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Abstract: In spray studies related to selective catalytic reduction (SCR) systems a common approach
is to replace the urea–water solution (UWS) with pure water, even though there is very limited
detailed information on the spray properties for these two liquids obtained under the same conditions
using the same experimental equipment. Neither is it known how the possible differences in spray
properties influence computational fluid dynamics (CFD) simulations. In this study, besides the
flow characteristics, we compare both global and local spray parameters measured for UWS and
pure water in the same conditions. To our knowledge, this is the first study which examines the
influence on the injection process of replacing UWS with water over such a wide range. Moreover,
the influence of different spray properties on CFD simulations is also examined. The experimental
studies showed differences in almost all considered spray parameters. Moreover, different spray
behaviour was noticed in terms of primary break-up. One important finding is that water and UWS
sprays do have a similar Sauter mean diameter, but at the same time the droplet size distribution is
considerably different. The simulation results indicated noticeable differences in terms of wall film
formation; nevertheless, the overall mixing performance was not significantly affected.

Keywords: urea–water solution; UWS; injection; spray; selective catalytic reduction; SCR; optical
diagnostics; CFD; simulations

1. Introduction

The importance of spray properties in terms of efficient NOx reduction in urea–selective catalytic
reduction (SCR) systems is growing. This is caused by stricter emission limits directly, and indirectly,
through the development of compact SCR units located close to the engine, so-called close-coupled
SCRs. Close-coupled to the engine SCRs, due to higher exhaust gas temperatures, offer a huge potential
of NOx reduction [1], especially in terms of catalyst warm-up time; but at the same time, decrease the
available distance for mixing the urea–water solution (UWS) with the exhaust gases. When the space
for mixing is limited, then the spray properties become the key factor in determining the quality of the
SCR system. Therefore, besides investigating alternative solutions [2], the urea–water sprays are more
often studied than in the past—when the inline underfloor SCR systems were a standard solution.

The experimental studies on UWS injection related to SCR systems’ development are usually
aimed at spray characterization for proper injector selection, or determining the spray properties for
further computational fluid dynamics (CFD) simulations, where full SCR system designs are optimized.
These include both spray formation as well as spray-wall interaction. In many studies available in
the literature, UWS is replaced with pure water [3–9]. For preliminary studies, such an approach
seems to be justified since the physical properties influencing spray behaviour, specifically surface
tension and viscosity, are similar for these two liquids. In certain cases, however, even small differences
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between the liquids can lead to different spray characteristics. Different spray characteristics in turn,
may be crucial when highly accurate results are required. Moreover, some parameters differ more (e.g.,
specific heat). Different values of specific heat may lead to different droplet sizes at higher distances
from the injector outlet, especially in hot flow conditions. Nevertheless, even in cold-flow studies
on injector characterization, small differences in surface tension and viscosity together may have an
influence on measured spray parameters. When spray characterization optical methods are applied a
different refractive index may lead to different results as well, especially in the case of Mie scattering.
A comparison of selected physical properties of water and UWS is shown in Table 1.

Table 1. Physical properties of water and urea–water solution (UWS) (32.5% urea mass fraction).

Parameter Unit Water UWS

Density at 20 ◦C g cm−3 0.9982 [10] 1.0870–1.0930 [11]
Kinematic viscosity at 20 ◦C mm2 s−1 1.0034 [12] 1.2592 [12]
Kinematic viscosity at 30 ◦C mm2 s−1 0.8007 [12] 1.0127 [12]

Surface tension at 30 ◦C N m−1 0.072 [13] 0.075 [13]
Specific heat kJ kg−1 K−1 4.2 [10] 3.4 [14]

Thermal conductivity W m−1 K−1 0.6 [15] 0.57 [14]
Vapour pressure at 20 ◦C kPa 2.34 [16] 2.05 [17] *

Refractive index - ~1.33 [18] ~1.38 [19]

* model estimation.

If more precise studies are required, then before replacing UWS with water one needs to ensure
that these two liquids produce similar sprays. However, detailed information on differences in spray
parameters for the same conditions is very limited. Spiteri et al. [3], based on his earlier findings [20],
stated that water and UWS sprays behave similarly. On the other hand, Birkhold et al. [21] noticed that
the evaporation dynamics of UWS differ from pure water. They stated that the decrease in vapour
pressure due to an increasing concentration of urea in the droplet results in a continuous increase of the
droplet temperature and a slower evaporation, compared to pure water [21]. The model proposed by
Ebrahiman et al. [17] confirmed that during vaporization urea concentration increases, which in turn
leads to a decrease in vapour pressure. However, their calculations of droplet evaporation indicated
the low influence of the presence of urea on water evaporation, even though it had a huge effect on the
droplet temperature. If the evaporation is slower, as reported by Birkhold et al. [21], this may have an
effect on droplet sizes at further distances.

The crucial element in the SCR system’s development is fine adjustment of the spray pattern and
droplet size distribution to a specific SCR unit’s design. Thus, a fast and reliable method for spray
characterization is very important for proper injector selection and spray pattern optimization.

