREval with a
call rate greater than 80% and demonstrated conformity to HWE. Notably, 676/998 of these
SNVs (68%; p-value = 2.2 × 10−16) were consistently classified as common in NAVARREval,
confirming their prevalence within the Navarrese population (variants’ information in
Table S2). The validation cohort was sufficient to validate the Navarrese common variants,
reaching a plateau in Figure S1b. On the contrary, within the non-validated subset (322/998,
32%), 134 SNVs exhibited MAFs in NAVARREsel that did not exceed a 2-fold difference in
NAVARREval, indicating close MAF between both datasets (Figure S4). This exploration of
MAF patterns ensures a comprehensive understanding of the genetic landscape within the
Navarre population and its stability across different datasets. The MAF spectrum for these
sets is depicted in Supplementary Figure S5.

3.4. Characterization of Common Navarrese Variants

The annotation of the 676 common Navarrese SNVs revealed 227 synonymous, 371 mis-
sense, and 5 loss-of-function (LoF) variants. These LoF variants were not reported in the
ClinVar database [18] and were located in five distinct genes without an associated pheno-
type, according to OMIM [19]. Following the ACMG guidelines for variant classification,
four were classified as variants of uncertain significance (VUS) and one as benign [33].

Clinically, 264/676 SNVs were reported in ClinVar: 1/264 as a risk factor, 181/264 as
benign/likely benign, 32/264 as VUS, 48/264 as having conflicting interpretations, and
2/264 as likely pathogenic. These likely pathogenic missense variants were in SCNN1B
[c.1688G > A p.Arg563Gln; MAFNAVARREsel = 0.013, MAFNAVARREval = 0.016] and in
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PTGIS [c.824G > A p.Arg275Gln; MAFNAVARREsel = 0.013, MAFNAVARREval = 0.021],
associated with “low renin hypertension” and “childhood-onset schizophrenia”, respec-
tively, according to ClinVar [18]. The evidence supporting these associations is limited, with
a score of 1 out of 4 as reviewed by a single submitter record. Therefore, given its notable
prevalence in the Navarrese population, being observed in healthy and affected (not related
to this phenotype) individuals, these variants might be reconsidered and reclassified as
VUS under the ACMG guidelines [34].

In silico analysis of the 676 variants with functional predictors revealed eight variants as
pathogenic by three different pathogenicity tools (REVEL_score > 0.8 [24], CADD > 20 [23],
and Polyphen indicating “probably” or “possibly”) [26]. However, a comprehensive
examination of clinical databases, including ClinVar [18], Varsome [20], and Franklin [21],
contradicted these predictions based on ACMG criteria. Instead, the majority of these
variants were classified as uncertain significance (1/8), likely benign (5/8), and benign
(2/8). This suggests that these variants are not disease causing.

Additionally, the variant in BPIFB3 [c.387-1G > T; MAFNAVARREsel = 0.01536, MAF-
NAVARREval = 0.02092], predicted to impact the canonical splicing acceptor site (spliceAI
score = 0.99), was reclassified as benign based on the allele frequency and the number of
homozygotes as per ACMG criteria, indicating no clinical relevance [25].

Moreover, common Navarrese variants showed no impact on drug metabolism/efficacy,
according to PharmGKB [22]. They did not exhibit significant enrichment in pathways,
biological processes, related diseases, or phenotypic ontologies.

3.5. Refining Disease-Causing Variant Identification in the Navarrese Population

We identified common variants in the Navarrese population, highlighting population-
specific importance in advancing personalized medicine. The aim was to improve the
identification of disease-causing variants during genetic diagnosis using NGS. Therefore,
we selected 127 WGS Navarrese patients from the NAGEN1000 project diagnosed with rare
disorders and extracted exonic SNVs on chromosomes 1 to 22, averaging 8871 variants
per patient.

We refined the variant list by excluding common variants (MAF > 1%) from 1KGP_noIBS,
gnomAD, spain, and Navarre. The Navarrese filtering emerged as the most stringent, result-
ing in 2.1% of the initial set, compared to 2.7% with gnomAD, 2.9% with spain frequencies,
and the least restrictive, 4.9% with 1KGP_noIBS (Figure 3b). This underscores the effective-
ness of the Navarrese-specific filter in prioritizing and streamlining genetic investigations.

4. Conclusions

In this study, we aimed to enhance diagnostic precision in the current Navarrese
population by exploring common population-specific variants. Utilizing WGS data from
358 individuals of Navarre, we identified 61,410 SNVs, with 21,174 being common. Ge-
netic analysis shows affinity with European populations and low differentiation with
Spanish populations.

Focusing on exclusively common variants in residents in Navarre compared with
referenced populations, we obtained 1069 SNVs, of which 676 were validated in another
Navarrese cohort. Of these, none showed clinical or pharmacological relevance beyond
what was observed in the Spanish population [35]. This aligns with the expectation that
common population variants are less likely to be associated with disease ethology.

