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Abstract: In designing successful cartilage substitutes, the selection of scaffold materials plays a
central role, among several other important factors. In an empirical approach, the selection of the most
appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally
it requires numerous trials. Moreover, it is humanly impossible to go through the huge library
of literature available on the potential polymer(s) and to correlate the physical, mechanical, and
biological properties that might be suitable for cartilage tissue engineering. Hence, the objective of this
study is to implement an inverse design approach to predict the best polymer(s)/blend(s) for cartilage
repair by using a machine-learning algorithm (i.e., multinomial logistic regression (MNLR)). Initially,
a systematic bibliometric analysis on cartilage repair has been performed by using the bibliometrix
package in the R program. Then, the database was created by extracting the mechanical properties of
the most frequently used polymers/blends from the PoLyInfo library by using data-mining tools.
Then, an MNLR algorithm was run by using the mechanical properties of the polymers, which are
similar to the cartilages, as the input and the polymer(s)/blends as the predicted output. The MNLR
algorithm used in this study predicts polyethylene/polyethylene-graftpoly(maleic anhydride) blend
as the best candidate for cartilage repair.

Keywords: machine learning; multinomial logistic regression; data mining; articular cartilages;
mechanical properties; polymer informatics

1. Introduction

Cartilages are the connective tissues mostly present in the long bones in the human
body. Their primary functions are to provide lubrication and to act as a cushion against the
friction on movement. The damage to these tissues can occur due to trauma, obesity, aging,
osteoarthritis, and by several other factors. Often, even a minute tear in the cartilage over
time leads to further irreversible damage [1,2]. Patients with the disintegration of cartilages
experience debilitating joint pain followed by restricted movement [3,4]. Alarmingly, more
than 200 million people are suffering from osteoarthritis daily around the globe [5].

Chondrocytes play a significant role by producing the extracellular matrix (ECM)
sought for the repair of cartilages. However, the chondrocytes have only a limited capacity
for self-renewal; this makes the cartilage repair difficult [6,7]. Therefore, the insertion of
cartilage substitutes is deemed to be the potential solution. The damaged cartilages are
often replaced by using several surgical procedures such as total knee replacement, mi-
crofracture, and mosaicplasty. Moreover, as a possible therapeutic option, the chondrocytes
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extracted from the donors are transplanted to the damaged area to reduce the severity of the
disease [8]. However, the rejection of the implanted chondrocytes by the recipient(s) makes
this procedure unpredictable, and finding the right donor is also troublesome. Especially
in the case of chondrocytes, instability of the monolayer is a crucial obstacle [9,10]. There-
fore, it is evident that none of these techniques offers long-lasting solutions to cartilage
damage-related diseases [11,12].

Recently, tissue engineering has delivered promising results in the field of cartilage
regeneration and repair. The 3D scaffolds play a crucial role in replacing biological tissues
through the development of fully functioning load-bearing biomaterials [13,14]. Fabri-
cated 3D scaffolds should have the capacity to considerably mimic the characteristics and
functions of the extracellular matrix (ECM) of the cartilages [15]. The 3D scaffolds should
acquire mechanical integrity and appropriate cell attachment, cell adhesion, and cell pro-
liferation. Over the years, the polymers have shown tremendous potential to be molded
as 3D scaffolds having the abovementioned properties [16,17]. By using many different
combinations of natural and synthetic polymers, many have attempted to develop fully
functioning and weight-bearing cartilages. However, the complexity of natural cartilages
makes it very challenging to create the designed biological substitutes. As a whole, the
advanced biomaterials typically fall short either in biomechanics or in functioning [18,19].

Moreover, the discovery of novel combinatory materials for cartilage tissue engi-
neering typically takes a long time (i.e., 10–20 years) from the material design to com-
mercialization. In particular, the material design procedure is one of the most tedious,
time-consuming, and costly affairs in this regard [20,21]. Because going through material
design and development is such a lengthy procedure, most of the time the developed
product turns out to either be outdated, or the initial hypothesis of the researchers be-
comes irrelevant or inadequate due to the advancement of research in the respective field.
Moreover, during the period of evolution of designing a commercial product, an immense
amount of data is being generated in the relevant field(s). Manually, it becomes laborious
and time-consuming to find and interpret the data patterns or to extract any meaningful
information out of them. With the advancements in information technology, informa-
tion can be retrieved from these data to implement knowledge discovery by data mining
through machine-learning algorithms [22–24]. The process and tools of data mining pro-
vide immense help in executing the algorithms needed for material informatics [25,26]. In
material informatics, a vast amount of data in the form of experimental outcomes from the
previous research is being retrieved, and using the tools of machine learning, facilitation
of knowledge discovery is implemented [23]. Indeed, the fourth dimension of material
science involves extracting information from the literature with the aid of machine-learning
algorithms. In this way, the knowledge can be retrieved by discovering the association
between the data, pattern recognition, and clustering without any human intervention.
This approach leads to speedy design and development of novel materials, as once the
information is attained, a minimal amount of trial and error is needed to be carried out [27].

Consequently, the use of material informatics in developing new materials from the
potential polymer(s) is currently in great demand. More precisely, in recent years, the imple-
mentation of material informatics and machine learning in materials science (i.e., polymer
design, feature selection) has increased exponentially [26,28,29]. In material science, experi-
mental design can be carried out through direct design and inverse design approaches. A
direct or conventional design approach involves the prediction of the properties of the
fabricated materials by taking “materials” as the input. Recently, with the advancement of
machine learning, a new technique of material design, namely inverse design, can be im-
plemented. Inverse design is a fully data-driven approach that predicts the target materials
by putting the relevant material properties (i.e., molecular structures, physical, mechanical,
thermal, biological, etc.) as the input [30,31].