Many of the studies available in the literature regarding sprays in SCR systems were based on
a UWS injection. However, most of them were specifically aimed at the properties of the UWS, and
no comparison with water was made. Grout et al. [22], based on the diameter change of individual
droplets, calculated the evaporation rate of the UWS according to the D-square evaporation law.
Postrioti et al. [23] observed urea–water sprays in order to determine the liquid mass distribution
over the visualized area. They also used phase doppler anemometry (PDA) to determine droplet
diameters. They determined the Sauter mean diameter at 16 locations at distances of 90 mm and
140 mm from the injector outlet. They made 5 additional measurements in order to compare the results
with backlight imaging. Payri et al. [24] studied the atomization of UWS sprays in hot co-flow to
simulate exhaust system conditions. They used a diffused back illumination technique at high imaging
speed. They observed that droplet diameter and velocity are affected by injection pressure. Moreover,
the differences were seen depending on the measurement position of the spray, which indicated the
role of the evaporative conditions.
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In this study, we combine global and local spray properties’ determination using optical techniques
with flow characteristics’ measurements, in order to provide comprehensive data on the difference
between UWS and water sprays. The parameters under consideration are: Droplet size distribution
and statistical droplet parameters; spray angle (visualization angle, spray plume inclination angle);
spray tip penetration; unbroken liquid length; initial jet velocity; static flow properties such as static
flow rate (mass, volumetric and average velocity), Reynolds number, Weber number (referred to gas);
and finally, Ohnesorge number.

To our knowledge, this is the first study which examines the influence on the injection process of
replacing UWS with water over such a wide range. Both liquids were injected by the same commercial
SCR system injector into ambient air under the same pressure and temperature. Long-distance
microscopy with backlight illumination (shadowgraphy) was used to determine the droplet size
distribution 20 mm from the injector’s outlet. It was also used to determine the unbroken liquid length
and spray inclination angle. The spray visualization angle, spray tip penetration and initial jet velocity
were determined by high-speed Mie scattering imaging. The static flow parameters were calculated
based on the measurements of the injected mass over different injection durations.

Further, since CFD is extensively used for SCR systems’ development, the determined spray
parameters were used in simulations of an exhaust system in order to examine the effect of using spray
data obtained for water instead of UWS on the simulations’ results. Crucial parameters influencing
the overall SCR system performance were compared, specifically wall film formation and ammonia
homogenization. The simulations were performed for a light-duty close-coupled SCR system under
various conditions relevant to an automotive diesel engine.

2. Results and Discussion

2.1. Experimental Study

The study was done in several steps, including: Determination of mass flow rate characteristics;
measurements of global spray properties; as well as determination of droplet sizes, spray plume
inclination angle and unbroken liquid length for both liquids, UWS and water. The results obtained in
the separate steps are described in the following separate subsections. All tests were conducted for
three different injection pressures 0.4, 0.45 and 0.5 MPa (gauge pressure).

2.1.1. Flow Characteristics

Flow characterization was based on measurement of the injected mass over 5000 injections.
Seven different opening times of the injector were studied, specifically 1, 2, 3, 4, 5, 10, 15 ms. Each
measurement series was repeated three times resulting in 15,000 injections in total per one operating
point. The averaged results for three measurements series (15,000 injections per one point) are shown
in Figure 1.

As seen in Figure 1, at 1 ms injector opening time no liquid was injected at all. In all other
investigated opening times, the correlation was linear.

Based on measurements of injected mass for injection durations of 5 and 15 ms the static flow rate
through the injector was determined. The static flow rate was then used to determine the average (in
nozzle cross-section) flow velocity and further, the Reynolds number, Re, and Weber number, Weg

(referred to the gas). The Reynolds number was calculated according to Equation (1):

Re =
uliquid · d

νliquid
(1)

where: uliquid—is the velocity of the liquid, d—is the nozzle diameter, νliquid—is the kinematic viscosity
of the liquid.
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The Weber number was calculated according to Equation (2):

Weg =
ρgas · uliquid

2
· d

σ
(2)

where: ρgas—is the density of the gas, σ—is the surface tension.
The Ohnesorge number was calculated according to Equation (3):

Oh =
µliquid(

σ·ρliquid·d
)1/2

(3)

where: µliquid—is the dynamic viscosity of the liquid, ρliquid—is the density of the liquid.
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Figure 1. Injected mass during single injection; average values for 3 measurements (each of 5000
injections) for water and UWS for different injector opening times for all considered injection
pressures (gauge).

The complete set of parameters including the Ohnesorge number, Oh, is shown in Table 2.

Table 2. In-injector flow characteristics.

