
Citation: Fiosina, J.; Sievers, P.;

Kanagaraj, G.; Drache, M.;

Beuermann, S. Reverse Engineering of

Radical Polymerizations by

Multi-Objective Optimization.

Polymers 2024, 16, 945. https://

doi.org/10.3390/polym16070945

Academic Editors: Carlo Cavallotti,

Yingtao Liu, Changjie Cai and

Blake Herren

Received: 1 February 2024

Revised: 8 March 2024

Accepted: 26 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Reverse Engineering of Radical Polymerizations by
Multi-Objective Optimization
Jelena Fiosina 1,*, Philipp Sievers 2 , Gavaskar Kanagaraj 1, Marco Drache 2 and Sabine Beuermann 2,*

1 Institute of Informatics, Clausthal University of Technology, Julius-Albert-Str. 4,
38678 Clausthal-Zellerfeld, Germany

2 Institute of Technical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Strasse 4,
38678 Clausthal-Zellerfeld, Germany; philipp.sievers@tu-clausthal.de (P.S.);
marco.drache@tu-clausthal.de (M.D.)

* Correspondence: jelena.fiosina@tu-clausthal.de (J.F.); sabine.beuermann@tu-clausthal.de (S.B.)

Abstract: Reverse engineering is applied to identify optimum polymerization conditions for the
synthesis of polymers with pre-defined properties. The proposed approach uses multi-objective
optimization (MOO) and provides multiple candidate polymerization procedures to achieve the
targeted polymer property. The objectives for optimization include the maximal similarity of molar
mass distributions (MMDs) compared to the target MMDs, a minimal reaction time, and maximal
monomer conversion. The method is tested for vinyl acetate radical polymerizations and can be
adopted to other monomers. The data for the optimization procedure are generated by an in-house-
developed kinetic Monte-Carlo (kMC) simulator for a selected recipe search space. The proposed
reverse engineering algorithm comprises several steps: kMC simulations for the selected recipe search
space to derive initial data, performing MOO for a targeted MMD, and the identification of the Pareto
optimal space. The last step uses a weighted sum optimization function to calculate the weighted
score of each candidate polymerization condition. To decrease the execution time, clustering of the
search space based on MMDs is applied. The performance of the proposed approach is tested for
various target MMDs. The suggested MOO-based reverse engineering provides multiple recipe
candidates depending on competing objectives.

Keywords: polymerization reverse engineering; clustering; multi-objective optimization

1. Introduction

Radical polymerizations are known to be very robust and to provide access to a wide
range of polymers with largely differing properties, which are defined by the process
conditions. The strong correlation between the production process and material properties
is due to the complex reaction mechanism consisting of a large number of elemental
reactions, even for homopolymerizations with a single monomer [1]. The kinetics of the
elemental reactions are strongly dependent on the process conditions. Therefore, the
prediction of a suitable radical polymerization process to obtain a polymer with targeted
properties is challenging. To allow for on-demand polymer synthesis, at first sight, it
appears highly attractive to apply simulations of polymerization processes, e.g., employing
differential equations [2–4] or kinetic Monte-Carlo (kMC) methods [5–8]. Simulations
are particularly valuable, because detailed information on polymer microstructure at
each time moment is available, which is not accessible from polymerization processes.
However, this type of simulation cannot be run backwards, and the on-demand suggestion
of polymerization conditions to obtain a pre-defined polymer is not feasible. To overcome
this issue, reverse engineering has the potential to provide several solutions, as opposed
to a single one-to-one relation between polymerization variables and microstructural
properties [9]. From the input variables, a polymerization process model predicts the
concentration vs. time profiles and the polymer properties. Inverse modeling, on the
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other hand, is more difficult and calls for optimization strategies. In order to determine
the optimal input values for systems with complex reaction mechanisms that provide
pre-defined reaction outputs (such as pre-set conversion, yield, and/or other product
properties), it was suggested to intelligently explore the reaction condition search space [10].
Further, it was proposed to solve reverse engineering problems using machine learning
(ML)-based prediction [11], in which ML regression models based on the random forest
algorithm and a multivariate and multi-target regression problem [12] were applied. The
model took a targeted MMD and predicted the initial polymerization conditions to produce
a polymer with this targeted property, minimizing the errors in predicted recipes. However,
the prediction of the recipe was based on the MMD only and was not optimized with
respect to multiple objectives like reaction time or conversion.

