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Abstract: This work investigates the role of boron addition in the solidification behavior and mi-
crostructural evolution during the heat treatment process of Ti-46Al-8Nb-xB (x = 0.1, 0.7, 1.4, 2.5 at.%).
The results show that the solid solution boron element prefers to occupy the interstitial vacancies of
the α2 phase in the alloy. However, the solid solubility of the boron element in high Nb-containing
TiAl alloys is extremely low. Therefore, it does not have a significant effect on the lattice distortion of
α2 and γ phases in the alloy. When the boron content is added up to 0.1%, a B27-type TiB precipitated
phase is produced in the alloy. The morphology of borides mostly shows short rod-like structures,
and a few show long curved shapes. And the addition of boron refines both the alloy colony size and
the lamellar structure. Furthermore, it is also found that boron addition weakens the casting texture
of the alloy. After a solid solution and different time aging heat treatment process, the microstructure
of different boron content alloys have experienced obvious coarsening phenomenon. However, the
morphology of the boride is closely related to boron content and heat treatment.

Keywords: high Nb-containing TiAl alloy; boron; microstructural evolution; heat treatment

1. Introduction

TiAl alloys have great potential for applications in the aerospace and automotive
industries, as well as in nuclear energy, due to their excellent all-around performance [1–4].
However, the large-scale application of TiAl alloys is still limited by many aspects, the
most prominent of which is their brittleness [5]. The room temperature intrinsic brittleness,
poor molding ability, and high temperature oxidation resistance of TiAl alloys are serious
obstacles to their practical application in various important fields [6,7]. Therefore, how to
improve the intrinsic brittleness of TiAl alloys and enhance the microstructural stability of
the alloys in service is one of the bottlenecks that need to be solved in the application of
TiAl alloys.

At present, the most direct and effective way is to introduce the second phase for
toughening by alloying or compositing methods to form a multilevel and multiscale
microstructure in alloys [8], which in turn exhibits excellent comprehensive performance.
Therefore, in this work, the microalloying of TiAl alloys will be investigated. It has been
found that TiAl alloys with single β solidification have significantly weakened columnar
crystal features in the microstructure, resulting in refinement microstructure and reduced
segregation [9,10]. Therefore, the aluminum content should not be too high for TiAl
alloys [11]. As for the alloying process, for Nb alloying and the development of high
Nb-containing TiAl alloys, compared with ordinary TiAl alloys, its service temperature can
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be increased by 60~100 ◦C, the high-temperature yield strength is doubled and the high-
temperature oxidation resistance is also greatly improved [12,13]. In addition, the addition
of the Nb element can reduce the stacking fault energy of γ phase in TiAl alloy, which is
conducive to the opening of deformation twins, thereby reducing the room temperature
brittleness of the alloy [14]. Therefore, high Nb-containing TiAl alloys with excellent
high-temperature performance have received extensive attention from scholars, among
which β-solidified high Nb-containing TiAl alloys have become one of the hot directions
of research. In this work, the alloy composition of high Nb-containing TiAl alloy with
β-solidification condition is selected as the research object.

On the selection of micro-alloying elements, it is found that scholars generally choose
the transition group metal elements. However, the micro-alloying of transition group
elements is not conducive to the weight reduction design concept of TiAl alloys on the one
hand, and is also prone to compositional segregation in the casting process. In recent years,
lightweight nonmetallic elements, which have a significant effect on both the microstructure
and properties of alloys, have received more and more attention [15,16]. Studies have
shown that borides can refine the colony size of TiAl alloy lamellar and improve the
room temperature mechanical properties of the alloy [17,18]. Meanwhile, the different
morphologies and contents of borides have great influence on the microstructure evolution
and mechanical properties of TiAl alloy [19,20]. However, the current studies on the role
of B are mostly in binary TiAl alloys. The role of boron in high Nb-containing TiAl alloys,
especially in β-solidified high Nb-containing TiAl alloys which have a great potential for
application, has not been well studied. There are fewer related studies at present. Therefore,
it is necessary to investigate the boride addition to β-solidified high Nb-containing TiAl
alloys on the alloy microstructural evolution, as well as the evolutionary behavior of
borides during heat treatment. In this work, the role of boron addition on the solidification
behavior and microstructural evolution during the heat treatment process of a β-solidified
high Nb-containing TiAl alloy have been investigated. Through this work, it is expected
to improve the comprehensive performance of the selected alloys and provide theoretical
guidance for the engineering application of lightweight and high-strength TiAl alloys.