Injection
Pressure
(Gauge)

MPa

Fluid
Type

Static
Mass

Flow Rate
g s−1

Static
Volumetric
Flow Rate

cm3 s−1

Average
Velocity in

the Nozzle m
s−1

Re Weg Oh

0.4 UWS 0.80 0.74 21.75 2073 0.91 0.0108
0.4 Water 0.75 0.75 22.22 2658 0.99 0.0139
0.45 UWS 0.85 0.78 23.12 2203 1.03 0.0108
0.45 Water 0.80 0.80 23.58 2820 1.12 0.0139
0.5 UWS 0.89 0.82 24.17 2303 1.13 0.0108
0.5 Water 0.84 0.84 24.76 2961 1.23 0.0139

Selected parameters from Table 2 (mass flow rate, volumetric flow rate, Reynolds number and
Weber number) are shown in graphs in Figure 2 to visualize the trends and differences between the
two studied fluids.
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Figure 2. In-injector flow characteristics: (a) static mass flow rate; (b) static volumetric flow rate;
(c) Reynolds number; (d) Weber number (referred to gas).

The mass flow rate of UWS for all studied injection pressures was higher than for water. This can
be directly linked to higher density. The volumetric flow rate in turn, was lower for UWS than for
water, which can be related to a viscosity difference. Higher volumetric flow rate, and thus average
flow velocity for water together with lower kinematic viscosity resulted in a much higher Reynolds
number; Weg was also higher for water, due to a higher flow velocity, but also due to lower surface
tension. It may be concluded that relatively small differences in viscosity and surface tension together
led to considerably large differences in the Reynolds number (almost 29% increase) and the Weber
number (almost 9% increase), when UWS was replaced with water.

2.1.2. Spray Tip Penetration

The spray penetration was determined based on high-speed Mie scattering images. The image
processing methodology is provided in Section 3.1.2. The spray penetration evolution (average for five
injections) for both liquids at all considered injection pressures is shown in Figure 3.
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Figure 3. Spray tip penetration for water and UWS for all considered injection pressures (gauge); each
curve is an average for five injections.

As seen in Figure 3, the spray penetration for UWS is higher for all considered injection pressures.
It might seem surprising since the static flow velocity is higher for water (Table 2), however, the
penetration evolution of the spray considered here is the evolution of the spatial location of the initially
released liquid. This is strongly dependent on the initial flow conditions (just after the injector opening),
while the average flow velocity reported in Table 2 is a parameter of a steady flow. Thus, the spray tip
penetration will be mainly dependent on the initial jet velocity as well as the liquid momentum and
the aerodynamic drag force.

As the spray tip penetration was obtained by capturing the Mie signal, it should be noted that due
to the different refractive index of UWS and water (see Table 1), the results could be different regardless
of the spray’s behaviour. The simulations [25] suggest that the backscattering intensity (scattering
angle: 150–180 degrees) of droplets within the size range observed here for a wavelength range 650–800
µm (range of highest quantum efficiency of CMOS (complementary metal–oxide–semiconductor)
sensors, where the halogen light source signal is relatively high), can be more than doubled in the case
of UWS when compared to water. In the case of spray penetration, this effect is assumed to be marginal,
since the liquid ligaments exiting the nozzle (and the large droplets formed out of these ligaments)
were generating a relatively strong signal of similar intensity in all cases. Moreover, the results of the
initial jet velocity (reported in Section 2.1.3), which is not dependent on the intensity threshold (as it
is based on the difference of spray tip positions at different time steps), showed higher values in the
case of UWS. This also indicates that spray tip penetration was not affected by the difference in the
refractive index between two studied liquids.

2.1.3. Initial Jet Velocity

The initial jet velocity, defined as the velocity of the first liquid fragments emerging from the
nozzle after the injector opening, was determined from the first three frames of the high-speed
imaging sequence when liquid was observed using the same image processing procedures as for spray
penetration determination (see Section 3.1.2). The results are shown in Table 3.

Table 3. Initial jet velocity in m/s for water and UWS for all considered injection pressures (gauge).

0.4 MPa 0.45 MPa 0.5 MPa

UWS 24.5 25.1 26.1
Water 21.4 21.9 22.5
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In order to visualize the trends and differences between the two studied fluids, as well as the
differences between the static flow velocity, the results were plotted on a graph (Figure 4a) and shown
together with the static flow velocity (average velocity in the nozzle) reported earlier in Table 2
(Figure 4b).
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Figure 4. (a) initial jet velocity; (b) static flow velocity (from Table 2).

The initial jet velocity in contrast to the static flow velocity is higher for UWS than for water. The
reason for this difference could not be caused by the difference in the refractive index, since the initial
jet velocity is calculated as the difference of the spray tip’s position after a certain time step, and the
absolute spray tip penetration does not play a role.

It is assumed that two parameters together, higher density (and as a result inertia) and viscosity
for UWS, lead to a longer delay and consequently, higher pressure build-up before the first liquid exits
the nozzle after the injector opening signal. This in turn, results in higher initial jet velocity for UWS,
even though the static volumetric flow rate for this liquid is lower. The longer delay was observed
also in the images at the same trigger settings (camera and injector); in the case of UWS the first liquid
exiting the nozzle was observed one frame later (0.1 ms later) than in the case of water.