Pareto or multi-objective optimization (MOO) [13] is the process of maximizing or
minimizing many objective functions while taking a set of constraints into consideration.
Numerous scientific domains, such as engineering [14], economics [15], and logistics [16],
need the use of MOO when making optimum decisions facing trade-offs between two
or more competing objectives. The increasing use of MOO has been seen in chemical
engineering [17,18]. In 2009, Fiandaca et al. [19] used genetic algorithm-based MOO to
optimize a pressure swing adsorption process based on the maximization of two objectives:
nitrogen recovery and nitrogen purity. In 2013, Ganesan et al. [20] carried out MOO of
combined carbon dioxide reforming and partial oxidation of methane with respect to three
objectives. MOO utilized a gravitational search algorithm and particle swarm optimization
to tackle the problem. With respect to technical applications, it appears highly important to
solve the reverse engineering problem as an optimization task with multiple contradicting
objectives [13]. Various ML-based optimization strategies were addressed for the purpose of
reverse engineering polymerization processes [21–25]. A genetic algorithm-based optimizer
was proposed by Mohammadi et al. [9] to generate a variety of polymerization recipes at
random and to send them to the kMC simulator for error evaluation.

This study provides a MOO-based reverse engineering approach, not only ensuring
that the targeted MMD is obtained by means of minimizing the mean squared error (MSE),
but also providing a minimal reaction time and maximal monomer conversion. Frequently,
there are several recipes for obtaining similar MMDs, which are referred to as candidate
recipes in the following discussion. The solution of the MOO approach is referred to
as a polymerization recipe, which includes temperature, reaction time, as well as initial
monomer and initiator concentrations. In the proposed MOO approach, the data for the
selection of the optimal recipes from the search space are based on kMC simulations, as
previously reported for training ML models [11]. The simulation provides the dependence
of monomer conversion and the corresponding MMD on the polymerization conditions
and reaction time. The proposed reverse engineering algorithm consists of several steps.
First, kMC simulations are run for the selected recipe search space to derive the MMDs and
monomer concentrations as an input for the MOO step. Then, MOO is applied for a given
target MMD, and the Pareto optimal space is found on the base of the search space. In the
last step, a weighted sum optimization function is used to calculate the weighted score of
each candidate recipe, which is used for evaluating the solutions. The best candidate has
the smallest score. To accelerate the MOO procedure, additional search space clustering
on the basis of MMDs is considered. The approach pursued is illustrated in Figure 1. The
method was tested for the following model system: a chemically initiated vinyl acetate
(VAc) radical polymerization model system at 60 ◦C using tert-butyl peroxypivalate as the
initiator. This model system was chosen as an example, because of its industrial relevance.
Poly(vinyl acetate) is used as a precursor of poly(vinyl alcohol) [26], which is widely used
as a protective colloid in suspension and emulsion polymerizations [27].
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Figure 1. Illustration of the polymerization reverse engineering approach by means of MOO.

2. Reverse Engineering Modeling Approach
2.1. Model Development

This section provides a formal description of solving a reverse engineering problem
with a MOO approach. State-of-the-art MOO methods [28] like genetic algorithms require
the generation and evaluation of new recipes in each step. Due to the high number of
required steps, it is very demanding to perform on-line kMC simulations in loops [9].

Instead, here, a recipe search space R is selected, where each recipe r ∈ R consists of
reaction time t, the initial monomer concentration cm,0, and the initial initiator concentration
cini,0. Then, the corresponding monomer concentration cm(r) and molar mass distribution
MMD(r) are obtained for each r ∈ R via kMC simulation. In the MOO approach, the input
is a target MMD, MMDtarget, and the output is a set of optimal candidate recipes R*: r∗1 ,r∗2 ,
. . . , r∗n. r* is a subset of the recipe search space R, R* ⊂ R, with MMD(r∗i ) being close to
MMDtarget, as evaluated on the basis of the MSE as well as the maximal conversion and
minimal time.

The optimization variables are presented in Table 1. The lower and upper limits
for the variables cm,0, cini,0, and t are defined by the simulated data. In Table 2, for a
specific recipe r, the simulated values cm(r) and MMD(r) are used to calculate the values of
three optimization objective functions: objective for the reaction time, f t(r), and objective
for the mean squared error (MSE) between MMDtarget and the predicted MMD(r), f MSE.
f cm(r) is used to turn the maximization problem of monomer conversion f conv(r) = (cm,0 −
cm(r))/cm,0 into a minimization problem, in which 1 − f conv(r) is minimized (Table 2).

Table 1. Optimization variables.