For example, Venkatraman et al. (2018) used an evolutionary algorithm for the virtual
screening of several classes of monomers while developing a batch of polymeric materials
with a high refractive index to determine which chemical groups have a major effect
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on increasing the refractive indices of the developed materials [32]. Similarly, Tao et al.
(2021) carried out a comparative study on the capability of 79 different machine-learning
algorithms to predict the glass transition temperature of polymers. The random forest was
found to be ideal in the prediction of glass transition temperature by using a large database
of polymers as input [33]. Also, the heat capacity of the polymer was predicted with
good accuracy by using an artificial neural network by Ishikiriyama (2021). By using the
data found in ATHAS data bank artificial neural network could predict the heat capacity
with minimum error [34]. Very recently, Chen et al. (2021) synthesized a hand-crafted
new polymer using machine-learning techniques. This study involves the creation of a
polymerization database comprised of information regarding the reactants, homopolymers,
and the polymerization paths that were used to predict the synthesis pathway of the new
polymer comprising of the targeted properties [35]. In another study, Le (2020) used the
Gaussian process regression method to predict the tensile strength of the nanocomposites by
setting the types and mechanical properties of the polymer matrices, types, and properties
of carbon nanotubes as nanofillers and incorporation parameters as inputs [36]. While
Venkatraman et al. (2018) [32] and Le (2020) [36] adopted a direct design approach, in
a recent study, Kim et al. [30] developed a deep-learning neural network inverse design
model to predict high-performance organic molecules by creating a relationship between
the structure and their material properties. Very recently in 2020, Kim et al. [37] employed
the inverse design approach through a neural network algorithm in which 31,713 known
zeolites properties were considered as input to predict 121 porous nanostructures.

To the best of the authors’ knowledge, no study has yet been conducted to predict
the polymer(s)/blend(s) to mimic human cartilages by a machine-learning algorithm. The
primary objective of this study is to implement an inverse design approach to obtain the
target polymer(s)/blend(s) that exhibit similar properties of the human cartilage. In this
study, the null hypothesis assumes that the prediction of polymer/blends’ names in the
database and the subset is quite similar. However, the alternative hypothesis would be
that the prediction between the sets is dissimilar in nature. This research was carried
out in four steps; initially, the systematic bibliometric analysis was carried out by using
the review articles’ citation data in the field of cartilage tissue engineering, and then the
relevant database was created from the PoLyInfo library by using data-mining tools. Then
a machine-learning technique (i.e., multinomial logistic regression) has been used to run
both single and multiple properties optimizations. In the final step, the machine-learning
algorithm was employed to predict the polymer(s)/blends that possess similar functional
properties of the human cartilages (e.g., tensile modulus, tensile strength, and elongation
at break).

2. Methodology
2.1. Bibliometric Analysis

Bibliometric analysis is a powerful tool that allows researchers to get an overview of
the trend in which the specific research field is heading into. The benefit of this analysis
includes the extraction of the original articles and their citation summary to run the overall
publication analysis in a particular field of interest [38,39]. From the large group of polymers
and subgroups of polymers available in the market, the objective of this study was to
discover the polymers/composites which are among the best to be used in cartilage repair.
To retrieve the major groups of polymers/composites, a bibliometric analysis was carried
out. In this study, using “cartilage” as the keyword, review journal articles’ title, abstracts
and their citation reports were extracted, and bibliometric analysis was run in R program.
The results containing the top ten highly cited articles were tabulated and summarized
in Table 1. Each review paper linked to cartilage repair was manually reviewed, and the
names of the major polymers/composites mentioned in these papers were extracted and
listed. The selection of these polymers/composites was done based on their recurrent usage
in cartilage tissue engineering. The final selection of the polymers/blends was made based
on the availability of data in the Polyinfo database on January 2021 summarized in Table 2.
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Table 1. Top 10 cited articles from web of science having cartilage as the keyword from Web of Science
published in the years 2005–2020.

S. No. Refs. Publication Year Citation Average
Citation/Year

1 [40] 2007 759 54.21
2 [41] 2009 728 60.67
3 [42] 2010 542 49.27
4 [43] 2012 447 49.67
5 [44] 2008 447 34.38
6 [45] 2007 439 31.36
7 [46] 2015 395 65.83
8 [47] 2017 361 90.25
9 [48] 2009 285 23.75
10 [49] 2011 283 28.30

Table 2. Overall database of polymers/blends used in cartilage tissue engineering from PoLyInfo database.

Polymers/Composites TM (GPa) TS (GPa) E (%)
polystyrene 1.4 0.01913 3.5

polystyrene 4.2 0.1048 56.48

poly(2-methylstyrene) 4 0.0691 3

poly(2-methylstyrene) 4 0.0691 3

poly(vinyl alcohol) 1.4 0.049 97

poly(vinyl alcohol) 1.6 0.059 110

Polyacrylonitrile 5 0.075 8.5

Polyacrylonitrile 5 0.075 8.5

poly(N-vinylpyrrolidone) 0.075 0.0332 20

poly(N-vinylpyrrolidone) 0.075 0.0332 20

poly(methyl methacrylate) 1.5 0.02958 2.1

poly(methyl methacrylate) 3.7 0.083 6.4

poly(vinyl chloride) 0.16 0.02393 4.9

poly(vinyl chloride) 3.2 0.1 412.5

poly(1-chloro-2-hexylvinylene) 0.43 0.017 240

poly(1-chloro-2-hexylvinylene) 0.43 0.017 240

polyethene//polystyrene 2 0.0431 17.5

polyethene//polystyrene 3.3 0.0683 32.7

polyethene//poly[ethene-co-(vinyl acetate)] 0.0052 0.0044 610

polyethene//poly[ethene-co-(vinyl acetate)] 0.0076 0.0076 710

polyethene//poly(acrylonitrile-co-
butadiene) 0.3 0.007 24

polyethene//poly(acrylonitrile-co-
butadiene) 0.45 0.0135 37

poly[ethene-co-(oct-1-ene)]//poly[ethene-
co-(vinyl
alcohol)]

0.035 0.004 16

poly[ethene-co-(oct-1-ene)]//poly[ethene-
co-(vinyl
alcohol)]

1.1 0.029 1025
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
poly[(maleic anhydride)-co-

styrene]//poly[ethene-co-(methyl
acrylate)-co-(glycidyl methacrylate)]