The higher initial jet velocity together with higher density (and thus momentum) explain the
higher spray tip penetration for all UWS cases.

2.1.4. Spray Visualization Angle

The spray visualization angle is a practical parameter describing a whole spray cloud formed by
several spray plumes used for rapid injector comparison, and for selection for fitting the geometrical
arrangement of the exhaust system. The visualization angle was measured also from high-speed
images, using the same image intensity threshold to separate the spray from the background as that for
the spray penetration determination. The graph presented in Figure 5 shows the average (for frames
between 10 and 12 ms after start of injection, and for five injections) spray visualisation angle measured
for both UWS and water at all considered injection pressures.
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Figure 5. Spray visualisation angle.

It may be observed that for both liquids the spray angle increases with injection pressure, which
is consistent with results shown by other researchers for similar injection parameters [24,26]. When
considering differences between the studied fluids it can be seen that the visualization angle determined
for UWS was higher than for water for all considered injection pressures. If the droplet number and
droplet size distribution are taken into account (see Table 4), the results may seem surprising. Water
sprays in most cases produced a higher number of droplets and the volume of injected liquid over the
same period was higher (Figure 1). In this case, the effect of different refractive indexes was supposed
to have a major impact on the results. In a spray cloud the smallest droplets at the lowest concentration
and thus generating the weakest signal are usually in the side peripheral region of the spray. As
explained earlier, the Mie scattering signal for droplets within the size range observed here can be more
than twice lower for water than for UWS. Different optical properties could be compensated (e.g., by
using stronger light to illuminate the spray or by using a different intensity threshold value to separate
the spray cloud from the background), but as stated earlier, the idea behind this work was to compare
the sprays using the same set-up and the same conditions, which includes the data processing as well.
Especially as setting the intensity threshold value for spray cloud separation from the background
just above small random intensity fluctuations present in the background regardless of the fluid type
seems to be the right choice.

Table 4. Droplet cumulated statistics (for 99 injections).

Injection
Pressure (Gauge)

MPa
Fluid Type Number of

Droplets DV10 µm DV50 µm DV90 µm D32 µm

0.4 UWS 8976 66.8 146.5 232.5 116.1
0.4 Water 10099 64.3 150.7 240.9 116

0.45 UWS 9606 63.8 142.5 233.2 112.2
0.45 Water 11381 59.2 146.5 240.9 110.4
0.5 UWS 12198 61 135.1 224.1 107.4
0.5 Water 12110 57.4 140.8 233.8 106.6

2.1.5. Jet Inclination Angle

The jet inclination angle was expected to be insensitive to liquid change, however it was measured
for the purpose of the numerical work. The measurement was done only for one selected nozzle where
the axis was in the visualisation plane. The measurement was done based on averaged shadowgraphy
images captured at the nozzle exit. The definition of the jet inclination angle is shown in Figure 6. The
measured jet inclination angle was insensitive to both liquid type and injection pressure, and was
6 degrees for all cases.
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Figure 6. Jet inclination angle, α definition.

2.1.6. Unbroken Liquid Length

The unbroken liquid length was measured based on shadowgraphy imaging at the nozzle exit.
In order to examine the developed sprays and exclude the effects of the injector opening, the images
were captured 10 ms after the start of injection. At this time the flow is stable (as seen in Figure 1)
and the first droplets released after the injector opening are already further than 150 mm from the
injector’s outlet (Figure 3); while the unbroken liquid length is analysed close to the nozzle (up to 10
mm from the nozzle outlet). The single image of the visualised jets (water case, 0.5 MPa) together with
the unbroken liquid length definition is shown in Figure 7a. The measured values of the unbroken
liquid length are shown in Figure 7b.
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Figure 7. (a) Visualised jets for water and unbroken liquid length definition; (b) measured unbroken
liquid length (for 99 injections for each injection pressure).

It may be observed that an increase in injection pressure for UWS caused a decrease of the unbroken
liquid length (both average and median); while for water the effect was the opposite. When considering
the average inner nozzle velocity, which is higher for water than for UWS and increases when injection
pressure is increased (Figure 4b), and a relation proposed by Leroux [27] which links the unbroken
liquid length of the jet with the velocity at the nozzle exit, one can conclude that replacing UWS with
water moved the jet from the first wind-induced break-up regime to the second wind-induced regime
(Figure 8). This is the only regime (besides the Rayleigh regime) where the unbroken liquid length was
noticed to be increasing with increased jet velocity.
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Figure 8. Unbroken liquid length of the jet versus velocity at the nozzle exit and the definition of the
unbroken liquid length for different types of break-up (based on [27–29]).