Our findings underscore the relevance of considering population-specific factors
in genomic diagnostics, which provides complementary insights alongside pangenome
references [36]. However, the study would benefit from being expanded to include a
larger cohort of participants (to provide greater statistical power to identify common
variants) and increase the number of healthy individuals. In conclusion, by identifying and
excluding common variants within the Navarrese population, we have successfully refined
the identification of potential disease-causing variants, contributing to the advancement of
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personalized medicine for individuals from Navarre. Further research will enhance these
insights for broader applications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes15050585/s1, Figure S1: Accumulative number of
new variants contributed by individuals. (a) All common variants in NAVARREsel (21,174 SNVs).
(b) The 676 variants are exclusively common in NAVARREsel and validated in NAVARREval.
Figure S2: (a) Principal component analysis of overlapped variants between NAVARREsel, MGP,
and 1KGP (including all populations), and coloured by superpopulations. (b) Principal component
analysis of overlapped variants between NAVARREsel, MGP, and 1KGP (including exclusively Eu-
ropean populations). Figure S3: Genetic admixture analysis of 1128 individuals from 7 European
populations, at an individual level, for the optimal K value = 3. Figure S4: Comparison of MAF
between NAVARREsel and NAVARREval encompassing both validated and non-validated variants,
with a total of 998 SNVs. Figure S5: Minor allele frequency spectrum for the following distinct sets:
21,174 common variants in NAVARREsel (blue colour); 1069 common variants in NAVARREsel but
not in 1KGP_noIBS, gnomAD and spain (pink); and 676 common variants in both NAVARREsel
(green) and NAVARREval (yellow). Common variants are defined with a MAF > 1%. Table S1: Fst
values between Navarre against MGP and 1KGP populations. Table S2: Variants’ information of the
676 exclusively common SNVs of the Navarre population. Details: ”CHR”: chromosome; “Position”:
variant position; “REF”: reference allele; “ALT”: alternate allele; “NAVARREsel_maf”: MAF in
NAVARREsel cohort; “NAVARREval_maf”: MAF in NAVARREval cohort; “1KGP_phase3noIBS”:
MAF in 1KGP excluding IBS cohort; “Spain”: MAF in spain cohort (combining IBS and MGP);
”gnomAD”: MAF in gnomAD; “Gene”: gene where the variant is located; “Type”: type of variant;
“ExonicInfo”: exonic variant type, if applicable; “ClinVar”: ClinVar information; “SpliceAI”: Splice
AI results; “REVEL”: REVEL results; “CADD”: CADD results; “Polyphen2”: Polyphen2 results.
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Appendix A

Table A1. NAGEN-Scheme.

Name Department Project

Anda Apiñaniz, Emma Servicio de Endocrinología y Nutrición, HUN NAGEN1000
Artigas López, Mercedes Servicio de Genética Médica, HUN NAGEN1000
Bandrés Elizalde, Eva Servicio de Hematología, HUN NAGEN1000
Basurte Elorz, Ma Teresa Servicio de Cardiología, CHN NAGEN1000
Brennan, Paul NENC NHS Genomic Medicine Centre. Newcastle upon Tyne, UK. NAGEN1000

https://www.mdpi.com/article/10.3390/genes15050585/s1
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Table A1. Cont.

Name Department Project

Celaya Lecea, Concepción Subdirección de Farmacia, SNS-O pharmaNAGEN
Cuesta Zorita, Manuel Jesús Servicio de Psiquiatría, Salud mental NAGEN1000
Curi Chercoles, Sergio Miguel Servicio de Neumología, HUN NAGEN1000
De la Cruz Sánchez, Susana Servicio de Oncología Médica, HUN NAGEN1000
Erviti López, Juan Subdirección de Farmacia, SNS-O pharmaNAGEN
Fanlo Mateo, Patricia Servicio de Medicina Interna, HUN NAGEN1000
González, Luis Angel AVANTIA 400+. NAGEN1000
Gonzalo Etayo Navarra de Servicios y Tecnología NASERTIC. Spain NAGEN1000
Gorricho Mendívil, Javier Subdirección de Farmacia, SNS-O pharmaNAGEN
Guerra Lacunza, Ana Servicio de Aparato Digestivo, HUN NAGEN1000
Gut, Ivo Centro Nacional de Análisis Genómicos CNAG. Spain NAGEN1000
Ibáñez Bosch, Rosario Servicio de Endocrinología y Nutrición, HUN NAGEN1000
Jiménez, Jorge Navarra de Servicios y Tecnología NASERTIC. Spain NAGEN1000
Lasheras, Gorka Navarra de Servicios y Tecnología NASERTIC. Spain NAGEN1000
Lorea Bueno Pharmamodelling pharmaNAGEN
Maite Sarobe Carricas Servicio de Farmacia Hospitalaria, HUN pharmaNAGEN
Mendioroz Iriarte, Maite Servicio de Neurología, HUN NAGEN1000
Molinuevo Ruiz de Zarate, José Ignacio Servicio de Oftalmología, HUN NAGEN1000
Montes Díaz, Marta Servicio de Anatomía Patológica, HUN NAGEN1000
Navarro, Adela Servicio de Cardiología, HUN pharmaNAGEN
Onintza Sayar Pharmamodelling pharmaNAGEN
Pinillos, Iñaki Navarra de Servicios y Tecnología NASERTIC. Spain NAGEN1000
Purroy Irurzon, Carolina Eugenia Servicio de Nefrología, HUN NAGEN1000
Sagaseta de Ilurdoz Uranga, Ma Josefa Servicio de Pediatría, HUN NAGEN1000
Santesteban Muruzabal, Raquel Servicio de Dermatología, HUN NAGEN1000
Vicuña, Miren Servicio de Digestivo, HUN pharmaNAGEN
Viguria, Ma Cruz Servicio de Hematología, HUN pharmaNAGEN
Yoldi Petri, Ma Eugenia Servicio de Pediatría, HUN NAGEN1000
Zubicaray Ugarteche, José Jacinto Servicio de Otorrinolaringología, HUN NAGEN1000
Zudaire, Maite Servicio de Hematología, HUN pharmaNAGEN
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