0.79 0.0309 33.6

poly[(maleic anhydride)-co-
styrene]//poly[ethene-co-(methyl

acrylate)-co-(glycidyl methacrylate)]
0.79 0.0309 33.6

poly(vinyl acetate)//poly(3-hydroxybutyric
acid)//poly(3-hydroxybutyric acid) 0.091 0.0075 275

poly(vinyl acetate)//poly(3-hydroxybutyric
acid)//poly(3-hydroxybutyric acid) 0.091 0.0096 380

poly(lactic acid)//poly[ethene-co-(vinyl
acetate)] 0.32 0.02202 350

poly(lactic acid)//poly[ethene-co-(vinyl
acetate)] 0.59 0.0294 400

poly(2-ethylhexyl acrylate)//poly(vinyl
chloride) 0.51 0.0042 1.6

poly(2-ethylhexyl acrylate)//poly(vinyl
chloride) 1.1 0.0132 5.5

poly(hexano-6-lactam) 0.019 0.0278 10.7

poly(hexano-6-lactam) 2.3 0.089 330

poly[(hexane-1,6-diamine)-alt-(adipic acid)] 0.25 0.031 1.9

poly[(hexane-1,6-diamine)-alt-(adipic acid)] 3.7 0.0932 530

poly(11-aminoundecanoic acid) 0.61 0.0399 300

poly(11-aminoundecanoic acid) 0.98 0.04 340

poly(dodecano-12-lactam) 0.33 0.085 350

poly(dodecano-12-lactam) 0.33 0.085 350

poly(bisphenol A carbonate) 1.3 0.0028 5

poly(bisphenol A carbonate) 3.7 0.082 200

poly(propylene carbonate) 0.2 0.027 8.2

poly(propylene carbonate) 1.1 0.059 726.8

poly(epsilon-
caprolactone)//poly(bisphenol A

carbonate)
2.5 0.0583 3.5

poly(epsilon-
caprolactone)//poly(bisphenol A

carbonate)
3.9 0.0692 70

poly(hexano-6-lactam)//poly(bisphenol A
carbonate) 2.2 0.0705 50

poly(hexano-6-lactam)//poly(bisphenol A
carbonate) 2.2 0.0705 50

poly(lactic acid)//poly(bisphenol A
carbonate) 2 0.063 20.3

poly(lactic acid)//poly(bisphenol A
carbonate) 2.4 0.069 87.9

poly(ethylene-2,5-furandicarboxylate) 2.5 0.041 2.81
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
poly(ethylene-2,5-furandicarboxylate) 2.5 0.041 2.81

poly(5-hydroxy-3-oxavaleric acid) 0.34 0.0283 273

poly(5-hydroxy-3-oxavaleric acid) 0.63 0.0357 441

poly[(butane-1,4-diol)-alt-(succinic acid)] 0.34 0.0335 5.2

poly[(butane-1,4-diol)-alt-(succinic acid)] 0.71 0.0399 21.9

poly[(butane-1,4-diol)-alt-(terephthalic
acid)] 0.17 0.03 10

poly[(butane-1,4-diol)-alt-(terephthalic
acid)] 6 0.2 350

poly(epsilon-caprolactone) 0.23 0.0105 25

poly(epsilon-caprolactone) 0.46 0.0275 930

poly[(propane-1,3-diol)-alt-(terephthalic
acid)] 0.013 0.03 360

poly[(propane-1,3-diol)-alt-(terephthalic
acid)] 1.1 0.037 590

poly(3-hydroxybutyric acid) 1.3 0.0152 1.8

poly(3-hydroxybutyric acid) 1.3 0.0152 1.8

polyethene//poly(ethylene terephthalate) 1 0.046 87

polyethene//poly(ethylene terephthalate) 2.3 0.073 386

poly(prop-1-ene)//poly(ethylene
terephthalate)//poly[ethene-co-(5-

ethylidene-2-norbornene)-co-(prop-1-ene)]
0.045 0.0041 23.2

poly(prop-1-ene)//poly(ethylene
terephthalate)//poly[ethene-co-(5-

ethylidene-2-norbornene)-co-(prop-1-ene)]
0.77 0.016 132.1

poly(vinyl chloride)//poly(D,L-2-methyl-2-
propyl-3-hydroxypropionic

acid)
0.13 0.0072 4.8

poly(vinyl chloride)//poly(D,L-2-methyl-2-
propyl-3-hydroxypropionic

acid)
1.9 0.0146 648

poly(ethylene oxide)//poly(lactic acid) 0.33 0.015 135

poly(ethylene oxide)//poly(lactic acid) 0.76 0.036 340

poly[(butane-1,4-diol)-alt-(terephthalic
acid)]//poly(hexano-6-lactam) 2.8 0.069 36

poly[(butane-1,4-diol)-alt-(terephthalic
acid)]//poly(hexano-6-lactam) 2.9 0.07 38

poly(epsilon-caprolactone)//cellulose 0.25 0.0095 6.3

poly(epsilon-caprolactone)//cellulose 0.35 0.0142 650

poly(3-hydroxybutyric acid)//poly(lactic
acid) 0.027 0.0361 3.5

poly(3-hydroxybutyric acid)//poly(lactic
acid) 0.035 0.0552 27

poly(3-hydroxybutyric
acid)//poly[(glycolic acid)-co-(lactic acid)] 0.51 0.012 23
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
poly(3-hydroxybutyric