When the Weber number for gas, Weg, is considered, then according to Ranz [30] both jets should be
in the first wind-induced regime (0.4 < Weg < 13). However, when a criterion of the Ohnesorge number,
and the Reynolds number is considered (the reference then is to liquid density), the assumption of
switching jet break-up regimes from first wind-induced break-up regime into the second wind-induced
break-up regime by changing a fluid type from UWS to water is confirmed (Figure 9).
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Figure 9. Jet break-up regimes and the considered injection cases (based on [31,32]).

It needs to be emphasized that the change of break-up regime does not take place suddenly after
certain parameters are reached or exceeded. The process is not instantaneous and considered criterions
are invented. Both criterions (shown in Figures 8 and 9) suggest that in the case of UWS the break-up
regime was the first wind-induced regime and in the case of water the second wind-induced regime.
However, it does not need to be similar for different set-ups (different injector nozzle diameter and
injection pressure), the break-up regime can remain the same. Nevertheless, it can be concluded that
replacing UWS with water (by the increased Ohnesorge number and Reynolds number) moves the jet
droplet break-up process towards the next break-up regime.

2.1.7. Droplet Size Distribution

The droplet size distribution and statistical parameters of the sprays were determined for 99
injections, where one frame from each injection event was collected. The diameters of detected droplets
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were in the range between 20 µm and 300 µm. The droplet size distributions for UWS and water for
different injection pressures are shown in Figure 10.

The statistical parameters related to droplet size such as volume median diameter (DV50), ninetieth
percentile of volume distribution (DV90), tenth percentile of volume distribution (DV10), and Sauter
mean diameter (D32) are shown in Table 4.

The differences in D32 can be considered as small, which initially could lead to the conclusion
that there is a minor influence from replacing UWS with water on the generated droplets. However, if
DV10 and DV90 are considered, it may be observed that the sprays differ considerably; DV10 for water
is for all considered pressures, smaller. On the other hand, DV90 is always smaller for UWS. These two
observations together mean that in the case of water more volume (normalized) is stored in very large
and very small droplets than in the case of UWS. It is clearly visible in the droplet size distributions
presented in Figure 10.
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Figure 10. Cont.
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Figure 10. Droplet size distribution for UWS and water for different injection pressures (gauge):
(a) number, 0.5 MPa; (b) volumetric, 0.5 MPa; (c) number, 0.45 MPa; (d) volumetric, 0.45 MPa;
(e) number, 0.4 MPa; (f) volumetric, 0.4 MPa; legend shown in (a) is valid also in (c,e); legend shown in
(b) is valid also in (d,f).

As seen in Figure 10, the normalized number of droplets of the size range from 20–30 µm is
in all cases higher for water than for UWS. This is in accordance with the volumetric droplet size
distributions which show that for water more volume (normalized) is stored in the droplets of that
size. The volumetric droplet size distributions reveal also that much more volume for water is stored
in the biggest droplets (200–300 µm). These observations together explain why D32 is similar, even
though the droplet size distributions are considerably different.

2.2. Numerical Simulations

The numerical study was performed to evaluate how the results of exhaust system simulations
change when the spray input parameters are based on experiments made for water instead of UWS.
Therefore, the simulations were performed for two set-ups where the set-up #1 was based on UWS
experimental data; while the set-up #2 was based on spray data obtained for water. The simulations
were compared in terms of wall film formation and ammonia distribution. The results are shown in
the following subsections.

2.2.1. Wall Film Formation

Figure 11 shows the mass of the wall film deposited in the exhaust system for different exhaust
gas mass flows and for two set-ups: #1 was based on UWS experimental data; while #2 was based on
the data obtained for water. The simulation time covered four injection events (at 4 Hz frequency);
therefore, four cycles of wall film accumulation (peaks after 0, 0.25, 0.5 and 0.75 s) and the following
phases of evaporation can be observed. It can be noticed that the simulation set-up based on water
spray data led to higher wall film formation for each operating point. It is presumed that the smaller
spray cone angle together with lower injection velocity and different droplet size distribution promoted
stronger wall film accumulation.
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Figure 11. Wall film mass evolution for different exhaust gas mass flow and different simulation set-ups;
set-up #1 was based on UWS experimental data, set-up #2 was based on water experimental data.

Figure 12a shows the total wall film mass at the end of the fourth injection cycle divided by the
wetted area, (mean wall film thickness expressed in unit of mass per unit of area). The simulations
based on the UWS experiment (set-up #1) show lower values for each exhaust gas mass flow condition.
However, the difference between the set-ups is not constant, and it decreases for higher exhaust gas
mass flows. Figure 12b shows the relative total wall film introduced, which is an integral of mass that
is stacked to the walls over the simulation time, normalized by the total liquid mass injected. It may
be observed that the deposited mass fraction of injected liquid increases along with the exhaust gas
flow. Moreover, the solver based on the water data (set-up #2) under all exhaust gas conditions led
to a higher relative total wall film being introduced. The difference between solvers decreased with
increased mass flow, and amounts to 3.8, 1.5 and 0.7 percentage points for 100, 200, 300 kg/h exhaust
gas mass flows, respectively. This trend is similar to the trend observed for wall film thickness, which
suggests that for a longer injector opening time the amount of injected liquid starts to be a dominant
factor for the wall film formation. Whereas for a lower UWS dosage, the injection velocity, spray angle
and particle size distribution may play major roles; for instance, by shifting droplets from deposition
to a splash regime in the Kuhnke model, and thus also affecting film accumulation.