Variables Description Restrictions

cm,0 initial monomer concentration cm,0(min) ≤ cm,0 ≤ cm,0(max)
cini,0 initial initiator concentration cini,0(min) ≤ cini,0 ≤ cini,0(max)
t reaction time tmin ≤ t ≤ tmax

r = [cm,0, cini,0, t] initial recipe

Table 2. Optimization objective functions and their calculation on the basis of simulated data.

Objectives Description

min
r

f MSE(r)=min
r

[
MSE

(
MMDtarget, MMD(r)

)]
minimal MSE, where MMD(r) is simulated

min
r

f cm(r)=min
r
[1 − fconv(r)] = min

r
cm(r)
cm,0

minimal relative monomer concentration

min
r

f t(r) = min
r

t minimal reaction time (directly from r)

The final decision takes user preferences into account by assigning specific weights
to the objectives applying the weighted sum method [28,29]. Thus, the multi-objective
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function can be represented in a single-objective way. Then, the values of this function
are calculated for each candidate recipe, and the recipes with minimal values of the ob-
jective function are selected as a set of optimal solutions. A weight wi is assigned to each
normalized objective function fi as follows:

min
r

f (r) = min
r ∑

i
wi fi(r) (1)

where ∑
i

wi = 1, i ∈ {MSE, cm, t}, r ∈ R, and R is a polymerization recipe space. For clarity

of presentation, we avoid the double indexing and use “cm” instead of “cm“ when it is
used as a subscript. Additionally, the weight wcm of the objective f cm is also referred
to as the weight of the conversion objective. The MOO model is universal for solving
reverse engineering problems for other polymerizations. The number of objectives and
their description can be customized, e.g., the conversion of initiator can be added as an
objective.

The steps of the proposed algorithm are presented in Figure 2 as a direct approach.
First, a search space RS ⊂ R is selected (for details, see Section 2.2), and for each r ∈ RS,
MMD(r) and cm(r) are obtained via kMC simulations. Then, MOO is performed over RS.
First, the objective function values are calculated as follows: the values for the objective f t(r)
are already included in r as t, the values of the objective f cm(r) are calculated in advance
for all possible r according to Table 2, and the values of the objective f MSE are specified
by MMDtarget. Further, based on the calculated objective function values, the Pareto front
points Rpar ⊂ RS leading to MMDtarget are identified. For this, the points from RS are
shown in the Pareto optimal space, with coordinates specified by the three objectives.
The Pareto front points are found in this Pareto optimal space, such that one value of the
objective function cannot be improved without downgrading the value of another objective
function [13]. Finally, for the Pareto front points Rpar, the weights of each objective function
are defined, and a set of the best recipe candidates R* ⊂ Rpar according to Equation (1) is
selected.
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The above-described algorithm is improved with respect to the optimization time
by means of clustering the search space, which is illustrated in Figure 2 as the clustering-
supported approach. Clustering divides the search space RS into a number of clusters, as
illustrated in Figure 3. First, the search space RS is clustered on the base of MMD(r), which
allows for the selection of a cluster Rtarget ⊂ RS containing the MMDs, which are the closest
to MMDtarget. In general, a larger number of clusters leads to a smaller number of MMDs
per cluster gaining higher similarity with the distributions. However, there is less space for
optimization regarding other objectives, e.g., such as polymerization time and monomer
conversion. For this reason, an appropriate trade-off between the number of clusters and
their size has to be identified. Upon appropriate clustering, a cluster for the target MMD
(Figure 2, red arrows) Rtarget is found. Then, by MOO, the search space is reduced to the
number of Pareto front points Rpar ⊂ Rtarget. Finally, after defining objective weights, the
best recipe candidates R* ⊂ Rpar are found according to Equation (1). Since MOO is applied
to a single cluster Rtarget ⊂ RS, which is considerably smaller than RS, the optimization
time is significantly reduced.
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Figure 3. Illustration of the clustering approach of the search space. In the middle two graphs,
exemplary clusters of MMDs are presented, on the right, each MMD cluster defined is represented by
a different color.