acid)//poly[(glycolic acid)-co-(lactic acid)] 0.9 0.029 116

poly(3-hydroxybutyric
acid)//poly[(D-lactic acid)-co-(L-lactic

acid)]
0.1 0.0016 26

poly(3-hydroxybutyric
acid)//poly[(D-lactic acid)-co-(L-lactic

acid)]
0.8 0.012 300

Polyetheretherketone 1.3 0.031 3.8

Polyetheretherketone 8.3 0.189 496

Polyethene 0.001 0.004 0.04

Polyethene 3.8 0.1887 1590

poly(prop-1-ene) 0.0034 0.0000174 1.6

poly(prop-1-ene) 3 0.043 1750

poly(but-1-ene) 0.15 0.01 240

poly(but-1-ene) 0.21 0.0164 320

poly(4-methylpent-1-ene) 0.021 0.0006 18

poly(4-methylpent-1-ene) 0.06 0.0018 900

polyethene//poly(prop-1-
ene)//poly[ethene-co-(prop-1-ene)] 1.4 0.0205 200

polyethene//poly(prop-1-
ene)//poly[ethene-co-(prop-1-ene)] 1.5 0.024 200

polyethene//polystyrene//polystyrene-
block-(hydrogenated

polybutadiene)-block-polystyrene
0.88 0.0302 4

polyethene//polystyrene//polystyrene-
block-(hydrogenated

polybutadiene)-block-polystyrene
0.99 0.0302 4

polyethene//poly[ethene-co-(maleic
anhydride)] 2.2 0.0151 170

polyethene//poly[ethene-co-(maleic
anhydride)] 2.2 0.0171 340

polyethene//poly[ethylene-co-(but-1-ene)] 0.58 0.003 360

polyethene//poly[ethylene-co-(but-1-ene)] 0.78 0.027 1050

polyethene//hydrogenated
poly(cyclopenta-1,3-diene) 0.050 0.0019 2

polyethene//hydrogenated
poly(cyclopenta-1,3-diene) 1.1 0.0265 250

polyethene//poly(hexano-6-
lactam)//polyethene-graft-poly(maleic

anhydride)
0.042 0.0237 45.5

polyethene//poly(hexano-6-
lactam)//polyethene-graft-poly(maleic

anhydride)
0.49 0.0323 413.7

polyethene//polyethene-graft-poly(maleic
anhydride) 0.92 0.008 1.1
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
polyethene//polyethene-graft-poly(maleic

anhydride) 1.1 0.0524 821

poly(prop-1-ene)//poly(hexano-6-
lactam)//poly[propylene-graft-(maleic

anhydride)]
0.092 0.0383 5.3

poly(prop-1-ene)//poly(hexano-6-
lactam)//poly[propylene-graft-(maleic

anhydride)]
4 0.051 13.5

polyethene//polyethene-graft-poly(maleic
anhydride) 0.92 0.008 1.1

polyethene//polyethene-graft-poly(maleic
anhydride) 1.1 0.0524 821

poly(prop-1-ene)//poly(hexano-6-
lactam)//poly[propylene-graft-(maleic

anhydride)]
0.092 0.0383 5.3

poly(prop-1-ene)//poly(hexano-6-
lactam)//poly[propylene-graft-(maleic

anhydride)]
4 0.051 13.5

poly[ethene-co-(prop-1-
ene)]//poly[propylene-graft-(maleic

anhydride)]
1.8 0.0272 8.7

poly[ethene-co-(prop-1-
ene)]//poly[propylene-graft-(maleic

anhydride)]
3.1 0.0272 8.7

poly(hexano-6-lactam)//poly[ethene-co-
(prop-1-ene)]//poly[propylene-graft-

(maleic
anhydride)]

1 0.044 14

poly(hexano-6-lactam)//poly[ethene-co-
(prop-1-ene)]//poly[propylene-graft-

(maleic
anhydride)]

1 0.0577 148

poly[ethylene-co-(but-1-ene)]//cellulose
acetate 2 0.0079 130

poly[ethylene-co-(but-1-ene)]//cellulose
acetate 2.5 0.0079 130

cellulose//poly[ethylene-co-(but-1-ene)] 0.12 0.0117 50

cellulose//poly[ethylene-co-(but-1-ene)] 0.12 0.0117 50

poly(vinylidene fluoride) 0.16 0.00945 20

poly(vinylidene fluoride) 0.16 0.00945 400

poly(tetrafluoroethylene) 0.21 0.012 234.4

poly(tetrafluoroethylene) 25 0.012 234.4

Polychlorotrifluoroethylene 0.60 0.02882 24

Polychlorotrifluoroethylene 0.60 0.03861 90

poly(methyl methacrylate)//poly(vinyl
chloride) 1.5 0.0683 6.2

poly(methyl methacrylate)//poly(vinyl
chloride) 1.9 0.0732 9.8
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
poly(ethylene oxide) 3.2 0.006895 700

poly(ethylene oxide) 3.4 0.01034 1200

poly[(glycolic acid)-co-(lactic acid)] 0.20 0.043 0.84

poly[(glycolic acid)-co-(lactic acid)] 0.50 0.052 14

poly(glycolic acid)//poly(lactic acid) 0.0028 0 3

poly(glycolic acid)//poly(lactic acid) 1.9 0 56

poly(lactic acid)//poly[(glycolic
acid)-co-(lactic acid)] 0.6 0 1.6

poly(lactic acid)//poly[(glycolic
acid)-co-(lactic acid)] 1.6 0 28

poly(methyl
methacrylate)//poly(epsilon-caprolactone) 0.0038 0 6.3

poly(methyl
methacrylate)//poly(epsilon-caprolactone) 0.001 0 6.7

poly(vinyl
chloride)//poly(epsilon-caprolactone) 0.37 0 136

poly(vinyl
chloride)//poly(epsilon-caprolactone) 0.39 0 470

poly(epsilon-caprolactone)//poly(lactic
acid) 0.0023 0.0472 3

poly(epsilon-caprolactone)//poly(lactic
acid) 1.2 0.0554 288

poly(lactic acid)//cellulose acetate 0.3 0.000491 26

poly(lactic acid)//cellulose acetate 1.3 0.00075 51

poly(lactic acid)//chitin 0.017 0.44 11

poly(lactic acid)//chitin 0.029 0.49 12.5

poly(prop-1-ene)//poly(prop-1-
ene)//poly(hexano-6-lactam) 0.048 0.001042 0

poly(prop-1-ene)//poly(prop-1-
ene)//poly(hexano-6-lactam) 0.05 0.01688 0

poly(prop-1-ene)//polystyrene 0.25 0.005 0

poly(prop-1-ene)//polystyrene 0.21 0.0309 0

poly(prop-1-ene)//poly(methyl
methacrylate) 0.84 0.034 4

poly(prop-1-ene)//poly(methyl
methacrylate) 2.6 0.038 1000

poly(prop-1-ene)//poly(vinyl chloride) 0 0 14

poly(prop-1-ene)//poly(vinyl chloride) 0 0 23

poly(lactic acid) 0.26 0 1

poly(lactic acid) 0.66 0 2654

poly(ethylene oxide)//poly[(glycolic
acid)-co-(lactic acid)] 0.0035 0 0.83

poly(ethylene oxide)//poly[(glycolic
acid)-co-(lactic acid)] 2.17 0 1.93

polyethene//poly(prop-1-ene) 0.03 0 5
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
polyethene//poly(prop-1-ene) 0.13 0 950