Regardless of the reason for the observed small differences, the most important aspect is that
using experimental data for water instead of data for UWS did not lead to underestimation of the wall
film formation.
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Figure 12. Wall film analysis: (a) wall film mass to wall film area ratio at the end of 4th injection cycle;
(b) relative total wall film mass introduced (normalized by the total mass injected).

2.2.2. Ammonia Distribution

Figure 13 shows time integrated ammonia flux referred to the cell face area. The measurement
plane was created 12 mm downstream from the SCRF (selective catalytic reduction on filter) inlet. It
can be seen that for both set-ups the ammonia flux maps are in general in good agreement for the
given exhaust gas mass flow conditions. A few details can be observed if set-up #1 and set-up #2 are
compared, specifically: Higher ammonia concentration in the bottom right area (Figure 13f) and a
slightly smaller area in the medium range of the scale (green area) in Figure 13b,c. The low mass flow
conditions (Figure 13a,d) led to similar results and only small differences could be noticed.
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Figure 13. Time integrated NH3 molar flux scaled to the cell face area-12 mm from the SCRF inlet:
(a) 100 kg/h set-up #1; (b) 200 kg/h set-up #1; (c) 300 kg/h set-up #1; (d) 100 kg/h set-up #2; (e) 200 kg/h
set-up #2; (f) 300 kg/h set-up #2.

In order to quantitatively assess the difference between the set-ups, the time-averaged ammonia
mass uniformity index (UI), which is a well-established and convenient parameter used for mixing
performance evaluation in both the numerical [33–35] and experimental [36] studies was used. The
uniformity index was calculated for each case according to Equation (4) for the same cross section
planes as shown in Figure 13. The UI values were shown in Figure 13 as well.

UI = 1−

∑
i

∣∣∣XNH3,i −XNH3
∣∣∣ ·Ai

2XNH3·
∑

i Ai
(4)

where, XNH3,i is the time-averaged NH3 mass fraction over the i-th face; XNH3 is the time-averaged
mean NH3 mass fraction; Ai is the cell face area.

As seen in Figure 13, the UI is very similar for both set-ups. The differences are 0.8, 0.5 and
0.6 percentage points for 100, 200 and 300 kg/h exhaust gas mass flows, respectively. Although the
differences can be considered as very low, it needs to be noticed that for all considered mass flow
conditions the obtained values were higher for the water-based set-up (set-up #2); which suggests that
using experimental data obtained for water may lead to overestimation of mixing performance.

It cannot be claimed that the same trends would be obtained for a different geometrical set-up.
Nevertheless, it needs to be taken into account that the results may be too optimistic when using water
spray-based data for SCR system simulations.

3. Materials and Methods

3.1. Experimental Set-Up

In the study, several measurement methods and techniques were used, which are described in the
following separate subsections. The injector, injector controller and whole water/UWS supply system
were the same in all experiments. The injector used in the study was a commercial 3-hole injector for
SCR systems (Bosch 0 280 158 720, Gerlinger, Germany).

3.1.1. Flow Rate Measurement Set-Up

The experimental set-up for the flow rate characteristics (Figure 14) consisted of a pressurized air
bottle with pressure regulator connected to another bottle with water/UWS by high-pressure tubing,
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including several valves and a precise pressure gauge (WIKA CPG1500, measuring range 0–1 MPa
gauge, accuracy 0.1% FS, Frankfurt, Germanry) in order to monitor the pressure. The pressurized
bottle containing the liquid was connected to a filter and to the injector. The injector was located above
the container for collecting the sprayed liquid. The container was covered to prevent liquid from
splashing outside. The injector was connected to the controller integrated with the computer. The
injection process was triggered through the computer, where also the current in the injector circuit
was monitored.
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Figure 14. Schematic diagram of the experimental set-up for flow measurements.

The measurement procedure was based on collecting liquid for 5000 injections. After 5000 injections
the mass of the liquid collected in the container was measured. For this purpose, a precision balance
(Radwag PS1000.R1, Radom, Poland) with readability of 1 mg and repeatability of 1.5 mg was used. The
measurement procedure was repeated three times in order to avoid random errors. The measurements
were done for seven different opening times of the injector, specifically 1, 2, 3, 4, 5, 10 and 15 ms.