Different methods can be applied for clustering the search space on the basis of MMD.
The clustering of distributions and their representation in histograms is an important topic
which attracted a lot of attention because of specific metrics which should be used to
compare distributions. One of the most popular and fast clustering methods is the kMeans
method [30]. A modified kMeans clustering algorithm was applied to the clustering
of histograms [31]. Further, a novel non-parametric clustering algorithm of empirical
probability distributions was proposed [32]. Here, the classical kMeans clustering method
was used. This algorithm starts with a random separation of the MMDs into clusters. At
each step, it recalculates the centroids of each cluster and relocates the data points to the
new centroids. The clustering process finishes when the clusters are stable or the given
number of iterations is reached. In this study, the simplest Euclidean distances are used
for the calculation of the distances between multi-dimensional data points, while specific
metrics for the clustering of distributions are also available [31,33].

There are different strategies for data generation for the MOO procedure: the use of
data exclusively generated in advance from kMC simulations, on-demand kMC-generated
data, ML-generated data, kMC-based and ML-generated hybrid data sets, etc. Currently,
as a first step, the focus is exclusively on the use of kMC-simulated data.
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2.2. Data Acquisition and Processing

The in-house-developed kMC simulator, mcPolymer, was used to carry out the simula-
tions required for the generation of polymerization data according to the search space [34].
This simulator allows for the exportation of the concentration profiles of all reactants and
products as well as microstructural data like the MMD, chain composition, and branching
of all polymeric species involved in the process. The simulator output was adapted to be
easily machine readable. The data were filtered, further abstracted, logically connected,
and stored in the well-structured no-SQL database, MongoDB. The kMC simulated MMDs
and monomer concentrations were obtained for the selected search space RS, allowing for
MOO and for the weighted optimal solution to subsequently be found.

The kMC simulations were performed for radical polymerizations with VAc as the
monomer, tert. butyl peroxypivalate as the initiator, and methanol as the solvent. The
simulations were based on a full kinetic model for VAc radical polymerization containing all
elemental reactions. Previously, it was shown that the kinetic model used describes a large
number of experimental data very well [35]. The following polymerization conditions were
used: constant temperature of 60 ◦C, cini,0 in the range of 1.0 to 20.0 mmol·L−1, and cm,0 in
the range of 2.0 to 5.0 mol·L−1 with a uniformly distributed grid size of cini,0 (geometrically
scaled grid points) and cm,0 (arithmetic scaled grid points), resulting in 225 simulations of
the process. The geometric scale was selected for cini,0 to put more attention on the small
values of this parameter. The application of a uniformly distributed grid and the random
selection of the test data ensured the good balance of the datasets used for training and
testing. The polymerization process was simulated for a constant reaction time of 6 h, and
the properties of interest were recorded every 20 min, thus obtaining 18 data points in total
at different time moments for each investigated property. Thus, the data set contained
4050 different MMDs, which were selected in a way that sufficiently covered the relevant
technical reaction conditions. The number of data is reasonable in view of the simulation
time. The simulations took 9 h with 128 CPU cores (2 AMD EPYC 7H12) and 2 TB of RAM.
Moreover, this number of 4050 MMDs allowed for the construction of machine learning
models for reverse engineering and MMD prediction with good performance [11].

For training the ML prediction models for single-objective reverse engineering, the
obtained data set was divided into a training and test set in the proportion of 80:20. The
same data were used for MOO, again by randomly taking 80% of the data as the training set
for the search space RS and 20% of the data as the test set Rtest. The test set Rtest contained
810 recipes, which corresponded to a set MMDtest consisting of 810 kMC-simulated MMDs.
Such a big test set allowed us to test the sensitivity of the proposed approach to the quality
of input data. The evaluation of all optimization approaches was performed with MMDtest,
with each element serving as MMDtarget. In order to test the MMO approach, a single
MMD was selected from MMDtest and used as MMDtarget for the MMO approach. The
performance of the MMO was evaluated by testing it with every MMD from MMDtest.