poly(prop-1-ene)//poly(dodecano-12-
lactam) 1.3 0 15

poly(prop-1-ene)//poly(dodecano-12-
lactam) 1.7 0 23

poly(dimethylsiloxane) 0.00031 0 9

poly(dimethylsiloxane) 0.0076 0 637

poly(pentano-5-lactone) 0.57 0.57 150

poly(pentano-5-lactone) 0.57 0.57 200

Polyformaldehyde 1 0.028 20

Polyformaldehyde 3.6 0.097 380

poly(isobutylene oxide) 0.81 0.03103 235

poly(isobutylene oxide) 0.81 0.03103 235

poly[ethene-co-(vinyl acetate)] 0.0038 0.003 252.2

poly[ethene-co-(vinyl acetate)] 0.0062 0.0059 990

poly[ethene-co-(methyl acrylate)] 0.005 0 1140

poly[ethene-co-(methyl acrylate)] 0.005 0 1140

poly[(glycolic acid)-co-(lactic acid)] 1.3 0.043 5

poly[(glycolic acid)-co-(lactic acid)] 1.9 0.052 10.8

poly[(D-lactic acid)-co-(L-lactic acid)] 0.27 0.74 2.83

poly[(D-lactic acid)-co-(L-lactic acid)] 1.8 0.74 317

cellulose acetate 2 0 6

cellulose acetate 2 0 6

cellulose//amylopectin 0.56 0.011 8.4

cellulose//amylopectin 2.2 0.037 44

poly[ethene-co-(oct-1-ene)]//poly[ethene-
co-(vinyl
alcohol)]

0.035 0.0075 16

poly[ethene-co-(oct-1-ene)]//poly[ethene-
co-(vinyl
alcohol)]

1.1 0.0096 1025

poly(prop-1-ene)//poly(hexano-6-
lactam)//poly[propylene-graft-(maleic

anhydride)]
1.8 0.0383 5.3

poly(prop-1-ene)//poly(hexano-6-
lactam)//poly[propylene-graft-(maleic

anhydride)]
3.1 0.051 13.5

poly[ethylene-co-(but-1-
ene)]//poly[ethene-co-(methyl

acrylate)]
0.03 0.0055 101

poly[ethylene-co-(but-1-
ene)]//poly[ethene-co-(methyl

acrylate)]
0.11 0.0121 608

polyethene//polystyrene 0.2 0.0251 4.3
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Table 2. Cont.

Polymers/Composites TM (GPa) TS (GPa) E (%)
polyethene//polystyrene 3.3 0.0316 60

poly(lactic acid)//poly[ethene-co-(vinyl
acetate)] 1.1 0.0285 1

poly(lactic acid)//poly[ethene-co-(vinyl
acetate)] 1.8 0.0331 21.9

poly[ethene-co-(vinyl alcohol)] 0.88 0.055 40

poly[ethene-co-(vinyl alcohol)] 3.8 0.055 210

2.2. Database Creation

For the success and durability of the biomaterials, mechanical properties play a sub-
stantial role [50,51]. Specifically, in cartilages, a primary symptom of the disease (i.e., os-
teoarthritis) is the deterioration of the mechanical properties of the cartilages [52]. Concern-
ing the biomechanical properties of the cartilages, the tensile strength, tensile modulus, and
elongation at break are the most sought mechanical properties, because the main function
of cartilage is to hold/resist the amount of stress and compressive force exerted on the
body part(s) of interest at any given moment [53]. The key mechanical properties of the
native articular cartilages were extracted from the literature by using data-mining tools
and are summarized in Table 3. The tensile strength, tensile modulus, and elongation of
the natural cartilages reported in Table 3 are 35 MPa, 3–100 MPa, and 2–140%, respectively
However, under 15% less strain, the tensile modulus reaches only up to 5 to 10 MPa [54].
Therefore, the database of the polymers/composites has been created taking into account
these key mechanical properties of the natural cartilages.

Table 3. The properties of articular cartilages (i.e., the target properties of this study).

Properties Numerical Value References
Elongation of facture 2 to 140% [55]

Tensile strength ~35 MPa [56,57]
Tensile Modulus 3 to 100 MPa [55]

PolyInfo is a section of the NIIMS materials database that extracts numerical data from
the relevant sources (i.e., academic articles) [58]. In this study, data-mining tools were used
to retrieve the numerical values of the major mechanical properties of the polymers/blends
used in cartilage repair from the PolyInfo database. The summarized database (Table 2)
includes a collection of 97 polymers/blends and their related mechanical properties. The
ranges of the extracted values for each of the mechanical properties were chosen as the
input or independent variable in this study, whereas the names of the polymers/blends
were taken as the output or the dependent variable (i.e., categorical in nature) for the
machine-learning algorithm. The input and output variables were chosen in such a way to
implement the inverse design approach shown in Figure 1. Through this design approach,
the polymers/blends’ names were predicted by using properties of the natural cartilage
extracted from journal articles (summarized in Table 3).
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2.3. Multinomial Logistic Regression (MNLR)

For dealing with the categorical dependent variable with multiple levels, very few
modeling techniques are available. Among those few techniques, multinomial logistic
regression (MNLR) is one of the most suitable machine-learning algorithms used to model
the data having multiple factors and levels. The dataset used to implement the multinomial
logistic regression technique is typically categorical and has multiple levels. This approach
can deduce the probability of occurrence of the output in the dataset. This regression is
distinct from its linear regression as it implements a sigmoidal behavior to its data [59].