3.1.2. High-Speed Imaging

For global spray parameters (i.e., spray tip penetration and spray visualization angle) and initial
jet velocity measurements, high-speed Mie scattering imaging was used. The set-up was based on
global illumination provided by two halogen lights (500 W each) and a high-speed camera (Photron
SA1.1, Tokyo, Japan) equipped with a Nikon f 2.8 50-mm lens (Tokyo, Japan). The recording was done
at a frame rate of 10,000 fps. The image resolution was of 1024 × 450 pixels. The schematic set-up is
shown in Figure 15.
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The image processing was done using LaVision DaVis version 8.4 software (Gottingen, Germany)
and included the following steps: Background subtraction, spray separation from the surroundings,
and angle or tip penetration determination. The first frame of each image sequence was used (image
without spray) as the background image. The spray cloud separation from the surroundings was based
on an intensity threshold of 10 counts (after background subtraction); this was the minimum value to
exclude camera noise (similar in all cases), which became visible after background subtraction. Spray
tip penetration was determined as a distance of 97% of pixels above 10 counts. The spray angle was
determined so the 97% of pixels above 10 counts were between the two sides of the angle.

3.1.3. Shadowgraphy with a Long-Distance Microscope

The set-up, based on shadowgraphy with a long-distance microscope, was used to determine
droplet size distribution, unbroken liquid length and jet inclination angle at the nozzle exit. The set-up
used here was set to visualize an area of 4.5 × 10 mm of the spray in a single frame. The measurement
area for the droplet size determination was located 20 mm below the nozzle exit in the axis of a single
plume (the location referred to the centre of the image). It is schematically shown in Figure 16. The
measurement area for the unbroken liquid length determination covered a distance from the injector
outlet up to 10 mm downstream.
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Figure 16. Experimental set-up for shadowgraphy with long-distance microscope.

The shadowgraphy set-up was based on an Nd:YAG laser (Spectra Physics Quanta-Ray Pro-230,
Santa Clara, CA, USA). The 532 nm wavelength was used to excite the dye in the diffuser, and the light
from the diffuser (574-580 nm) was used to illuminate the spray. The camera (LaVision SCMOS) was
equipped with a long-distance microscope. The schematic diagram of the set-up is shown in Figure 16.

3.2. Numerical Simulations

The simulations were performed using AVL FIRE™ v. 2014.2 (Graz, Austria). The geometrical
model used in the simulations (shown in Figure 17) was based on the most recent close-coupled SCR
aftertreatment configuration, with the selective catalytic reduction on filter (SCRF) placed downstream
of the diesel oxidation catalyst (DOC). To enhance mixing before the inlet to the SCRF catalyst a
single-spin static mixer was used. The injector was located between the DOC and the SCRF, so the
UWS was injected into the hot gas stream towards the static mixing device.
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Figure 17. Urea–selective catalytic reduction (SCR) model with zoom in on the mesh and the mixer.

The polyhedral mesh was built in the catalysts’ connector (Figure 17—mesh view) using AVL Fire
M™ v.2018. The base cell size was 4 mm, while the size of the face element was 3 mm. The elements
on the mixer surface were refined to 2 mm. Both the DOC and SCRF bricks were made as structural
meshes by extruding the middle-cone inlet/outlet surfaces by 4 mm steps up to 90 mm and 180 mm
respectively; and thus, were composed mainly of hexagonal prism elements. The final mesh was
composed of 429,341 elements; among which 1423 elements were tetrahedral and 3219 hexahedral.

The flow inside the system was considered as turbulent and it was modelled by the
Reynolds-Averaged Navier-Stokes (RANS) method. To model the turbulences the k-ζ-f model [37] was
used. In order to obtain realistic conditions inside the spray-cone, the DOC and SCRF were modelled
as one-directional porous medium zones with the pressure drop described by the Forchheimer formula,
which takes into account linear viscous losses corrected by quadratic inertial losses [38].

For modelling the spray, the well-established Lagrangian method was used; in which droplet
parcels are introduced into the computational domain and treated as a discrete source for a continuous
phase. The parameters, like the initial jet velocity and the spray plume angle, were treated as boundary
conditions for the spray calculations, and were taken from the experiments. Moreover, as the UWS
injector is typically a low pressure injector, a common practice is to set the particle size distribution at
the nozzle outlet [39]. This approach was used in this study as well.

A Birkhold approach [21] was used for modelling the UWS decomposition. In his approach, after
UWS is injected into the hot exhaust gas it undergoes the 2-step process; where first, water evaporates
from the droplets until only urea remains, and then urea decomposes into NH3 and HNCO through a
thermolysis process.

As shown in Figure 17, UWS injection is performed directly towards the mixer, hence, the wall
film formation at the mixer’s surface is expected. According to the Kuhnke model [40], which was used
in this study, four different scenarios may occur. The droplet can be deposited on the wall, splashed,
rebounded or thermally broken up. The most appropriate scenario is chosen depending on a droplet’s
dimensionless velocity and temperature.

The simulations were performed for two different spray set-ups, where set-up #1 was based on
UWS experimental data; while set-up #2 was based on spray data obtained for water. The spray model
parameters for both set-ups are shown in Table 5. Note that for both simulation set-ups data for the
numerical simulations were taken from the experiments for 0.5 MPa injection pressure.
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Table 5. Spray parameters used for simulations.