3. Results and Discussion

In order to compare results obtained via the previously described ML modeling-based
reverse engineering strategy [11] with data from the MOO approach introduced in this
work, the technique reported for butyl acrylate was adopted for the polymerization of
vinyl acetate. Previously, it was described how an ML regression model provides a recipe
r = (cm,0, cini,0, T) for a fixed time for a given MMDtarget. cm,0 and cini,0 are initial con-
centrations of the monomer and the initiator, respectively, and T is the polymerization
temperature. The prediction was performed with the random forest method for a target
MMD to minimize the errors in the predicted recipe r(MMD). In the case of VAc poly-
merizations, the temperature was kept constant at T = 60 ◦C, and the reaction time t was
predicted by the following model: r = (cm,0, cini,0, t). The reverse engineering result for a
sample MMDtarget presented in Figure 4 corresponds to the recipe (cm,0; cini,0; t)/(2.0 mol/L;
1.9 mmol/L; 140 min). Only very small differences between the target and predicted MMD
as well as the predicted recipe were seen. The overall performance of the developed model
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was evaluated using the R2 determination coefficient, which is a measure for the quality of
the prediction by the ML model. Keeping in mind that R2 = 1 indicates perfect prediction,
it is remarkable to note that a rather low value of 0.78 for R2 is obtained, while the visual
inspection of the MMDs for the representative example given in Figure 4 indicates only
minor differences. The target and predicted MMDs are overlapping because their MSE
is very small and equals 7.26 × 10−5. The MSEs of all target MMDs from the test set
are presented in Figure 7. However, this ML-based approach does not consider multiple
contradicting optimization objectives and does not provide multiple alternative solutions
as proposed in the Pareto optimization.
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Figure 4. An example of reverse engineering with ML modeling comparing the MMD (left) and the
recipe (right) for a single MMDtarget, with MMDtarget being an element of MMDtest. The target and
predicted MMDs are overlapping, because their MSE is very small and equals 7.26 × 10−5. The target
recipe is the recipe associated with MMDtarget.

3.1. Direct Pareto Optimization

Figure 5A shows all Pareto front points with three objectives fi, i ∈ {MSE, cm, t}. After
the definition of objective weights, the optimal solution from the Pareto front points was
selected, which satisfied the weighted score calculated with Equation (1) best. Several
combinations of objective weights were considered: time focused, conversion focused, and
MSE focused. For example, in the time-focused case, the weight of time was higher than the
other weights. To identify the optimal recipe leading to the target MMD, the MSE should
have a higher weight than the other objectives. To reduce the number of Pareto front points,
an MSE limit was chosen. As an example, the data in Figure 3 were obtained with an MSE
limit of 2 × 10−3.

The optimization procedure is illustrated in Figure 5 for an example target MMD,
which corresponds to the recipe (cm,0; cini,0; t)/(2.0 mol/L; 1.9 mmol/L; 140 min). Rather
than presenting the objective f cm, which represents the minimized monomer concentration,
the conversion is shown in Figure 5A,B. Figure 5B demonstrates the reduction in the number
of Pareto front points from 340 points (A) to 46 points (B) by filtering with the MSE limit
of 2 × 10−3. The MMDs of all Pareto front points and of the filtered Pareto front points
are given in Figure 5C,D, respectively. The filtering approach allows for the consideration
of only MMDs of similar shape. Figure 6 shows the impact of different MSE limits on the
number of Pareto front points. Even with an MSE limit of 10−3, the average number of
points is around 30, which is a relevant number for the consideration of other objectives.
The minimal number of filtered Pareto points for the MSE limit of 10−3 is about 10.

Figure 7 allows for the comparison of MSEs obtained via ML prediction-based (left)
and MOO-based approaches (right) for reverse engineering calculated for all elements of
MMDtest. Minimal MSEs are preferable. For the ML-based prediction (left), the MSE values
of almost all MMDtarget from MMDtest are less than 10−3, while most MSEs obtained by
the MOO-based approach with an MSE limit of 2 × 10−3 are by two orders of magnitude
lower. Most values are less than 10−5.
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Figure 5. Pareto front points (A), filtered Pareto front points (B), MMDs for all Pareto front points (C),
and MMDs for filtered Pareto front points (D). The target MMD is shown in a bold black line; the
MSE limit was set to 2 × 10−3.
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Figure 7. MSEs of the MMDs of the recipes obtained by ML prediction (left) and MOO (right)
approaches on the basis of MMDtest.

The next step is to evaluate the candidate recipes based on the weighted sum of the
objective values according to Equation (1). Figure 8 and Table 3 present the candidate
recipes for the different combinations of objective weights indicated. In Figure 8, a color
code is assigned to the individual candidate recipes according to the score of the weighted
sum of the values of the three objective functions f MSE, f cm, and f t calculated according to
Equation (1). For the weights wMSE = 0.05, wcm = 0.05, and wt = 0.90, in Figure 8A, the focus
is on the time. As a minimization problem is solved, a minimal score value (visualized by
big pink points) determines the best candidates, given by the recipes with IDs 1, 34, and 2
in Table 3. Other weight combinations with focus on the monomer conversion in Figure 8B
and with equal weights in Figure 8C demonstrate which recipe candidates are selected
depending on specific requirements.
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Figure 8. Influence of the combination of objective weights on the selection of the optimal recipes
for a sample MMDtarget: time focused (wMSE = 0.05, wcm = 0.05, wt = 0.9) (A), monomer conversion
focused (wMSE = 0.01, wcm = 0.8, wt = 0.19) (B), equal weights (wMSE = 1/3, wcm = 1/3, wt = 1/3) (C),
MSE focused (wMSE = 0.9, wcm = 0.09, wt = 0.01) (D). The best three solutions are shown with their
IDs for each case.
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Table 3. The best recipes for each combination of objective weights (the focal weight is given in bold).