In multinomial logistic regression, the model calculates the probability of the one factor
chosen in place of the other. The probability mass function is given by Equation (1) [60]:

Pr (n1, . . . . . . .., nk) =
n!

n1!n2! . . . . . . nk!
pn1

1 pn2
2 . . . . . . . . . . . . ..pnk

k . (1)

Equation (2) can be used to calculate the log-likelihood function:

L(β) = ∑k
i=1

{
y
(
x′β1

)
+ . . . y

(
x′βk

)
− ln

(
1 + exp

(
x′β1

)
. . . + exp

(
x′βk

))}
(2)

wherein the
(

x′β j
)

can be computed by using the Equation (3)

(
x′β j

)
= ln

(
Pr

(
y =

j
x

))
/
(

Pr
(

y =
1
x

))
, j = 1, 2, . . . . . . ..k. (3)

To evaluate the modeled data having a categorical response variable, it is crucial to
develop a relationship between the logarithm odds and the explanatory variables for the
modeled data. It is given by Equation (4):

log
(

p
1− p

)
= β0 + β1x1 + . . . + βixi (4)

where x is the explanatory variable, βs are the regression coefficient of the factor(s), and p is
the predicted probability. In dealing with the multiclass regression problem, a relationship
between the input and output is developed by Equation (5):

P(y = k/x) =
exp(βk

0+βk
1x1+.........+βk

i xi)

∑K
J=1 exp(βk

0+βk
1x1+.........+βk

i xi)
(5)

where k is the number of classes and βs are the regression coefficient of the factor(s) [61].
The overall workflow of MNLR is depicted in the form of a flowchart in Figure 2. The

initial step includes the preprocessing of the data, as the computer cannot differentiate
between the factorial and numerical variables. Therefore, each parameter was needed to be
assigned as either numerical or categorical. The final step of the data preprocessing includes
the removal of the outlier(s) from the dataset. To check the accuracy of the prediction,
the data were divided into training and testing sets. Then the training set was being
fed into the algorithm and the likelihood ratio test was performed. The deviance of the
null hypothesis and the residual was noted. The model’s goodness of fit was confirmed.
By using the testing data without the output, a new prediction was retrieved. Once the
difference between the observed and the predicted values (i.e., residual) was minimum, the
prediction was done by using the tensile modulus, tensile strength, and the elongation at
break of the natural cartilages.
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3. Results and Discussion
3.1. Bibliometric Analysis

The most convenient and least time-consuming approach to obtain an overall standing
(i.e., trend, current progress, etc.) of any research field is the bibliometric analysis. It enables
the researchers to summarize the overall research trends and to develop the link between the
variables in the field(s). The bibliometric analysis can be used to analyze the most evaluated
component(s) in the area of the research [62,63]. Particularly in tissue engineering, a huge
number of materials/blends/composites are being investigated to evaluate their efficacy
to replace damaged or degrading cartilages. Among them, polymers are at the frontline
in creating biomaterial substitutes (i.e., scaffolds) [64,65]. In cartilage tissue engineering,
several different types and combinations of polymers are being investigated to mimic
articular cartilages [8,66]. To select the most suitable polymer(s) and/or the combination
of polymers, the bibliometric analysis was used in this study. The review papers were
extracted from the Web of Science by using the “cartilages” and “polymers” as the keywords.
The review articles’ citation details were downloaded for the period from 2005–2020. By
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using the bibliometrix package in R program [67], a list of highly cited review papers was
extracted and the top ten cited papers are being summarized in Table 1.

Upon running the bibliometric analysis using “cartilages” and “polymers” as key-
words, the most recurrent words were displayed in the form of the wordcloud as shown
in Figure 3. All of the keywords shown in the wordcloud appeared more than 70 times in
the published literature. In Figure 3, the keywords are displayed in larger to smaller fonts
depending on their recurrence in the literature. It is evident from Figure 3 that cartilage,
scaffolds properties, collagen, polymers, hydrogels, mechanical strengths, and chondro-
cytes are found to be among the most recurrent keywords. In other words, these are the
most important parameters to consider while designing a new material for cartilages repair.
In this study, our focus was limited to the mechanical strength of the polymer(s) to mimic
the articular cartilages. Considering the mechanical properties (i.e., tensile strength, tensile
modulus, and elongation, etc.), based on the recurrent mentions in the review papers and
the data available in the PoLyInfo database, the list of polymers/blends has been prepared
to be used in the machine learning algorithm (shown in Table 2).
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3.2. Selection and Preprocessing of the Database

Depending on the load or the direction of stretching, the components of cartilages,
especially the collagen fibrils and proteoglycans, move towards the direction of the load.
Initially, when the tensile stress is less, only the collagen fibers’ realignment occurs [68].
Once the cartilage experiences large deformation, the collagen attains a large amount
of tensile stiffness due to the stretching of collagen fibers. Once the tension is removed,
the collagen fibrils and proteoglycans move back to their normal position. Indeed, the
viscoelasticity of cartilages in tension is best described by the mechanical properties, such
as tensile strength, elongation at break, and tensile modulus [68,69]. Therefore, in this study,
the ranges of the tensile strength, elongation at break, and tensile modulus have been
considered for the database to take account of the viscoelastic behavior of cartilages.

Typically, in the inverse design approach, the properties of the polymers/blends are
used as the input whereas the output is the most suitable blend to be used in the intended
applications. In this study, the input is the numerical range of the selected properties,
and the output is found as a categorical variable (i.e., string or the text). For this purpose,
the scattered plots have been plotted in Figure 4 to represent the raw data for tensile
modulus (Figure 4a,b), tensile strength (Figure 4c,d), and elongation at break (Figure 4e,f),
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respectively. It is important to note that the database has been created based on the list of
the polymers/blends most recurrently used in cartilages repair. The raw data retrieved
from the databases consisted of outliers that were needed to be screened/removed before
running the machine-learning algorithm. After cleaning the outliers, the most concentrated
data zones were selected for all three properties of interest. As shown in Figure 4, the tensile
strength data is so concentrated that they almost formed a straight line, whereas the tensile
modulus and elongation data shown in Figure 4 were a little more scattered. The blue
rectangular boxes shown in each of Figure 4a–f represent the numerical ranges of tensile
modulus, tensile strength, and elongation, respectively. Upon cleaning up the outliers, the
magnitude range of the tensile modulus, tensile strength, and elongation was found to
be 0–2 GPa, 0–0.2 GPa, and 0–400%, respectively. These ranges are in agreement with the
mechanical properties of human cartilages presented in Table 3.
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Figure 4. Scatter plots. (a) Overall data of the tensile modulus of the polymer(s)/blend(s) in the
database. (b) Zoomed image of the highly-dense region of the tensile modulus data. (c) Overall
data of the tensile strength of the polymer(s)/blend(s) in the database. (d) Zoomed image of the
highly dense region of the tensile strength data. (e) Overall data of the elongation at break (%) of the
polymer(s)/blend(s) in the database. (f) Zoomed image of the highly dense region of the elongation
at break data.