2. Experimental Procedures

In this work, the composition of the experimental alloys were Ti-46Al-8Nb-xB
(x = 0, 0.1, 0.7, 1.4, 2.5 at.%). According to vertical sections close to the Al-Ti side of
Al-Nb-Ti system [21], β phase is the solidification initial phase of the selected alloy. There-
fore, the experimental alloy is a β-solidified high Nb-containing TiAl alloy. Each ingot was
prepared under argon protection in a vacuum non-consumable arc melting furnace. The
raw materials used for the experimental alloy melting were high purity titanium sponge
(99.99 wt.%), high purity aluminum (99.99 wt.%) and titanium–niobium binary alloy
(52.47 wt.% niobium content). Boron was brought in as TiB2 (99.8 wt%) intermediate alloy
powder. Each ingot was re-melted 5 times to guarantee the homogenization of the alloy
composition. After melting, each ingot was weighed. Calculations showed that the weight
loss per ingot was less than 0.1 wt.% and therefore the alloy composition was considered to
be the design composition. Ingots with boron content of 0.7, 1.4 and 2.5% were selected
for heat treatment. The specimens were first placed in a vacuum heat treatment furnace
and heated up to 1380 ◦C under argon protection for 1 h of solution treatment and then
quenched in water at room temperature. After water quenching, the specimen alloys were
aged at 900 ◦C for 3–24 h.

The phase composition of the samples was determined by X-ray diffraction (XRD)
(Panalytical, Almelo, Holland) with Cu Kα radiation (λ = 1.54056 Å). The samples were
scanned over a range of 20–90◦ with a scan rate of 0.05◦ s−1. Scanning electron microscopy
(SEM) (Tescan, Brno, Czech Republic) was used to analyze the microstructure of the alloy.
Elemental distribution and composition of precipitated phases in the alloy were analyzed by
electron probe microanalyzer (EPMA) (SHIMADZU, Kyoto, Japan). In order to determine
the weaving and crystallographic information in the alloy, electron backscatter diffraction
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(EBSD) (OXFORD INSTRUMENTS, Oxford, UK) was performed in the central region
of the sample at an accelerating voltage of 20 kV. Furthermore, the microstructure and
precipitated phases of the alloy were analyzed using transmission electron microscopy
(TEM) (FEI, Hillsborough, America). Specimens for SEM view were prepared by standard
metallographic polishing procedures using a modifying Kroll etching solution. The etching
solution consisted of H2O: HNO3: HF in a ratio of 8:1:1. Preparation of TEM observation
foils was carried out by ion milling method. The solid solution stage adopts a stepped
heating process, with a heating rate of 10 K/min from room temperature to 800 ◦C, and a
5 K/min from 800 ◦C to 1380 ◦C. The aging stage also employs a stepped heating method,
with a heating rate of 5 K/min from room temperature to 500 ◦C, and a 3 K/min from
500 ◦C to 900 ◦C.