IDs of the Best Recipe 1 34 2 46 20 37

wi Time Focus (A) wi Conversion Focus (B)

cm,0/mol·L−1 2.0 2.21 2.0 2.21 2.43 2.43
cini,0/mmol·L−1 20 20 20 8.4 16.1 20
time/min 0.9 20 40 40 0.19 120 80 80
MSE/×10−3 0.05 1.63 1.37 0.08 0.01 1.72 1.58 1.81
conversion/% 0.05 25.9 46.6 45.9 0.8 71.3 69.6 73.7

IDs of the Best Recipe 35 32 21 43 12 7

wi Equal Weights (C) wi MSE Focus (D)

cm,0/mol·L−1 2.21 2.21 2.21 2.0 2.0 2.0
cini,0/mmol·L−1 20.0 10.5 13.0 12.4 10.0 1.5
time/min 1/3 60 80 80 0.01 180 200 160
MSE/×10−5 1/3 35 31 54 0.9 0.086 0.032 0.15
conversion/% 1/3 61.8 60.2 64.4 0.09 48.3 48.2 48.2

3.2. Clustering-Supported Pareto Optimization

Clustering-supported optimization was performed for the same MMDtarget as in the
previous section. It was assumed that all points contained in the target cluster Rtarget had
satisfactory MSEs. For this reason, only the two objectives of f cm and f t were chosen to
be optimized. Figure 9 shows Rtarget in the coordinate space, which corresponds to the
objective functions. The Pareto front points Rpar ⊂ Rtarget are indicated by colored markers.
Table 4 presents all Pareto front points with the corresponding recipes and objective weights.

To find the weighted solution for a time-focused result with wcm = 0.2 and wt = 0.8,
the candidate with ID 1 reaching a conversion of 47% at a reaction time of 40 min is best. If
conversion is considered to be more important than reaction time, as in the case of wcm = 0.8
and wt = 0.2, the candidate with ID 4 is the best solution, leading to a conversion of 77%
with a reaction time of 100 min.
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Figure 9. Clustering-supported Pareto optimization. (A) Illustration of the target cluster Rtarget. The 
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focused result (wcm = 0.2, wt = 0.8), an equal-weighted result (wcm = 0.5, wt = 0.5) and a conversion-
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Figure 9. Clustering-supported Pareto optimization. (A) Illustration of the target cluster Rtarget.
The Pareto front points Rpar ⊂ Rtarget are marked (colored markers) and are listed in Table 4. A
time-focused result (wcm = 0.2, wt = 0.8), an equal-weighted result (wcm = 0.5, wt = 0.5) and a
conversion-focused result (wcm = 0.8, wt = 0.2) are highlighted (1, 3, 4). The corresponding MMDs in
comparison with MMDtarget are shown in (B).

MMD clustering focuses only on a single objective function f MSE when identifying the
most similar cluster for the target MMD. The accuracy is determined on the basis of the
MSE, which represents the deviation of the selected solution from MMDtarget and depends
on the cluster size, and consequently, on the number of clusters. For a small number of
clusters, every cluster contains a broader spectrum of MMDs as compared to a large number
of clusters and leads to an increase in the MSEs of MMDtarget and the MMDs contained
in this cluster. However, the cluster covers a larger value range of the objective function,
allowing for a broader range of predicted recipes. Figure 10 depicts how the MMDtarget

can be reached for clustering the search space into 20, 40, and 60 clusters, respectively.
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Figure 10A–C show the points of the target clusters in the objective function space. The
shape of the clusters is similar. As the number of clusters grows, the number of candidates
per cluster decreases, because there are fewer points fitting the required accuracy with
respect to the MMD. Therefore, the size of the whole cluster shrinks. The red points in
Figure 10 mark the Pareto front points, from which the optimal candidates are selected.

Table 4. Pareto front points Rpar and their recipes and objective functions. Every highlighted point
(bold letters) is the best result for the corresponding example objective weights.