3.3. Multinomial Logistic Regression (MNLR)

In this study, numerical independent variables (i.e., inputs) and categorical response
variables (i.e., the outputs) were used. Indeed, the response variables were 97 different
polymers/blends, and consist of multiple levels; hence, the multinomial logistic regression
(MNLR) was deemed to be suitable for modeling the response variables as factors [59,70,71].
The numerical factors were at two levels, and they consisted of a range of minimum
and maximum values of the tensile strength at yield, tensile modulus, and elongation at
break. The input was either an individual factor or a combination of multiple factors for
multivariable optimization. Figure 5 shows the schematic diagram of the whole simulation
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process. Once the data is divided into 75% as training data and 25% as testing data, the
formula and vectors in which data is assigned are needed to run the machine-learning
algorithm. Once the algorithm’s simulation is completed, the values such as the goodness
of fit, likelihood ratio, and its capacity to reject the null hypothesis is reviewed. Once the
model efficacy is verified, the user-defined inputs are inserted into the algorithm to predict
the output. For example, taking the tensile modulus of blends as the input (i.e., single
factor), the training datasets are modeled. After modeling with the training data, the range
of the tensile modulus of the cartilages was used as the testing input to predict the best
polymer blends owing to having similar properties of the cartilages. The response variables
were found to be the blends of poly(glycolic acid)//poly(lactic acid) and poly(methyl
methacrylate)//poly(epsilon-caprolactone).
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The goodness-of-fit model was assessed by comparing its residual deviance (Dm =−2
LLm = 1466.6345) with the null hypothesis residual deviance for the model (D0 = −2 LL0 =
1763.898), which includes only the intercepts. The deviance is a measure of how poorly the
model reproduces the observed data. The likelihood ratio test (G = D0 − D1 = 297.26296,
df = 94, p < 0.001) compares these two deviances. The null hypothesis is rejected, indicating
a statistically significant decrease in deviance when the predictor (X) is included in the
model. This means that the model fits the data better than the null model in terms of the
correspondence between the observed and predicted conditional probabilities. The goodness-
of-fit of modeled data was interpreted by utilizing p-value, and the residual deviation and
its corresponding p-value were summarized in Table 4. It is evident from Table 4 that the
null hypothesis was rejected for all of the independent variables, and thereby, the p-value is
significant for all of the parameters (p < 0.05).

The MNLR model was run by using the neural network pack in R after 100 itera-
tions [72]. The residual values have been plotted against the fitted values to generate the
scatter plot (Figure 6a) while considering all three independent variables (i.e., tensile modu-
lus, tensile strength, and elongation at break of the natural cartilages) used in this study for
multivariable optimization. The scatter plot presented in Figure 6a proves the data inde-
pendence, homoscedasticity, and linearity. On inserting the tensile modulus of 3–100 MPa,
elongation of 2–140%, and the tensile strength of 35 MPa to the already fitted model, the
multinomial regression model predicted polyethene/polyethene-graft-poly(maleic anhy-
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dride) blend as the most suitable one for the cartilage repair. The predicted results along
with the residual deviance for all other individual and combinatory testing inputs are
summarized in Table 5.

Table 4. Multinomial logistic regression goodness fit results.

S. No. Model Null_Residual
Deviation

Model_Residual
Deviation Df p Value

1 Tensile modulus 1763.898 1466.635 94 0
2 Tensile strength at yield 1763.898 1419.2 94 1.34 × 10−9

3 Elongation at break 1763.898 1564.195 94 0

4 Tensile modulus and
elongation at break 1763.898 1075.018 94 0

5 Tensile strength and
elongation at break 1763.898 1132.967 94 0

6 Tensile modulus and
Tensile strength 1763.898 1188.942 94 0

7
Tensile modulus, tensile
strength and elongation

at break
1763.898 782.0324 94 0Polymers 2022, 14, x FOR PEER REVIEW 16 of 23 
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Table 5. Predicted outputs (i.e., polymers/blends) from the multinomial logistic regression modeling.

Parameter Properties Prediction

Tensile modulus Residual Deviance: 618.4709
AIC: 994.4709

(1) poly(glycolic acid)//poly(lactic acid)
(2) poly(methyl

methacrylate)//poly(epsilon-
caprolactone)

Tensile strength at yield Residual Deviance: 1410.82
AIC: 1786.82

(1) poly(lactic acid)

Elongation at break Residual Deviance: 1460.5
AIC: 2212.5

(1) poly(lactic acid)
(2) poly(prop-1-ene)//poly(ethylene

terephthalate)//poly[ethene-co-(5-
ethylidene-2-norbornene)-co-(prop-1-
ene)]

Tensile modulus and elongation
at break

Residual Deviance: 1186.365
AIC: 1750.365

(1) poly(vinyl chloride)
(2) polyethene//polyethene-graft-

poly(maleic
anhydride)

Tensile strength and elongation at break Residual Deviance: 1028.616
AIC: 1592.616

(1) poly(isobutylene oxide)
(2) polyethene//polyethene-graft-

poly(maleic
anhydride)

Tensile modulus and Tensile strength Residual Deviance: 675.875
AIC: 1239.875

(1) polyethene

Tensile modulus, tensile strength and
elongation at break

Residual Deviance: 7.439214
AIC: 2212.5

(1) polyethene//polyethene-graft-
poly(maleic
anhydride)

To confirm whether the predictions made by the MNLR model are accurate and
relevant to cartilage tissue engineering, the predicted polymers/blends’ names were chosen
as the keywords in PubMed and ScienceDirect and searched. The search results were
summarized in the form of a pie chart, as shown in Figure 6b. It was found that polyethylene
and polylactic acid have been mentioned with cartilage tissue engineering 10,603 and
6214 times, respectively.