3. Results and Discussion
3.1. Phase Composition

Figure 1 illustrates the XRD patterns of Ti-46Al-8Nb-xC (x = 0, 0.1, 0.7, 1.4, 2.5%).
According to the phase diagram [21], the phase composition of Ti-46Al-8Nb alloy is γ and
α2. As can be seen from the figure, diffraction peaks of the γ and α2 phases are detected
in the Ti-46Al-8Nb alloy, but diffraction peaks of the Nb compounds are not detected.
However, the element Nb is not present in a solid solution form in the interstitial vacancies
of γ and α2, but replaces Ti-sites within the Ti-sublattice [22]. Therefore, according to the
crystal structure, Nb elements are present in the lattice sites of both the α2 and γ phases.
With the addition of 0.1% B, the main diffraction peaks do not change, and the alloy still
consisted of γ and α2 phases. By further increasing the boron content to 0.7%, in addition
to the two main peaks γ and α2, diffraction peaks of a new phase TiB phase are developed
in the alloy. This indicates that the elemental B content has exceeded its solid solubility in
the alloy and thus exists as a precipitated phase. Therefore, the solid solubility of boron
in the Ti-46Al-8Nb alloy is less than 0.7%. When increasing the boron content to 1.4 and
2.5%, the diffraction peaks of the TiB phase are more obvious, indicating that its content is
gradually increasing. Since the borides are TiB phases, the Ti atoms are consumed during
its reformation. Therefore, the content of the α2 phase is gradually decreasing in the alloy.
This can be proved by the fact that the diffraction peaks intensity of the α2 phase in Figure 1
is gradually decreasing.
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Figure 1. X-ray diffraction patterns of Ti-46Al-8Nb-xB (x = 0, 0.1, 0.7, 1.4, 2.5 at.%). Figure 1. X-ray diffraction patterns of Ti-46Al-8Nb-xB (x = 0, 0.1, 0.7, 1.4, 2.5 at.%).

The evolution of lattice parameters and unit cell volume of the (a) γ and (b) α2 phases
as a function of boron content are displayed in Figure 2. For the γ phase, its cell volume
is elevated at a boron addition of 0.1%. It indicates that element B is present in solid
solution form in the γ phase, which in turn results in lattice distortion. As the boron content
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continues to increase, the cell volume of the γ phase no longer changes, although the lattice
parameters a and c change slightly. This suggests that the solid solution limit of boron in
the γ phase is less than 0.1%. For the α2 phase, the lattice changes are basically the same
as for the γ phase. Its cell volume increases at a boron addition of 0.1%. As the boron
content continues to increase, its cell volume no longer changes. This indicates that the
solid solution limit of boron in the α2 phase is also lower than 0.1%.
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Figure 2. Evolution of lattice parameters and unit cell volume of (a) γ and (b) α2 phases as a function
of boron content.

By the analysis of Figure 2, the solid solution limit of the boron element in the alloy
should be less than 0.1%. However, in the XRD test in Figure 1, the presence of borides
is not detected when the boron content is 0.1%. This may be due to the accuracy of XRD,
which fails to detect the presence of borides at low boron content. According to previous
research results, the solid solubility of interstitial atoms in the α2 phase is much higher
than that in the γ phase [16,23]. This is mainly because interstitial atoms prefer to occupy
octahedral sites of “Ti6 type” in the D019 structure of the α2 phase [22,24]. However, in the
present work, there is no significant difference in the solid solubility of elemental boron in
the α2 and γ phases. This is mainly due to the nature of the element boron, which prefers
to combine with Ti atoms [25]. Elemental boron is easy to combine with Ti atoms to form
compounds, which in turn leads to its lower solid solubility.

3.2. Microstructural Characterization

The SEM images of the as-cast Ti-46Al-8Nb-xB (x = 0, 0.1, 0.7, 1.4, 2.5%) are shown in
Figure 3. It can be seen that the morphology of as-cast Ti-46Al-8Nb is a coarse equiaxial
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crystal microstructure, and white β phase remaining in the matrix. When 0.1% B is added,
the β phase in the microstructure of the alloy disappears, but the morphology of as-cast Ti-
46Al-8Nb-0.1B is still considered to be a coarse equiaxial crystal microstructure. Meanwhile,
a small number of boride precipitates are found to exist in the alloy. Combined with XRD
analysis, the precipitated boride is TiB, which further illustrates that the solid solubility of
B in the alloy is less than 0.1%. When the B element content is low, the low concentration of
B atoms tends to diffuse in the liquid phase in front of the solidification boundary, making
enrichment difficult. As a result, the concentration of the TiB heterogeneous nucleation
matrix is low and the nucleation rate cannot be effectively improved [26]. Therefore, the
lower content of the B element fails to effectively refine the microstructure of the alloy.
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(e) x = 2.5.