Objective Weights Cand. ID cm,0/mol·L−1 cini,0/mmol·L−1 Time/min MSE/10−3 Conversion/%

0 2.00 20.0 20 1.63 25.9

time focus:
(wcm = 0.2, wt = 0.8) 1 2.21 20.0 40 1.37 46.6

2 2.43 20.0 60 1.94 62.7

equal weights:
(wcm = 0.5, wt = 0.5) 3 2.43 20.0 80 1.81 73.7

conversion focus:
(wcm = 0.8, wt = 0.2) 4 2.43 16.1 100 2.61 77.7

5 2.43 6.86 160 2.79 78.3

6 2.43 5.54 180 2.83 78.5

7 2.43 2.91 260 2.98 79.0
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Figure 10. Cluster size dependence. (A–C) Clusters for MMDtarget with a total number on 20 (A),
40 (B), or 60 (C) clusters. (D–F) MMDs for the Pareto front points.

Figure 10D–F show the MMDs for all Pareto front points. With an increasing number
of clusters, the MSE of MMDtarget and Pareto front MMDs decreases. The objective function
value range also decreases, as illustrated in Table 5. For example, the f MSE of MMDtarget

improves by a factor of 100 when going from a total number of 20 clusters to a total number
of 60 clusters. This improvement is achieved by a loss in conversion, which is reduced
from 58% to 27%. In this example, the reaction time is also lowered with an increasing
number of clusters. The last two rows in Table 5 provide the scores calculated by Equation
(1) for the best recipes obtained with clustering of the search space into 20, 40, and 60
clusters for two cases with a different number of objectives. Note, that only the scores
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obtained with the same combination of weights (given in a single row of Table 4) are
comparable. For equal weights of two objectives (wcm = 0.5, wt = 0.5), the minimal score of
0.39 was obtained with clustering into 40 clusters. Although the optimization was carried
out within one cluster using only two objectives, the results can be related to the direct
Pareto optimization, including the MSE objective. It is shown that for equal weights of three
objectives (wMSE = 1/3, wcm = 1/3, wt = 1/3), the minimal score of 0.30 was also obtained
with the same clustering into 40 clusters.

Table 5. Pareto optimal results with balanced weights for different numbers of clusters.

Number of Clusters 20 40 60

Cand. ID/ 3 2 1

property wi

cm,0/mol·L−1 3.50 3.07 2.86

cini,0/mmol·L−1 13.0 20.0 20.0

time/min 0.5 60.0 40.0 20.0

MSE/×10−3 3.04 0.32 0.03

conversion/% 0.5 58.2 49.2 27.0

score (wt = 0.5, wcm = 0.5) 0.50 0.39 0.50

score (wMSE = 1/3, wcm = 1/3, wt = 1/3) 0.67 0.30 0.33

The comparison of the direct and the clustering-supported Pareto approach is based
on the MSE limit. For the direct approach, the MSE limit can be chosen by the operator. For
the clustering-supported approach, the individual MSE limit for a given MMDtarget, which
evidently depends on the number of clusters, is defined as the maximal MSE value for all
MMDs contained in Rtarget.

Both approaches were compared on the basis of MMDtest. Then, for the clustering-
supported approach, the MSE limit was defined as the maximal value of all individual
MSE limits over MMDtest. Figure 11 shows the dependency of the MSE limit on the total
number of clusters. For more than 30 clusters, the MSE limit is almost constant at a level of
0.003. The MSE limit increases rapidly for less than 30 clusters.
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Figure 12A illustrates the average number of Pareto front points depending on the
MSE limit. Increasing the MSE limit results in a reduction in the number of clusters (see
Figure 11) associated with an enlargement in cluster size, and thereby leading to a higher
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count of Pareto front points. The clustering-supported approach is more selective con-
sidering the average number of Pareto front points. The standard deviation was used
to describe the value ranges of the objective function and of the MSE function. Wider
ranges are advantageous, because they provide more space for optimization. Averaging
the value ranges of each objective function over MMDtest yields the average ranges illus-
trated in Figure 12B–D. The value ranges of the reaction time and conversion are wider
(Figure 12C,D) for the clustering-supported approach, while the MSE value range is more
restricted (Figure 12B). The findings indicate that the clustering approach allows for a better
optimization of monomer conversion and reaction time, while the direct approach is better
suited for the optimization of the MSEs.