Rise in the use of the polycaprolactone (PCL) in the field of cartilage tissue engineering
is attributed to the minimal intermolecular interaction and high movement in the chain
segment [73,74]. This mobility facilitates the design the PCL scaffolds in the form of com-
posites, foams and fibers [75,76]. The natural polymers like chitosan and collagen with PCL
is proven to improve the crosslinking as well as its mechanical properties. Moreover, the
application of the crosslinking agents to hydrophobic polymers is known to improve their
water uptake and convert them to hydrophilic polymers [77,78]. The mechanical properties
of PCL are highly influenced by its molecular weight. For instance, the scaffold made up of
PCL having the molecular weight of 15,000 g/mol is known to exhibit brittle characteristics,
whereas the scaffold consisting of 40,000 g/mol is soft and semicrystalline in nature [73,74].
A second attractive feature of PCL and polyethylene is their biodegradability, and they dis-
solve conveniently in presence of enzyme activity and follows a natural metabolic pathway.
PCL is also used as crosslinking agents in many studies as they blend with most of the
polymers easily [73,74].



Polymers 2022, 14, 1802 19 of 24

Similarly, the mechanical properties of polyethylene are highly influenced by the
molecular weight. Best wear performance is observed with the polyethylene consisting
of 1 million repeating units. The high-density polyethylene is known to have a lesser
degree of branching, which is attributed to its recommendable intermolecular forces and
tensile strength. Along with the molecular weight, crosslinking agents and crystallinity
also impact their mechanical properties. Normally polymers having lower crystallization
temperature contain numerous amorphous regions which weaken the overall mechanical
strength of the materials. However, the addition of nanofillers, acting as nucleation agents,
to polyethylene is known to increase its crystallinity and mechanical properties [79,80].

In addition, the mechanical properties of polymers or blends are influenced by several
factors, such as the molecular weight, degree of polymerization, and the cross-linking
agent. The influences vary from one polymer to another. For example, as mentioned earlier,
the increase in molecular weight in PCL (above 40,000 g/mol) improves its mechanical
properties. However, in case of poly(ethylene glycol) diacrylate, the rise in molecular weight
of polymer blend leads to its improved mechanical properties, but has negative impact on
the cell growth [81]. The crystallinity of the polymer also contributes to the mechanical
properties of the polymers. The mechanical strength increases with a rise in crystallinity.
However, the studies indicate that the cell attaches more in the amorphous region than
in the crystalline region, which is due to the surface roughness as the amorphous regions
are rougher than the crystalline regions [80]. More specifically, chondrocytes are known to
attach at higher concentration at PGA than in PCL [80].

Moreover, polylactic acid and polycaprolactone belong to the group of linear aliphatic
polyester polymers [82] and polycaprolactone is known to increase cell viability by 20% [83].
Even the byproducts of the degradation of polylactic acid (i.e., water and carbon dioxide)
are non-toxic in nature [84]. Moreover, both polypropylene and polyethylene are widely
used in developing implants, as they are easy to be molded to the desired shape and
are inexpensive [85–88]. They have been known to initiate a minimal immune response,
and have superior mechanical (i.e., viscoelastic) properties and biocompatibility [89–91].
Particularly, both PLA and PCL can be modified to exhibit viscoelastic properties required
for mimicking cartilages [92–96]. Moreover, polypropylene has proven to be an excellent
candidate in the development of cartilages in nasal reconstructive surgery [97]. Overall, all
the polymers/blends mentioned in the pie chart (Figure 6b) have been employed in the
field of cartilage tissue engineering [89,90,98,99].

3.4. Conclusions

The design of new biomaterials is a complex, tedious, and time-consuming affair. Design-
ing cartilage substitutes is even more intricate due to their unique properties/functionality
and their diverse locations in the human body. Among many, viscoelasticity is one of the
most important parameters that needs to be taken into serious consideration in designing
cartilages. More importantly, the viscoelasticity of the cartilages may not be attributed to any
single property; rather it is better represented by a set of mechanical properties such as tensile
strength, tensile modulus, and the elongation at break. Therefore, it is expected that the best
polymer matrices/blends to be used in cartilage repair must exhibit these properties as much
as in the ranges of the properties of the natural articular cartilages. This study attempts to use
the inverse design approach by using a machine-learning algorithm (i.e., multinomial logistic
regression) to predict the most suitable polymers/blends for cartilage substitutes by using
the ranges of the tensile modulus, elongation at break, and tensile strength of the natural
cartilages as inputs. Both single and multivariable optimization was conducted so that the
output was predicted by using both individual and combinatory properties of the cartilages.
Considering all three properties of interest, poly(epsilon-caprolactone)/poly(bisphenol A
carbonate) and polyethene//polyethene-graft-poly(maleic anhydride) were found to be the
best polymer(s)/blends for cartilage repair using the multinomial logistic regression tech-
niques. All of the predicted polymer(s)/blend(s) through this machine-learning algorithm
are FDA-approved to be used in cartilage tissue engineering; more importantly, they possess
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the similar tensile biomechanical properties of the natural cartilages, and may only initiate
minimal immune responses in the body environment.

However, the limitation of this study lies in the low level of goodness of fit of the
modeled data, which is largely attributed to the response variable to be categorical in nature.
The different machine-learning algorithms may be explored to handle the categorical
variable(s) with multiple levels. Moreover, the biological properties of the natural cartilages
may be included as inputs in future research, although there is still a lack of an appropriate
database to correlate the properties of the stem cells linked to the polymer matrix/blends
to be used in cartilage repair. Hence, it is crucial to encourage researchers to report the
biological data to the journals in a uniform format, which will eventually help to create the
database. As a result, the data mining and machine-learning approaches can be employed
to predict the list of suitable polymers and/or to predict their properties to be used in
several different tissue engineering applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14091802/s1. The basic code to carry multinomial logistic
regression is attached.
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