With the addition of boron content to 0.7 or more, the microstructure of the alloy is
significantly and continuously refined, and the content of borides in the alloy gradually
increases. It has been suggested that sufficient boron content along the solidification front
is a key condition for grain refinement [27]. There are two reasons why the addition of
high levels of boron significantly refines the alloy microstructure. Firstly, as the B content
increases, a large number of B atoms are discharged into the melt in front of the solidification
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boundary, and the enrichment of B atoms aggravates the constitutional undercooling [17].
As the solidification process proceeds, a large amount of primary TiB phase precipitates
in the dendritic region of the β phase, providing more nucleation cores for the α phase.
Secondly, due to the low solubility of boron in solids, it is expelled into the liquid before
solidification. As more and more new grains are formed, the boron solubility at the front of
the solidified liquid phase again reaches the critical concentration [28]. This in turn causes
precipitation of new TiB phases, which further provide heterogeneous nucleation sites for
the α phase.

It has been suggested that the morphology of borides is related to the boron con-
tent [29]. As shown in Figure 3, no significant change in the morphology of borides in
the alloy was observed with the increase in boron content. The morphology of borides is
dominated by short rods and granules, and a few morphologies are curly and long.

Figure 4 shows the compositional distribution of Ti-46Al-8Nb-1.4B obtained by EPMA
analysis. Figure 4a shows the detection position of EPMA, including two borides, com-
ponents 1 and 2, and the black line is the composition scanning line. Boride composition
data are shown in Table 1. As can be seen in Figure 4a, the fluctuations of Ti and Al
elements are approximately uniform when the compositional scanning line passes through
the lamellar colonies. The reason is that the lamellar colonies are composed of an Al rich γ

phase and Ti rich α2 phase arranged in intervals. When the compositional scanning line
passes through the borides, the fluctuations of several elements are different, with a sharp
decrease in the content of Al and a significant increase in Nb, and the fluctuations of Nb
are opposite to those of Ti. The results in Table 1 explain this phenomenon. As can be seen
from Table 1, the Al content in the borides is low, and therefore show a sharp decrease on
the composition line scanning. From the previous analysis, it is clear that Nb replaces the
Ti-site in the lattice. Therefore, in boride TiB, Ti and Nb can be replaced with each other. As
a result, the relationship between the two elements changes to the opposite. As can be seen
from Table 1, the sum of Nb and Ti content is comparable to the content of the B element,
which is basically consistent with the ratio of Ti:B as 1:1, which can also confirm this ex-
planation. It is also known that the boride phase in the high Nb-containing TiAl alloy is
a Nb-rich phase.
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Table 1. EPMA data for points 1 and 2 in Figure 4a.