Polymers 2024, 16, x FOR PEER REVIEW 13 of 16 
 

 

Figure 12B–D. The value ranges of the reaction time and conversion are wider (Figure 

12C,D) for the clustering-supported approach, while the MSE value range is more re-

stricted (Figure 12B). The findings indicate that the clustering approach allows for a better 

optimization of monomer conversion and reaction time, while the direct approach is better 

suited for the optimization of the MSEs. 

6

12

18

24

30

0.000

0.004

0.008

0.012

0.00 0.01 0.02 0.03 0.04

30

60

90

0.00 0.01 0.02 0.03 0.04

4

8

12

16

 cluster

 direct

a
v
g

. 
n

u
m

b
e

r 
o

f

P
a

re
to

 f
ro

n
t 

p
o

in
ts

A

 cluster

 direct

a
v
g

. 
M

S
E

 r
a

n
g

e

B

C D

 cluster

 directa
v
g

. 
ti
m

e
 r

a
n

g
e
 /

  
m

in

MSE limit

 cluster 

 direct

a
v
g

. 
c
o

n
v
e

rs
io

n

 r
a

n
g

e
 /

 %

MSE limit
 

Figure 12. Comparison of the direct and the clustering-supported approach considering (A) the av-

erage number of Pareto front points, (B) the average MSE range, (C) the average polymerization 

time range, and (D) the average conversion range. 

Table 6 presents the execution time for both approaches for the test set MMDtest con-

sisting of 810 target MMDs. For the clustering-supported approach, the optimization time 

depends slightly on the number of clusters. However, it is by a factor of ten smaller than 

that for the direct approach. 

Table 6. Comparison of optimization time of direct and clustering-supported approaches. 

Approach Direct Clustering-Supported Approach 

  20 Clusters 40 Clusters 60 Clusters 80 Clusters 100 Clusters 

execution time, s 679 56 25 18 14 12 

The rapidness of the MOO algorithm is especially important for the next step, when, 

in future genetic algorithms, together with ML models, it will be applied to extend the 

search space for the polymerization parameters, because Pareto optimization should be 

executed many times for each evolution stage of genetic algorithms. In this situation, clus-

tering-supported Pareto optimization is preferable. 

4. Conclusions and Outlook 

This study bridges the gap between multi-objective optimization (MOO) and its ap-

plication for the reverse engineering of polymerization processes. The proposed MOO 

Figure 12. Comparison of the direct and the clustering-supported approach considering (A) the
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Table 6 presents the execution time for both approaches for the test set MMDtest

consisting of 810 target MMDs. For the clustering-supported approach, the optimization
time depends slightly on the number of clusters. However, it is by a factor of ten smaller
than that for the direct approach.

Table 6. Comparison of optimization time of direct and clustering-supported approaches.

Approach Direct Clustering-Supported Approach

20 Clusters 40 Clusters 60 Clusters 80 Clusters 100 Clusters

execution time, s 679 56 25 18 14 12

The rapidness of the MOO algorithm is especially important for the next step, when,
in future genetic algorithms, together with ML models, it will be applied to extend the
search space for the polymerization parameters, because Pareto optimization should be
executed many times for each evolution stage of genetic algorithms. In this situation,
clustering-supported Pareto optimization is preferable.
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4. Conclusions and Outlook

This study bridges the gap between multi-objective optimization (MOO) and its ap-
plication for the reverse engineering of polymerization processes. The proposed MOO
models allow for the simulation-supported determination of an optimal recipe for a tar-
geted molar mass distribution, taking multiple objectives, e.g., minimal reaction time,
the maximal conversion of monomer, and the similarity of the found MMD compared
to the target MMD into consideration. The proposed approach can be accelerated by ad-
ditional clustering of the simulated MMDs. Moreover, it is possible to obtain a number
of suitable candidates considering different weights of the selected objectives. A set of
alternative optimal solutions is obtained for each specific combination of weights. First
insights are provided on the formulation of a polymerization reverse engineering task as
a MOO problem. The proposed MOO-based approach is a general method for solving
reverse engineering problems; the objectives can be customized and extended. In future,
this approach will be tested with other polymers. Moreover, the understanding gained in
combination with previously proposed ML models [11] for polymerizations will be applied
to facilitate and to speed up the discovery of optimal solutions with a limited number
of kMC simulations. ML models can be used to set up the search space and to evaluate
the candidate polymerization procedures rather than using kMC simulations. The search
for candidate solutions will be performed with the help of genetic algorithms. Moreover,
the consideration of more complex microstructural details, e.g., such as branching in the
high-temperature polymerization of acrylate [36], may require the number of objectives in
MOO to be increased.
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