Parameter Unit Set-up #1 Set-up #2

Inclination angle deg 6 6
Single plume angle deg 7.3 5.4

Static volumetric flow cm3 s−1 0.82 0.84
Initial jet velocity m s−1 26.1 22.5

In order to evaluate the effect of using water spray data instead of UWS spray data in different
engine operating conditions, the simulations were performed for three different exhaust gas mass
flows (Table 6).

Table 6. Boundary conditions for computational fluid dynamics (CFD) simulations.

Exhaust Gas
Mass Flow

Exhaust Gas
Temperature NOx UWS Dosage

Injector Opening
Time Set-Up #1

(for UWS
Flow Data)

Injector Opening
Time Set-Up #2

(for Water
Flow Data)

kg h−1 ◦C ppm mg s−1 ms ms

100
250 150

13.31 3.7 3.6
200 26.62 7.5 7.3
300 39.93 11.2 10.9

The UWS dosage calculations were done assuming the same number of moles of NO2 and NO
and the stochiometric fast-SCR reaction (i.e., 1 mole of NH3 is needed for 1 mole of NOx). Thus, the
dosage of UWS was calculated with regards to the NOx concentration and the exhaust gas mass flow.
Since the volumetric flow rates obtained for UWS and for water were different, the injection time at
each exhaust gas condition differed between the set-ups as well. The injector opening times for set-ups
#1 and #2 were calculated based on the urea dosage and volumetric flow rates obtained for UWS and
water respectively, assuming a constant injection frequency of 4 Hz in all cases. The exhaust gas was
composed of NOx, H2O, O2, CO2 and N2.

Moreover, for each set-up a different droplet size distribution was set according to Figure 10a:
UWS for set-up #1 and water for set-up #2.

4. Conclusions

In this study, UWS and pure water were compared in terms of spray properties generated from
the same set-up under the same conditions. The parameters under consideration were: Droplet size
distribution and statistical droplet parameters; spray angle (visualization angle, spray plume inclination
angle); spray tip penetration; unbroken liquid length; initial jet velocity; static flow properties such as
static flow rate (mass, volumetric and average velocity), Reynolds number, Weber number (referred to
gas); and finally, Ohnesorge number. Moreover, the influence of different spray properties on CFD
simulations was also studied.

The experimental studies showed differences in almost all considered spray parameters. The jet
inclination angle was the only parameter unaffected by replacing UWS with water. The Reynolds
number, Weber number (referred to gas) and Ohnesorge number in all considered cases were higher for
water. The static volumetric flow rate and, thus, average velocity in the nozzle was higher for water;
while the initial jet velocity and the spray tip penetration were higher for UWS. It is supposed that
the higher initial jet velocity in the case of UWS was caused by higher UWS density (and as a result
inertia), and viscosity leading to a longer delay and consequently, higher pressure build-up before the
exit of the first liquid from the nozzle. In turn, higher initial jet velocity together with higher density
and thus momentum, explain the higher spray tip penetration for all UWS cases. The spray angle was
also dependent on the fluid type—the visualization angle for UWS was higher than for water for all
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considered injection pressures—even though the number of observed droplets and the injected volume
was higher for water. It is presumed that the decreased spray angle for water resulted mainly from the
different refractive index, making the water sprays less visible and more difficult to separate from the
background. This feature also needs to be taken into account when UWS is replaced with water.

Moreover, different spray behaviour was noticed in terms of primary break-up. The unbroken
liquid length for UWS tended to decrease with the increased injection pressure (and flow velocity);
while for water, the effect was opposite. This suggests that the replacement of UWS with water caused
the change in the break-up regime from the first wind-induced regime into the second wind-induced
regime. It needs to be emphasized that in the case of different injection set-ups (injection pressure,
nozzle diameter) the same jet break-up regime can be maintained. Nevertheless, it can be generally
concluded that replacing UWS with water (by increased Ohnesorge number and Reynolds number)
moves the jet droplet break-up process towards the next break-up regime.

An important finding was shown in that water and UWS sprays do have a similar Sauter mean
diameter, but at the same time the droplet size distributions are considerably different. The normalized
number and normalized volume of the smallest and the biggest droplets for water were higher than
for UWS.

The differences between the measured spray parameters for UWS and water affected the
simulations’ results. The simulation set-up based on spray data obtained for water resulted in
higher wall film accumulation at the end of each injection event, and at the end of the simulations. This
leads to an important conclusion that using experimental data obtained for water instead of UWS did
not cause an underestimation of the wall film formation. As far as the ammonia uniformity index is
concerned, the differences between the simulations based on the UWS spray data and the water spray
data were very low. However, unlike the case of the wall film, the effect was opposite as the simulations
based on the water spray data led to more optimistic results for all considered exhaust gas mass flows.
This shall be taken into consideration when developing an SCR system using CFD simulations.
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