Data Al Ka B Ka Nb La Ti Ka Total
At% At% At% At% At%

1 10.13 45.398 9.263 35.209 100
2 8.029 46.468 10.497 35.007 100

Figure 5 presents the TEM images of Ti-46Al-8Nb, Ti-46Al-8Nb-2.5B and boride in
Ti-46Al-8Nb-2.5B alloy with the corresponding SAED pattern. By comparing Figure 5a,b, it
indicates that both α2 and γ phases within the lamellar in the alloy are significantly refined
after the addition of 2.5% B. It is clear from the previous analysis that boron addition
significantly refines the lamellar colony of the alloy. Therefore, it can be concluded that the
addition of boron can simultaneously refine the lamellar colony and lamellar microstructure
of the alloy. According to the literature, four main titanium boride phases are present in
TiAl alloys, namely TiB (B27), TiB (Bf), TiB2 (C32) and Ti3B4 (D7b) [30]. The lattice structure
of the boride phases is more related to the alloy composition. Studies have shown that
low Al and high Nb content are beneficial for the precipitation of a B27-structured TiB
phase [30,31]. As shown in Figure 5c,d, the boride in this experiment is a TiB phase with a
B27 structure. Since the experimental alloy is a low Al and high Nb alloy, the present work
also confirms the previous statement.
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Figure 6 gives the pole figures of γ, α2 and TiB phases in Ti-46Al-8Nb-2.5B obtained
by EBSD. This is mainly to detect the casting texture in the alloy. As can be seen from
the figure, the grain orientations of the γ, α2 and TiB phases are all random in the {100},
{110}, and {111} orientations, with no obvious casting texture present. This suggests that
B addition weakens the casting texture of the alloy. It has been reported that this is mainly
due to the presence of the boride phase [29]. From the previous analysis, it is clear that
borides can become heterogeneous nucleation sites. And the α phase produced by the
heterogeneous nucleation points destroys the strict Bragg orientation relationship during
the phase transition. As a result, the casting texture in the alloy is weakened.
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3.3. Microstructural Evolution

Microstructures of Ti-46Al-8Nb-xB (x = 0.7, 1.4, 2.5) alloys after solid solution at 1380 ◦C
followed by water quenching and aging at 900 ◦C for 3–24 time are shown in Figures 7–9.
The Ti-46Al-8Nb-0.7B alloy in Figure 7 shows a gradual coarsening of the matrix lamellar
microstructure with an increasing aging time. With the increase in aging time to 12 h, the
boride morphology is transformed from a short rod-like dominant in the as-cast alloy to a
long curly predominance. And the short bar-shaped borides are also coarsened. Further
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increasing the aging time to 24 h, the long curly borides have a tendency to transform into
granular borides. This indicates that there is a close relationship between the morphology
of borides and heat treatment, and with the increase in aging time, there is an evolution
process of boride morphology.
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Figure 8 demonstrates the microstructural evolution of Ti-46Al-8Nb-1.4B alloys during
heat treatment. For 1.4B alloy, the roughening of the matrix microstructure is not different
from that of 0.1B alloy. However, there is a large difference in the boride morphology. With
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the increase in aging time, the boride morphology is still dominated by short rods and
particles, but all of them are coarsened and grown. In addition, in the 2.5B alloy, as shown
in Figure 9, the morphology of the borides has changed to coarse flakes or elongated strips.
Significant growth of the borides has occurred. It is clear from the previous analysis that
there is a direct relationship between the morphology of the borides and the boron content.
The analysis of the heat treatment process shows that the boron content also affects its
morphological evolution process during heat treatment.

4. Conclusions

In this work, role of boron addition on the solidification behavior and microstructural
evolution during the heat treatment process of a β-solidified high Nb-containing TiAl alloy
Ti-46Al-8Nb-xB (x = 0.1, 0.7, 1.4, 2.5 at.%) are investigated. The results show that the solid
solubility of the element boron in the experimental alloy is extremely low. Meanwhile,
boron can both simultaneously refine the lamellar colony and lamellar microstructure of
the alloy. And the reasons for the refining effect of B element are discussed. When the
content exceeds its solid solution limit in the alloy, the boron precipitates as a TiB phase of
type B27. The morphology of borides is dominated by short rods and granules, and a few
morphologies are curly and long. In addition, the presence of borides can become heteroge-
neous nucleation sites of α phase, which destroys the strict Bragg orientation relationship
during the phase transition. As a result, borides significantly weaken the casting texture in
the experimental as-cast alloy. During heat treatment, the matrix microstructure of the alloy
is gradually coarsened. This work indicates that the morphology of the boride is closely
related to the boron content and heat treatment.
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